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Introduction
This report provides a template for simulating operating characteristics for treatment comparisons in a
longitudinal study with an ordinal outcome Y where the serial correlation is modeled using a first-order
Markov process. This within-patient correlation model is specified by conditioning on the ordinal outcome at
the previous time point just as though it were any covariate, with one exception. Since the time gaps between
measurements (which are made on days 1, 3, 7, 14, 28) are not constant, an interaction term is added to the
model so that the influence of the previous state wanes as the time gap increases.

Results for both a frequentist analysis and a Bayesian analysis are provided. Only one data look is taken, at
the final sample size. For the Bayesian calculations, the simulations presented here assume that a normal
distribution is an adequate approximation to the distribution of the treatment effect estimate, here a treatment
B : treatment A transition log odds ratio. The data model is a proportional odds ordinal logistic model
analyzed with the R rms package lrm function. Simulations are done by the Hmisc package simMarkovOrd
and estSeqMarkovOrd functions. The Hmisc function soprobMarkovOrd is also exemplified. This function
computes exact state occupancy probabilities from the simulation model. The Hmisc intMarkovOrd function
is used to compute the proportional odds model intercepts that satisfy specified state occupancy probabilities
for Y=1, 2, 3, 4 at day 28. These intercepts are used in the simulations.

The new functions are in Hmisc version 4.4-3. Until this is available from CRAN, source, Linux binary, and
Windows binary versions are available here.

As implemented in the R Hmisc package gbayes function, the Bayesian posterior distribution used to
approximate (thus avoiding another simulation loop for MCMC posterior draws) the real posterior distribution
is normal, making for very quick approximate posterior probability calculations when the prior distribution
used for the log OR is also Gaussian as used here. Three priors are used:

• a skeptical prior for assessing evidence for efficacy
• a flat prior for assessing evidence for efficacy
• a flat prior for studying posterior probabilities of inefficacy/harm
• an optimistic prior for inefficacy/harm

See here and here for more simulations and graphical presentations of them.

The estSeqMarkovOrd function also optionally provides, at the last data look only, the Cox proportional
hazards 𝜒2 statistic for treatment for each simulated clinical trial, and the 𝜒2 statistic for testing proportional
hazards in this unadjusted Cox model. The Cox test for treatment is done after the simulated serial ordinal
responses for a patient are summarized with the time until achieving Y=1, with this time right censored at
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28 if the patient never achieved Y=1 within 28d. The purpose of this additional simulation is to compare
the frequentist power of a two-sample comparison of time until Y=1 with the frequentist power of the
transition odds ratio at day 28 in the Markov proportional odds model, and to gauge the extent to which
the time-to-event variable induced by the Markov model operates in proportional hazards across the two
treatment groups.

Simulation Parameters
The ordinal outcome variable is taken to have values Y=1,2,3,4 measured on days 1, 3, 7, 14, 28.

The treatment effect on transition probabilities, on the log odds ratio scale, is taken to be linear in time,
i.e., the treatment effect is zero on day 1 and linearly increases to its maximum on day 28. This maximum
value is used in the graphical output and in specifying the underlying true treatment effect. Since a large
number of true ORs are used in the simulation, we simulate 1000 clinical trials per OR. ORs will vary from
benefit to harm over this sequence: 0.4, 0.5, 0.6, …, 1.0, 1.25. The sample size is 600 patients. Frequentist
power is computed at 𝛼 = 0.05. Posterior probabilities will be computed for the following assertion and prior
distribution combinations:

• Efficacy: P(OR < 1) with a skeptical prior P(OR < 0.5) = 0.05
• Efficacy: P(OR < 1) with a flat prior (log(OR) has mean 0 and SD 100)
• Inefficacy/harm: P(OR > 1) with a flat prior (log(OR) has mean 0 and SD 100)
• Inefficacy/harm: P(OR > 1) with an optimistic prior (log(OR) has mean log(0.85) = -0.1625 and SD of

0.5)

Simulation Model Specification
The Hmisc functions we will use requires a user-specified function g that computes the transition model linear
predictor other than the proportional odds model intercept terms. g computes the linear predictor for one
observation, or for a series of initial states (Y values at baseline = time 0). The arguments to g are the
previous value of Y (the initial state if t=1), the current time t, the gap between the previous measurement
time and t, covariate setting X, and parameter which specifies the true treatment effect.

