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Introduction
There are many types of operating characteristics to consider for a statistical assessment of evidence for
treatment effects, for example

1. Bayesian or frequentest power or frequentist type I assertion probability � if the study goes to its planned
end and there is only one look at the data at that time. This is a pre-study tendency.

2. Pre-study tendencies for various successes or failures to happen sometime during the course of the study
if the data are analyzed sequentially. In the frequentist setting, � in this case is the probability of ever
rejecting H0 when the treatment is ignorable (no benefit and no harm).

3. Reliability of post-study evidence quantification when there is a single data look
4. Reliability of the evidence quantification at the decision point in a sequential study. I.e., at the first data

look at which an evidence threshold is exceeded what is the reliability of a frequentist null hypothesis
test at that look or of a Bayesian posterior probability at that look.

5. Properties of a futility assessment that is done in mid course, e.g., of a frequentist conditional power
calculation or a Bayesian posterior predictive probability of ultimate study success

Once the study has begun and the first analysis is done, purely pre-study operating characteristics such as 1.
and 2. are no longer relevant. In this report we are concerned with 2. and 4.
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Consider a two-treatment arm therapeutic randomized controlled trial (RCT) for assessing treatment, with
1:1 randomization ratio and a univariate ordinal outcome. Though primary analyses should always be
covariate-adjusted we will not consider covariate adjustment in these simulations. The trial design considered
here is a fully sequential one with unlimited data looks so as to minimize the expected sample size. We
will estimate the probability that the posterior probability, under various priors, will reach given targets for
efficacy and harm/inefficacy, as a function of the sequential look number. These operating characteristics are
useful for study planning, especially with regard to avoiding a futile trial from the outset. Once data are
available, however, the simulations in the last part of this document are the most important. This second set
of simulations addresses the reliability of evidence at the decision point, i.e., at the moment of stopping for
efficacy, inefficacy, or harm.

For simplicity we align the looks with completion of follow-up of patients in the trial, e.g., a look after the
50th patient is followed will assume that patients 1-49 have also completed follow-up.

The simulations presented here assume that a normal distribution is an adequate approximation to the
distribution of the treatment effect estimate, here a treatment B : treatment A log odds ratio. The data model
is a proportional odds ordinal logistic model analyzed with the R rms package lrm function. Simulations are
done by the Hmisc package estSeqSim and gbayesSeqSim functions. As implemented in the R Hmisc package
gbayes function, the Bayesian posterior distribution used to approximate (thus avoiding another simulation
loop for MCMC posterior draws) the real posterior distribution is normal, making for very quick approximate
posterior probability calculations when the prior distribution used for the log OR is also Gaussian as used
here. Three priors are used:

• a skeptical prior for assessing evidence for efficacy
• a flat prior for assessing evidence for efficacy
• a flat prior for studying posterior probabilities of inefficacy/harm
• an optimistic prior for inefficacy/harm

See here for more simulations and graphical presentations of them.

Technical Note
Our simulations involve simulating ordinal data for the planned maximum sample size and then progressively
revealing more and more of this sample as sequential looks progress. As with a real study, the data in the
sequential looks overlap and this needs to be taken into account for certain analyses of posterior probability
paths.

Unlike comparing means with a two-sample t-test, the formula for the variance of a log odds ratio is not a
simple function of the group sample sizes. So one cannot compute the variance of a log odds ratio computed
on one patient from treatment A and one from treatment B then divide that variance by the number of A-B
patient pairs to get the variance of a log odds ratio for an arbitrary number of patients. Were that not the
case, our simulations would have been even faster because one could simulate from a normal distribution
instead of actually fitting the logistic model for each sample and look.

Simulation Parameters
Unlike here, we take treatment benefit to mean that the odds ratio (OR) < 1. Since a large number of true
ORs are used in the simulation, we simulate only 500 clinical trials per OR and borrow information across
ORs to compute Bayesian operating characteristics. ORs will vary from benefit to harm over this sequence:
0.4, 0.45, …, 1.25. The maximum sample size will be 1000 patients, with the first look taken at the 25th
patient. Look every patient until 100 patients, then for faster simulations look only every 5 patients until a
maximum sample size of 1000. Posterior probabilities will be computed for the following assertion and prior
distribution combinations:

• Efficacy: P(OR < 1) with a skeptical prior P(OR < 0.5) = 0.025
• Efficacy: P(OR < 1) with a flat prior (log(OR) has mean 0 and SD 100)
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• Inefficacy/harm: P(OR > 1) with a flat prior (log(OR) has mean 0 and SD 100)
• Inefficacy/harm: P(OR > 1) with an optimistic prior (log(OR) has mean log(0.85) = -0.1625 and SD of

0.5)

For computing the probabilities of hitting various targets, the following posterior probability thresholds are
used:

• Efficacy: P(OR < 1) > 0.95
• Inefficacy/harm: P(OR > 1) > 0.9

Simulation to Estimate Probabilities of Stopping for Different Rea-
sons
First define functions needed by the Hmisc package estSeqSim and gbayesSeqSim functions.
# Use a low-level logistic regression call to speed up simulations

lfit <- function(x, y) {
# lrm.fit.bare will be in version 6.1-0 of rms; until then use lrm.fit

f <- rms::lrm.fit.bare(x, y)
cof <- f$coefficients
k <- length(cof)
c(cof[k], f$var[k, k])