Specify the simulation model and solve for the intercepts to meet certain criteria. The Hmisc intMarkovOrd
function uses the standard R function nlm to compute the intercepts satisfying given occupancy probability
targets, once the user specifies a vector of initial guesses for the intercepts. Note that the intercept values
must be in decreasing order. nlm uses an efficient trial-and-error process to compute the intercept values.
With measurements made on days 1, 3, 7, 14, 28, our target values are state occupancy probabilities of 0.7,
0.14, 0.1, and 0.05 for, respectively, Y=1, 2, 3, 4. These probabilities pertain to patients who start with Y=2
at baseline.
times <- c(1, 3, 7, 14, 28)
g <- function(yprev, t, gap, X, parameter=-0.5)
(yprev - 2) * 0.5 * (1 - (gap - 1) / 14) - t / 8 +
parameter * (X == 2) * (t - 1) / 27

start <- c(1, 0, -2) # guesses at intercepts
target <- c(0.7, 0.15, 0.1, 0.05)
ints <- intMarkovOrd(1:4, times, initial=2, absorb=4,

intercepts=start, g=g, target=target, t=28)

Iterations: 37
Sum of absolute errors: 6.634046e-07
Intercepts: 2.467 1.36 -3.94

Occupancy probabilities for group 1:

2



1 2 3 4
1 0.088 0.138 0.758 0.017
3 0.084 0.130 0.751 0.035
7 0.132 0.178 0.644 0.046
14 0.283 0.249 0.418 0.049
28 0.700 0.150 0.100 0.050

Occupancy probabilities for group 2:

1 2 3 4
1 0.088 0.138 0.758 0.017
3 0.087 0.133 0.745 0.035
7 0.146 0.189 0.622 0.044
14 0.336 0.255 0.362 0.047
28 0.784 0.106 0.063 0.047

Log odds ratios at time 28 from occupancy probabilities: -0.44 -0.352 -0.061
# Repeat without absorbing state
intsna <- intMarkovOrd(1:4, times, initial=2,

intercepts=c(1, 0.5, -1), g=g, target=target, t=28)

Iterations: 68
Sum of absolute errors: 1.258402e-06
Intercepts: 2.629 1.741 0.531

Occupancy probabilities for group 1:

1 2 3 4
1 0.076 0.090 0.234 0.600
3 0.058 0.070 0.191 0.681
7 0.092 0.103 0.245 0.560
14 0.228 0.186 0.285 0.302
28 0.700 0.150 0.100 0.050

Occupancy probabilities for group 2:

1 2 3 4
1 0.076 0.090 0.234 0.600
3 0.060 0.072 0.195 0.674
7 0.102 0.111 0.255 0.532
14 0.275 0.200 0.273 0.251
28 0.795 0.109 0.065 0.031

Log odds ratios at time 28 from occupancy probabilities: -0.506 -0.506 -0.506
# Reproduce the result with absorbing state using soprobMarkovOrd directly
s <- soprobMarkovOrd(1:4, times, initial=2, absorb=4,

intercepts=ints, g=g, X=1)
round(s, 3)

1 2 3 4
1 0.088 0.138 0.758 0.017
3 0.084 0.130 0.751 0.035
7 0.132 0.178 0.644 0.046
14 0.283 0.249 0.418 0.049
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28 0.700 0.150 0.100 0.050

Make sure the sum of absolute errors is small, otherwise the optimization algorithm may have been fooled
and you’ll need to try different starting values in start.

Before running the clinical trial simulation, simulate a large sample size for one trial to check that the
simulation is working correctly. Unlike what follows later, we will carry the absorbing state forward so that
we can compute state occupancy proportions easily.
s <- simMarkovOrd(n=40000, 1:4, times, initial=2, X=c(group=1),

absorb=4, intercepts=ints, g=g, carry=TRUE)
relfreq <- function(x) table(x) / length(x)
w <- with(s, tapply(y, time, relfreq))
do.call(rbind, w)

1 2 3 4
1 0.086100 0.139850 0.758125 0.015925
3 0.084575 0.128175 0.752825 0.034425
7 0.133075 0.180550 0.640925 0.045450
14 0.278475 0.251725 0.419975 0.049825
28 0.700375 0.150350 0.098775 0.050500

Check the correlation structure after reshaping the dataset to have different times in columns for a subject.
setDT(s, key=c('id', 'time'))
w <- dcast(s, id ~ time, value.var='y')
w <- as.matrix(w)[, -1]
round(cor(w), 2)