}

# Data generation function
gdat <- function(beta, n1, n2) {

# Cell probabilities for a 7-category ordinal outcome for the control group
p <- rev(c(2, 1, 2, 7, 8, 38, 42) / 100)

# Compute cell probabilities for the treated group
p2 <- pomodm(p=p, odds.ratio=exp(beta))
y1 <- sample(1 : 7, n1, p, replace=TRUE)
y2 <- sample(1 : 7, n2, p2, replace=TRUE)
list(y1=y1, y2=y2)

}

Now run the simulations. The result is saved so that the model fits are not run each time this report is
compiled.
ors <- seq(0.4, 1.25, by=0.05)
looks <- c(25 : 100, seq(105, 1000, by=5))

if(! file.exists('seqsim.rds')) {
set.seed(3)
# estSeqSim took 38m for 2.3M model fits; plan on 0.001s per OR/simulation/look
print(system.time(est <- estSeqSim(log(ors), looks, gdat, lfit, nsim=500, progress=TRUE)))
saveRDS(est, 'seqsim.rds', compress='xz')

} else est <- readRDS('seqsim.rds')

# Define assertions and priors to be used for them
# Assertion 1: log(OR) < 0 under prior with prior mean 0 and sigma: P(OR>2)=0.025
# Assertion 2: log(OR) < 0 under flat prior
# Assertion 3: log(OR) > 0 under flat prior (sigma=100)
# Assertion 4: log(OR) > 0 under optimistm prior with mean log(0.85), sigma=0.5
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asserts <- list(list('Efficacy', '<', 0, cutprior=log(2), tailprob=0.025),
list('Efficacy flat', '<', 0, mu=0, sigma=100),
list('Inefficacy/harm flat', '>', 0, mu=0, sigma=100),
list('Inefficacy/harm optimistic', '>', 0, mu=log(0.85), sigma=0.5))

s <- gbayesSeqSim(est, asserts=asserts)

head(s)

sim parameter look est vest p1 mean1 sd1
1 1 -0.9162907 25 -0.5608048 0.6702457 0.6070526 -0.08819149 0.3246568
2 1 -0.9162907 26 -0.7216567 0.6351371 0.6432983 -0.11872801 0.3232548
3 1 -0.9162907 27 -0.5308043 0.6012535 0.6118197 -0.09140265 0.3217666
4 1 -0.9162907 28 -0.6291448 0.5922355 0.6335884 -0.10969854 0.3213456
5 1 -0.9162907 29 -0.7187434 0.5847377 0.6534119 -0.12664488 0.3209870
6 1 -0.9162907 30 -0.8010207 0.5784064 0.6715144 -0.14241269 0.3206779

p2 mean2 sd2 p3 mean3 sd3 p4
1 0.7533229 -0.5607672 0.8186579 0.2466771 -0.5607672 0.8186579 0.2628995
2 0.8173968 -0.7216109 0.7969296 0.1826032 -0.7216109 0.7969296 0.2246521
3 0.7531798 -0.5307724 0.7753821 0.2468202 -0.5307724 0.7753821 0.2597402
4 0.7931801 -0.6291075 0.7695456 0.2068199 -0.6291075 0.7695456 0.2363885
5 0.8263650 -0.7187014 0.7646591 0.1736350 -0.7187014 0.7646591 0.2158080
6 0.8538774 -0.8009744 0.7605084 0.1461226 -0.8009744 0.7605084 0.1976082

mean4 sd4
1 -0.2707199 0.4267123
2 -0.3204430 0.4235439
3 -0.2706787 0.4202129
4 -0.3010270 0.4192764
5 -0.3291055 0.4184808
6 -0.3552087 0.4177965

attr(s, 'asserts')

label cutprior tailprob mu sigma assertion
1 Efficacy 0.6931472 0.025 0.0000000 0.353653 < 0
2 Efficacy flat NA NA 0.0000000 100.000000 < 0
3 Inefficacy/harm flat NA NA 0.0000000 100.000000 > 0
4 Inefficacy/harm optimistic NA NA -0.1625189 0.500000 > 0

alabels <- attr(s, 'alabels') # named vector to map p1 p2 p3 p4 to labels

First let’s examine the effect of the priors by making two pairwise comparisons: differences in posterior
probabilities of efficacy under skeptical vs. flat prior, and differences in posterior probabilities of inefficacy
under flat and optimistic priors.
w <- data.table(s)
u <- w[, .(p12max=max(abs(p1 - p2)), p12mean=mean(abs(p1 - p2)),

p34max=max(abs(p3 - p4)), p34mean=mean(abs(p3 - p4))), by=.(look)]
z <- melt(u, measure.vars=c('p12max', 'p12mean', 'p34max', 'p34mean'),

variable.name='which', value.name='diff')
k <- c(p12max='Efficacy max', p12mean='Efficacy mean',

p34max='Inefficacy max', p34mean='Inefficacy mean')
z[, w := k[which]]
ggp(ggplot(z, aes(x=look, y=diff, color=w)) + geom_line() +

guides(color=guide_legend(title='Comparison')) +
xlab('Look') + ylab('Absolute Difference in Posterior Probabilities'))
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Figure 1: Mean and maximum absolute difference in posterior probabilities for efficacy and inefficacy to
gauge the effect of using a skeptical prior instead of a flat prior

Compute the cumulative probability of hitting assertion-specific targets as data looks advance.
# Reshape results into taller and thinner data table so can plot over 3 assertions

ps <- names(alabels)
w <- melt(w,

measure.vars=list(ps, paste0('mean', 1:4), paste0('sd', 1:4)),
variable.name='assert', value.name=c('p', 'mean', 'sd'))

w[, assert := alabels[assert]]
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head(w)

sim parameter look est vest assert p mean
1: 1 -0.9162907 25 -0.5608048 0.6702457 Efficacy 0.6070526 -0.08819149
2: 1 -0.9162907 26 -0.7216567 0.6351371 Efficacy 0.6432983 -0.11872801
3: 1 -0.9162907 27 -0.5308043 0.6012535 Efficacy 0.6118197 -0.09140265
4: 1 -0.9162907 28 -0.6291448 0.5922355 Efficacy 0.6335884 -0.10969854
5: 1 -0.9162907 29 -0.7187434 0.5847377 Efficacy 0.6534119 -0.12664488
6: 1 -0.9162907 30 -0.8010207 0.5784064 Efficacy 0.6715144 -0.14241269

sd
1: 0.3246568
2: 0.3232548
3: 0.3217666
4: 0.3213456
5: 0.3209870
6: 0.3206779
# Define targets
target <- c(Efficacy = 0.95,

'Efficacy flat' = 0.95,
'Inefficacy/harm flat' = 0.9,
'Inefficacy/harm optimistic' = 0.9)

w[, target := target[assert]] # spreads targets to all rows
# hit = 0/1 indicator if hitting target at or before a certain look equals
# 1 if cumulative number of target hits > 0 at that look
u <- w[, .(hit = 1*(cumsum(p > target) > 0), look=look), by=.(sim, parameter, assert)]

# To compute for each assertion/prior/parameter combination the
# first look at which the target was hit run the following
# (first is set to infinity if never hit)
# f <- w[, .(first=min(look[p > target])), by=.(sim, parameter, assert)]
# with(subset(f, assert == 'Efficacy' & parameter == 0), mean(is.finite(first)))

Next estimate the probability of hitting the posterior probability targets as a function of the true parameter
generating the data, the look number, and the assertion. We use simple stratified proportions for this purpose
because of an adequate number of replications per condition. (With fewer replications we would have used
logistic regression to interpolate probability estimates for more precision.) Estimates are made for a subset of
the true odds ratios.
# Estimate the probability at OR 0.4 0.5 ... using simple proportions
ors <- round(exp(u$parameter), 2)
us <- u[ors == round(ors, 1), ] # subset data table with OR incremented by 0.1
prop <- us[, .(p=mean(hit)), by=.(parameter, look, assert)]
prop <- prop[, txt := paste0(assert, '<br>OR:', exp(parameter), '<br>n:', look, '<br>', round(p, 3))]
ggp(ggplot(prop, aes(x=look, y=p, color=factor(exp(parameter)), label=txt)) + geom_line() +
facet_wrap(~ assert) +
xlab('Look') + ylab('Proportion Stopping') +
guides(color=guide_legend(title='True OR')) +
theme(legend.position = 'bottom'), tooltip='label')

prp <- prop[assert == 'Efficacy', ]
lookup <- function(n=c(500, 1000), param=log(c(1, 0.7))) {

r <- numeric(length(n) * length(param))
i <- 0
for(N in n) {
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for(pa in param) {
i <- i + 1
r[i] <- prp[look == N & abs(parameter - pa) < 1e-5, p]

}
}
r

}
Sm <- rbind(Sm,

data.frame(topic='Power to detect efficacy',
cond1 = 'almost unlimited looks',
cond2 = 'no futility stopping',
cond3 = c(rep('n=500', 2), rep('n=1000', 2)),
cond4 = rep(c('OR=1', 'OR=0.7'), 2),
amount = lookup(n=c(500, 1000))))
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Figure 2: Bayesian power: Probability of stopping early with sufficient evidence for an effect, or the probability
of obtaining that evidence at the last look where n=1000, as a function of the true unknown effect (OR)

Simulation to Check Reliability of Evidence at Moment of Stopping
The simulations above addressed the question of what might have happened regarding trial stoppage under
specific true unknown treatment effects. Now we address the more important question: at the moment of
stopping how reliable is the current evidence that was used to make the decision to stop? To do this, as was
done here we simulate clinical trials more in alignment with how the real world works. We take a sample of
true effects and run one clinical trial for each true effect, i.e., one parameter value that is taken to define the
data generating process (in addition to the base cell probabilities for the 7-level ordinal outcome). Were the
effects drawn from the same prior distribution (log normal distribution for the OR) as the one used during
data analysis, the posterior probability at the moment of stopping would mathematically have to be perfectly
calibrated. Here we simulate from a slightly different distribution that is less skeptical.
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The goal of Bayesian analysis is to uncover the unknown parameters that generated our data. So a simulation
that is in the Bayesian spirit is one in which we run a randomized trial for each drawn value of the treatment
effect, and we run one trial (nsim=1) for that value. We sample 3000 log odds ratios from a normal distribution
so are running 3000 clinical trials.
# Log odds ratios drawn from a normal distribution with mean 0 and SD 0.5
# Analysis prior for efficacy used 0 and SD 0.354

set.seed(4)
nor <- 3000
lors <- rnorm(nor, 0, 0.5)
looks <- c(25 : 100, seq(105, 1000, by=5))

if(! file.exists('seqsim2.rds')) {
set.seed(5)
# estSeqSim took 10.5m for 768,000 model fits
print(system.time(est2 <- estSeqSim(lors, looks, gdat, lfit, nsim=1)))
saveRDS(est2, 'seqsim2.rds', compress='xz')

} else est2 <- readRDS('seqsim2.rds')
s <- gbayesSeqSim(est2, asserts=asserts)
head(s)

sim parameter look est vest p1 mean1 sd1
1 1 0.1083774 25 0.09012818 0.5629420 0.4795766 0.016383966 0.3198976
2 1 0.1083774 26 -0.10355546 0.5392905 0.5243936 -0.019495018 0.3186300
3 1 0.1083774 27 0.01954542 0.5275928 0.4953008 0.003745507 0.3179671
4 1 0.1083774 28 -0.14519033 0.5095408 0.5359743 -0.028614400 0.3168932
5 1 0.1083774 29 -0.18859189 0.4992482 0.5475463 -0.037780822 0.3162514
6 1 0.1083774 30 -0.33614215 0.4845743 0.5865646 -0.068960571 0.3152965

p2 mean2 sd2 p3 mean3 sd3 p4
1 0.4521939 0.09012310 0.7502735 0.5478061 0.09012310 0.7502735 0.4192291
2 0.5560690 -0.10354988 0.7343442 0.4439310 -0.10354988 0.7343442 0.3639062
3 0.4892665 0.01954439 0.7263367 0.5107335 0.01954439 0.7263367 0.4003356
4 0.5805863 -0.14518293 0.7138031 0.4194137 -0.14518293 0.7138031 0.3508907
5 0.6052282 -0.18858247 0.7065574 0.3947718 -0.18858247 0.7065574 0.3374241
6 0.6854068 -0.33612586 0.6960969 0.3145932 -0.33612586 0.6960969 0.2926359

mean4 sd4
1 -0.08482362 0.4160754
2 -0.14384283 0.4132977
3 -0.10398433 0.4118540
4 -0.15681529 0.4095283
5 -0.17121864 0.4081459
6 -0.22160867 0.4060994

attr(s, 'asserts')

label cutprior tailprob mu sigma assertion
1 Efficacy 0.6931472 0.025 0.0000000 0.353653 < 0
2 Efficacy flat NA NA 0.0000000 100.000000 < 0
3 Inefficacy/harm flat NA NA 0.0000000 100.000000 > 0
4 Inefficacy/harm optimistic NA NA -0.1625189 0.500000 > 0

For each assertion/evidence target subset to studies that ever met the target. Save the posterior probability
at the moment at which the target was hit. Compare the average of such probabilities with the proportion of
such conclusive studies for which the true unknown parameter value generating the study’s data met the
criterion. For example, when considering evidence for efficacy as P(OR < 1) = P(log(OR) < 0) > 0.95, find
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the look at which P first crossed 0.95 and save its posterior probability (which will overshoot the 0.95 a bit)
and compute the proportion of true effects (parameter values) for these “early stopping for efficacy” studies
that are negative (to estimate the probability of a true treatment benefit).
# Function to compute the first value of x that exceeds a threshold
g <- function(x, threshold) {

i <- 1 : length(x)
first <- min(which(x > threshold))
if(! is.finite(first)) return(Inf)
x[first]

}
w <- data.table(s)
ppstop <- w[, .(pp=g(p1, 0.95), first=min(look[p1 > 0.95])), by=.(parameter)]

med <- ppstop[is.finite(first), median(first)]
pavg <- ppstop[is.finite(pp), mean(pp)]
pactual <- ppstop[is.finite(pp), mean(parameter < 0)]
rnd <- function(x) round(x, 3)
rnd(c(pavg, pactual))

[1] 0.955 0.977

We see that the average posterior probability of efficacy at the moment of stopping for this probability
exceeding 0.95 was 0.955 and the estimated true probability of efficacy of 0.977 was even higher than that.
So even though we stopped with impressive evidence for any efficacy, the evidence was actually understated
under this simulation model. Had the data generating prior been as skeptical as the analysis prior, the two
quantities would be identical.

The median look at the time of stopping for efficacy for those studies every reaching P > 0.95 was 205.
Examine the estimated true probability of efficacy for those stopped later than this vs. those stopped earlier.
ppstop[is.finite(pp), .(proportionTrueEfficacy=mean(parameter < 0)),

by=.(belowMedian=first <= med)]

belowMedian proportionTrueEfficacy
1: TRUE 0.9868421
2: FALSE 0.9673540

The estimate of the true probability of efficacy is larger when stopping at or before observation 205. For
stopping after 205, the effect of prior distribution used in the analysis starts to wear off.

Now evaluate calibration of posterior probabilities used for stopping early for inefficacy/harm.
# Note that each study has a unique parameter since sampled from a continuous dist.
ppstop <- w[, .(pp=g(p3, 0.9), first=min(look[p3 > 0.9])), by=.(parameter)]

pavg3 <- ppstop[is.finite(pp), mean(pp)]
pactual3 <- ppstop[is.finite(pp), mean(parameter > 0)]
rnd(c(pavg3, pactual3))

[1] 0.924 0.846

ppstop <- w[, .(pp=g(p4, 0.9), first=min(look[p4 > 0.9])), by=.(parameter)]

pavg4 <- ppstop[is.finite(pp), mean(pp)]
pactual4 <- ppstop[is.finite(pp), mean(parameter > 0)]
rnd(c(pavg4, pactual4))

[1] 0.910 0.932
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Recall that we used different priors for assessing evidence for inefficacy/harm, to be careful about stopping
early for inefficacy. Especially for the last situation, the analysis priors are more optimistic about the true
treatment effect than the distribution used for the population of efficacies we simulated from.

We see that the average posterior probability of inefficacy at the moment of stopping for this probability
exceeding 0.9 was 0.924, and the estimated true probability of inefficacy was 0.846 when using a flat prior for
analysis. When using an optimistic prior (negative mean on the log odds ratio scale), the average probability
of inefficacy at the moment of stopping for inefficacy was 0.91 and the estimated true probability of inefficacy
was 0.932.

Futility Analysis
Typical reasons for stopping a clinical trial early are

1. sufficient evidence for efficacy
2. sufficient evidence for inefficacy/harm
3. futility

Futility refers to it being unlikely that even if the study were to proceed to its maximum planned sample size,
the probability is low that 1. or 2. would obtain. Futility can be assessed in a formal way using Bayesian
posterior predictive distributions, which take into account the limitations of evidence at the time that futility
is assessed as well as uncertainty about the future data that have yet to be observed. Futility analysis is the
only setting where the planned sample size is considered, when using a Bayesian sequential design.

Since we are simulating many clinical trials and are progressively revealing the data up to a planned maximum
sample size of 1000 patients, we can easily simulate futility guidance at a certain point in time. For simplicity
we consider only 1. above, i.e., we assess futility in such a way as to only consider evidence for efficacy a
success and ignore the possibility that we may wish for the trial to provide definitive evidence that a treatment
is ineffective or harmful. Suppose that we want to assess futility after 400 patients have completed follow-up,
and the ultimate sample size cannot go above 1000. We start with the subset of studies that have not been
stopped early for either efficacy or inefficacy. For those studies, record the posterior probability of efficacy at
the 400 patient mark. Relate that posterior probability to the probability that a later posterior probability
will exceed 0.95, estimating that probability as a function of the 400-patient probability of efficacy using
logistic regression on the binary outcome of posterior probability ever exceeding 0.95.

We continue to use the second set of simulated trials where the true unknown efficacy odds ratios come from
a log normal distribution.
# For each trial compute the lowest sample size at which the efficacy or inefficacy target
# was hit. Then keep those trials for which it was not hit by 400 patients
u <- w[, .(first = min(look[p1 > 0.95 | p3 > 0.9]), look=look, p1=p1, p3=p3),

by=.(parameter)]

v <- u[look >= 400 & first > 400, ]
length(v[, unique(parameter)]) # number of RCTs remaining

[1] 667
# For each simulated study find the first look at which efficacy target hit
# R sets the computed sample size to infinity if the target was never hit
ef <- v[, .(efirst = min(look[p1 > 0.95]), pcurrent=p1[look == 400]), by=.(parameter)]

dd <- datadist(ef); options(datadist='dd')
f <- lrm(is.finite(efirst) ~ rcs(qlogis(pcurrent), 4), data=ef)
f

Logistic Regression Model

lrm(formula = is.finite(efirst) ~ rcs(qlogis(pcurrent), 4), data = ef)
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{

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 667 LR 𝜒2 297.80 𝑅2 0.505 𝐶 0.879
FALSE 455 d.f. 3 𝑔 2.354 𝐷𝑥𝑦 0.758
TRUE 212 Pr(> 𝜒2) <0.0001 𝑔𝑟 10.527 𝛾 0.758

max | 𝜕 log 𝐿
𝜕𝛽 | 4×10−5 𝑔𝑝 0.329 𝜏𝑎 0.329

Brier 0.129

}

%latex.default(U, file = ”“, first.hline.double = FALSE, table = FALSE, longtable = TRUE, lines.page =
lines.page, col.just = rep(”r“, ncol(U)), rowlabel =””, already.math.col.names = TRUE, append = TRUE)%

̂𝛽 S.E. Wald 𝑍 Pr(> |𝑍|)
Intercept -2.4648 0.5814 -4.24 <0.0001
pcurrent 1.6124 0.9980 1.62 0.1062
pcurrent’ 0.7740 2.2207 0.35 0.7274
pcurrent” -3.2691 6.4875 -0.50 0.6143

P <- Predict(f, pcurrent, fun=plogis)
xl <- 'P(OR < 1) at 400th Patient'
yl <- 'P(P(OR < 1) > 0.95) by 1000th Patient'
switch(outfmt,

pdf = ggplot(P, xlab=xl, ylab=yl),
html = plotp(P, xlab=xl, ylab=yl))
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Figure 3: Logistic model estimates of the probability having sufficient evidence for efficacy by the planned
study end, given the posterior probability of efficacy at n=400

For there to be a 0.5 chance of hitting efficacy evidence target by the planned study end, the posterior
probability of efficacy after 400 patients would have to exceed 0.75. For at least a 0.125 chance of finding
efficacy, the posterior probability at 400 would have to exceed 0.5, which is almost the same as saying that
the treatment effect needs to be pointing in the right direction. To have at least a 0.25 chance of finding
efficacy, the current posterior probability would have to exceed 0.625.

Now repeat the calculations from the standpoint of the futility assessment being made after 700 patients
have completed follow-up.
# For each trial compute the lowest sample size at which the efficacy or inefficacy target
# was hit. Then keep those trials for which it was not hit by 700 patients
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v <- u[look >= 700 & first > 700, ]
length(v[, unique(parameter)]) # number of RCTs remaining

[1] 420
# For each simulated study find the first look at which efficacy target hit
ef <- v[, .(efirst = min(look[p1 > 0.95]), pcurrent=p1[look == 700]), by=.(parameter)]

dd <- datadist(ef); options(datadist='dd')
f <- lrm(is.finite(efirst) ~ rcs(qlogis(pcurrent), 4), data=ef)
f

Logistic Regression Model

lrm(formula = is.finite(efirst) ~ rcs(qlogis(pcurrent), 4), data = ef)

{

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 420 LR 𝜒2 116.51 𝑅2 0.452 𝐶 0.899
FALSE 366 d.f. 3 𝑔 7.478 𝐷𝑥𝑦 0.797
TRUE 54 Pr(> 𝜒2) <0.0001 𝑔𝑟 1767.951 𝛾 0.797

max | 𝜕 log 𝐿
𝜕𝛽 | 4×10−6 𝑔𝑝 0.179 𝜏𝑎 0.179

Brier 0.080

}

%latex.default(U, file = ”“, first.hline.double = FALSE, table = FALSE, longtable = TRUE, lines.page =
lines.page, col.just = rep(”r“, ncol(U)), rowlabel =””, already.math.col.names = TRUE, append = TRUE)%

̂𝛽 S.E. Wald 𝑍 Pr(> |𝑍|)
Intercept -2.3434 8.4137 -0.28 0.7806
pcurrent 13.3734 27.7510 0.48 0.6299
pcurrent’ -12.5370 36.1693 -0.35 0.7289
pcurrent” 28.7637 98.8864 0.29 0.7711

P <- Predict(f, pcurrent, fun=plogis, conf.int=FALSE)
xl <- 'P(OR < 1) at 700th Patient'
yl <- 'P(P(OR < 1) > 0.95) by 1000th Patient'
switch(outfmt,

pdf = ggplot(P, xlab=xl, ylab=yl),
html = plotp(P, xlab=xl, ylab=yl))
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Figure 4: Logistic model estimates of the probability having sufficient evidence for efficacy by the planned
study end, given the posterior probability of efficacy at n=700

There are only 54 RCTs that later hit the efficacy target when neither it nor the inefficacy target were hit
by 700 patients, so more simulations may be needed to get reliable estimates. But it can be seen that the
current (at 700 patients) posterior probability needs to be larger to have a reasonable chance of reaching an
efficacy conclusion than it had to be after only 400 patients.

Operating Characteristics With Less Frequent Looks
Instead of looking almost continuously, let’s determine the operating characteristics under a sequential design
in which the maximum sample size is 1000 patients, the first look as after 100 patients have been followed,
and a look is taken every 100 patients after that. Unlike earlier simulations we add a twist: only count
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simulated trials that did not stop previously for futility.
ors <- seq(0.4, 1.25, by=0.05)
looks <- seq(100, 1000, by=100)
if(! file.exists('seqsimless.rds')) {
set.seed(5)
est <- estSeqSim(log(ors), looks, gdat, lfit, nsim=500)
saveRDS(est, 'seqsimless.rds', compress='xz')
} else est <- readRDS('seqsimless.rds')

s <- gbayesSeqSim(est, asserts=asserts)
head(s)

sim parameter look est vest p1 mean1 sd1
1 1 -0.9162907 100 -0.8845577 0.15391137 0.9344354 -0.3965564 0.2626786
2 1 -0.9162907 200 -1.2672169 0.08225853 0.9997001 -0.7644440 0.2227603
3 1 -0.9162907 300 -1.1338281 0.05437178 0.9999754 -0.7902733 0.1946712
4 1 -0.9162907 400 -1.0343128 0.03981947 0.9999968 -0.7845353 0.1737913
5 1 -0.9162907 500 -1.0479410 0.03198230 0.9999999 -0.8345378 0.1595914
6 1 -0.9162907 600 -1.0454613 0.02625587 1.0000000 -0.8640686 0.1473104

p2 mean2 sd2 p3 mean3 sd3 p4
1 0.9879237 -0.8845441 0.3923124 1.207629e-02 -0.8845441 0.3923124 2.416259e-02
2 0.9999950 -1.2672064 0.2868063 4.973196e-06 -1.2672064 0.2868063 3.244024e-05
3 0.9999994 -1.1338219 0.2331769 5.795730e-07 -1.1338219 0.2331769 2.756842e-06
4 0.9999999 -1.0343087 0.1995478 1.090184e-07 -1.0343087 0.1995478 4.017237e-07
5 1.0000000 -1.0479376 0.1788357 2.317407e-09 -1.0479376 0.1788357 9.171218e-09
6 1.0000000 -1.0454585 0.1620364 5.519270e-11 -1.0454585 0.1620364 2.216671e-10

mean4 sd4
1 -0.6094232 0.3086472
2 -0.9937225 0.2487840
3 -0.9603173 0.2113268
4 -0.9145335 0.1853335
5 -0.9475168 0.1683891
6 -0.9615448 0.1541443

w <- data.table(s)
w <- melt(w,

measure.vars=list(ps, paste0('mean', 1:4), paste0('sd', 1:4)),
variable.name='assert', value.name=c('p', 'mean', 'sd'))

w[, assert := alabels[assert]]
head(w)

sim parameter look est vest assert p mean
1: 1 -0.9162907 100 -0.8845577 0.15391137 Efficacy 0.9344354 -0.3965564
2: 1 -0.9162907 200 -1.2672169 0.08225853 Efficacy 0.9997001 -0.7644440
3: 1 -0.9162907 300 -1.1338281 0.05437178 Efficacy 0.9999754 -0.7902733
4: 1 -0.9162907 400 -1.0343128 0.03981947 Efficacy 0.9999968 -0.7845353
5: 1 -0.9162907 500 -1.0479410 0.03198230 Efficacy 0.9999999 -0.8345378
6: 1 -0.9162907 600 -1.0454613 0.02625587 Efficacy 1.0000000 -0.8640686

sd
1: 0.2626786
2: 0.2227603
3: 0.1946712
4: 0.1737913
5: 0.1595914
6: 0.1473104
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w[, target := target[assert]] # spreads targets to all rows
u <- w[, .(hit = 1*(cumsum(p > target) > 0), look=look),

by=.(sim, parameter, assert)]
ors <- round(exp(u$parameter), 2)
us <- u[ors == round(ors, 1), ] # subset data table with OR incremented by 0.1
prop <- us[, .(p=mean(hit)), by=.(parameter, look, assert)]
prop[, txt := paste0(assert, '<br>OR:', exp(parameter), '<br>n:', look, '<br>', round(p, 3))]
ggp(ggplot(prop, aes(x=look, y=p, color=factor(exp(parameter)), label=txt)) + geom_line() +
facet_wrap(~ assert) +
xlab('Look') + ylab('Proportion Stopping') +
guides(color=guide_legend(title='True OR')) +
theme(legend.position = 'bottom'), tooltip='label')

prp <- prop[assert == 'Efficacy', ]
Sm <- rbind(Sm,

data.frame(topic='Power to detect efficacy',
cond1 = 'look every 100 patients',
cond2 = 'no futility stopping',
cond3 = c(rep('n=500', 2), rep('n=1000', 2)),
cond4 = rep(c('OR=1', 'OR=0.7'), 2),
amount = lookup(n=c(500, 1000))))
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Figure 5: Bayesian power when looks are made only after every 100 patients and when no early stopping for
futility is allowed

Let’s develop a futility rule so that the operating characteristics can be re-run excluding simulated trials that
stopped for futility at an earlier look. We will use a posterior probability of efficacy of 0.95 as the efficacy
evidence target for at the end or for stopping early for efficacy. Futility is taken to mean a final posterior
probability less than 0.95 at the planned maximum sample size of 1000 patients. Instead of computing the
proportion of simulated trials hitting the 0.95 threshold at 𝑛 = 1000 we use a binary logistic model with a
tensor spline in the current posterior probability and sample sizes to estimate the probability if hitting 0.95.
Futility probabilities are estimated in the absence of knowledge of the data generating OR.

First fetch the final posterior probability and merge it with earlier looks. Then show probabilities of hitting
the target estimated by computing proportions within intervals containing 450 observations, and add loess
estimates to the same plot. Then the binary logistic model is fitted and plotted.

18



u <- w[assert == 'Efficacy', .(sim, parameter, look, p)]
setkey(u, parameter, sim, look)
u[, final := p[look == 1000], by=.(parameter, sim)]
dd <- datadist(u); options(datadist='dd')
with(u[look < 1000,], plsmo(p, final >= 0.95, group=look, method='intervals', mobs=450))
with(u[look < 1000,], plsmo(p, final >= 0.95, group=look, add=TRUE))
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Figure 6: Simple proportons and loess smoothed estimates of the relationship between the current posterior
probability of efficacy, the sample size at which the current probability was calculated, and the probability
that the final posterior probability of efficacy exceeds 0.95. Proportions are computed after dividing current
probabilities into intervals each containing 450 values.
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f <- lrm(final >= 0.95 ~ rcs(look, 5) * rcs(p, 5), data=u[look < 1000, ], scale=TRUE, maxit=35)
P <- Predict(f, p, look=seq(100, 900, by=200), fun=plogis, conf.int=FALSE)
xl <- 'Current Posterior Probability'
yl <- 'P(P > 0.95 at 1000)'
# plotp treated look as a continuous variable and created a color image plot
# had to use regular ggplot
# switch(outfmt,
# pdf = ggplot(P, xlab=xl, ylab=yl),
# html = plotp(P, xlab=xl, ylab=yl))
ggplot(P, xlab=xl, ylab=yl)
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Figure 7: Logistic model estimates of the relationship between the current posterior probability of efficacy,
the sample size at which the current probability was calculated, and the probability that the final posterior
probability of efficacy exceeds 0.95. A tensor spline interaction surface is modeled between sample size and
current probability.

To speed up calculations we solve for the minimum current posterior probability that for a given sample size
results in a probability of 0.1 of hitting the target at 𝑛 = 1000.
minp <- numeric(9)
ps <- seq(0, 1, length=5000)
i <- 0
for(lo in seq(100, 900, by=100)) {

i <- i + 1
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ptarget <- predict(f, data.frame(look=lo, p=ps), type='fitted')
minp[i] <- approx(ptarget, ps, xout=0.1)$y

}
round(minp, 3)

[1] 0.249 0.360 0.463 0.550 0.615 0.672 0.741 0.802 0.864
# Check
round(predict(f, data.frame(look=seq(100, 900, by=100), p=minp), type='fitted'), 7)

1 2 3 4 5 6 7 8
0.1000000 0.1000000 0.1000000 0.1000000 0.1000000 0.1000000 0.1000000 0.1000000

9
0.0999999

fut <- function(p, look)
ifelse(look == 1000, FALSE, p < minp[look / 100])

Compute the proportion of trials that are stopped early for futility, by true OR.
z <- u[, .(futile = 1L * (cumsum(fut(p, look)) > 0),

eff = 1L * (cumsum(p >= 0.95) > 0),
look = look,
p = p),
by=.(parameter, sim)]

pstop <- z[, .(p = mean(futile)), by=.(parameter, look)]
if(outfmt == 'html') {
pstop[, txt := paste0('OR:', exp(parameter), '<br>n:', look, '<br>', round(p, 3))]
ggplotly(ggplot(pstop, aes(x=look, y=p, color=factor(exp(parameter)),

label=txt)) + geom_line() +
guides(color=guide_legend(title='True OR')) +
xlab('Sample Size') + ylab('Probability of Stopping for Futility'), tooltip='label')

} else {
ggplot(pstop, aes(x=look, y=p, color=factor(exp(parameter)),

linetype = parameter == 0)) + geom_line() +
guides(color=guide_legend(title='True OR'), linetype=FALSE) +
xlab('Sample Size') + ylab('Probability of Stopping for Futility')

}
prp <- pstop
Sm <- rbind(Sm,

data.frame(topic='Probability of stopping early for futility',
cond1 = 'look every 100 patients',
cond2 = '',
cond3 = c(rep('n=300', 2), rep('n=600', 2)),
cond4 = rep(c('OR=1', 'OR=0.7'), 2),
amount = lookup(n=c(300, 600))))
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Figure 8: Probability of stopping for futility, as a function of the unknown true odds ratio and the current
sample size, when looks are taken every 100 patients

Now compute the operating characteristics, where declaring earlier for futility is treated as not declaring
efficacy later.
ph <- z[, .(p = mean(eff * (1 - futile))), by=.(parameter, look)]
if(outfmt == 'html') {

ph[, txt := paste0('OR:', exp(parameter), '<br>n=', look, '<br>', round(p, 3))]
ggplotly(ggplot(ph, aes(x=look, y=p, color=factor(exp(parameter)),

label = txt)) + geom_line() +
guides(color=guide_legend(title='True OR')) +
xlab('Sample Size') + ylab('Probability of P(efficacy) > 0.95'), tooltip='label')
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} else {
ggplot(ph, aes(x=look, y=p, color=factor(exp(parameter)),

linetype=parameter == 0)) + geom_line() +
guides(color=guide_legend(title='True OR'), linetype=FALSE) +
xlab('Sample Size') + ylab('Probability of P(efficacy) > 0.95')

}
ph[parameter == 0, .(look, p)]

look p
1: 100 0.006
2: 200 0.022
3: 300 0.032
4: 400 0.052
5: 500 0.058
6: 600 0.066
7: 700 0.074
8: 800 0.074
9: 900 0.062
10: 1000 0.068
prp <- ph
Sm <- rbind(Sm,

data.frame(topic='Power to detect efficacy',
cond1 = 'look every 100 patients',
cond2 = 'with futility stopping',
cond3 = c(rep('n=500', 2), rep('n=1000', 2)),
cond4 = rep(c('OR=1', 'OR=0.7'), 2),
amount = lookup(n=c(500, 1000))))
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Figure 9: Bayesian operating characteristics and power when trials are allowed to stop earlier for futility,
using the previously derived futility boundaries

The above estimates of the probability of declaring efficacy at any of the 10 looks, when OR=1, shows that
stopping early for futility also happens to sharply limit type I probability 𝛼.

Summary
The proportional odds model was used to assess the treatment effect, with emphasize on a skeptical prior
distribution. Bayesian power was estimated. This is the probability of reaching a posterior probability of
efficacy > 0.95. When the true treatment effect is zero (a tall order to know without having a great deal of
data), Bayesian power can be checked against frequentist type I assertion probability 𝛼, although simulations
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showed that the more important quantity to evaluate is the accuracy of the posterior probability of efficacy
at the moment of stopping for efficacy (not shown below). When futility is considered, we defined the futility
threshold as a probability less than 0.1 that the posterior probability of efficacy will reach the 0.95 threshold
at the planned end of the study (n=1000). Results are summarized below. The last column is either the
probability of finding evidence for efficacy, or the probability of stopping early for futility depending on the
description in the first column.
saveRDS(Sm, 'Sm.rds')
for(x in names(Sm)[1:5]) Sm[[x]] <- ifelse(Sm[[x]] == Lag(Sm[[x]]), '', Sm[[x]])
# LaTeX was running the last 2 columns together
if(outfmt == 'pdf') Sm$amount <- paste0('\\quad ', sprintf('%.3f', Sm$amount))
knitr::kable(Sm, col.names=rep('', length(Sm)))

Power to detect efficacy almost unlimited
looks

no futility
stopping

n=500 OR=1 0.100

OR=0.7 0.770
n=1000 OR=1 0.178

OR=0.7 0.976
look every 100
patients

n=500 OR=1 0.062

OR=0.7 0.674
n=1000 OR=1 0.112

OR=0.7 0.948
Probability of stopping early for
futility

n=300 OR=1 0.500

OR=0.7 0.078
n=600 OR=1 0.776

OR=0.7 0.106
Power to detect efficacy with futility

stopping
n=500 OR=1 0.058

OR=0.7 0.670
n=1000 OR=1 0.068

OR=0.7 0.864

More Information
• Full R markdown script
• COVID-19 statistical resources
• Bayesian design and analysis resources

Computing Environment
To cite R in publication use:

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. https://www.R-project.org/.
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