1 3 7 14 28
1 1.00 0.20 0.08 0.07 0.11
3 0.20 1.00 0.23 0.15 0.20
7 0.08 0.23 1.00 0.26 0.25
14 0.07 0.15 0.26 1.00 0.30
28 0.11 0.20 0.25 0.30 1.00

Simulation
Using the above model we simulate, for each treatment effect, 1000 clinical trials each with 600 observations.
For each trial the treatment groups are randomly assigned with probability 1/2 each. The high-level
estSeqMarkovOrd function calls the simMarkovOrd function to simulate each trial. We use a distribution
of initial states 1, 2, 3 and sample from that distribution to get each patient’s baseline state. Because the
contrast of interest needs to take into account a treatment × time interaction, the groupContrast argument
must be specified below. A second set of simulations is also run and stored for later, just for OR = 0.6 and
using a logistic model that has two unecessary parameters: a square term for the time effect and a square
term for the time × treatment interaction. This second simulation will be used to see how much power is lost
by having more complexity involving treatment.
initial <- c('1'=0.02, '2'=0.75, '3'=0.23) # probabilities of being in baseline states
ors <- c(0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25)
formula <- y ~ yprev * gap + time * group
formula2 <- y ~ yprev * gap + pol(time, 2) * group
nsim <- 1000
if(simdone) {

est <- readRDS('sim.rds')
est2 <- readRDS('sim2.rds')
} else {
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set.seed(1)
# 1000*8 simulations (8 parameter values) takes about 8 minutes in all

est <- estSeqMarkovOrd(1:4, times, initial, absorb=4, intercepts=ints,
parameter=log(ors), looks=600, g=g, formula=formula,
groupContrast=list(list(group=1, time=28), list(group=2, time=28)),
timecriterion=function(y) y == 1, coxzph=TRUE, nsim=nsim, progress=FALSE)

saveRDS(est, 'sim.rds')
set.seed(2)
est2 <- estSeqMarkovOrd(1:4, times, initial, absorb=4, intercepts=ints,
parameter=log(0.6), looks=600, g=g, formula=formula2,
groupContrast=list(list(group=1, time=28), list(group=2, time=28)),
nsim=nsim, progress=FALSE)

saveRDS(est2, 'sim2.rds')
}
setDT(est, key='parameter')
est[, OR := exp(parameter)]
setDT(est2)
est2[, OR := exp(parameter)]

Before doing the main analyses on transition model parameters, look at the computed event times and
estimate the type I assertion probability 𝛼 and power of the “time to Y=1” variable analyzed with a Cox
model, and look at the the magnitude of non-proportional hazards. Also compute the average log hazard
ratio to see how the reciprocal of its antilog relates to the odds ratio (reciprocal because the Cox model is fit
on time until a good outcome).
s <- est
et <- attr(s, 'etimefreq')
et <- apply(et, 2:4, sum)
cat('Frequency distribution of times to Y=1 by group\n')

Frequency distribution of times to Y=1 by group

for(pm in dimnames(et)[[1]]) {
cat('\nOR:', exp(as.numeric(pm)), '\n')
print(et[pm, ,])

}

OR: 0.4
1 3 7 14 28 28+

1 24476 20826 30917 58944 110171 54914
2 24207 22566 36936 77192 109450 29401

OR: 0.5
1 3 7 14 28 28+

1 24449 21026 30946 58960 109972 54829
2 24340 22033 35527 72491 111164 34263

OR: 0.6
1 3 7 14 28 28+

1 24233 20985 31024 58815 109661 54834
2 24369 21698 33976 69267 112782 38356

OR: 0.7
1 3 7 14 28 28+

1 24388 20849 30920 58554 110286 54710

5



2 24193 21618 33502 65708 112481 42791

OR: 0.8
1 3 7 14 28 28+

1 24254 21076 31034 58922 110035 54589
2 24307 21070 32607 63034 111838 47234

OR: 0.9
1 3 7 14 28 28+

1 24372 20916 31304 59253 110363 54466
2 24337 20707 31546 60923 110798 51015

OR: 1
1 3 7 14 28 28+

1 24406 20780 31038 58880 109743 54980
2 24256 21010 30974 58893 110120 54920

OR: 1.25
1 3 7 14 28 28+

1 24114 21062 30969 58940 110418 54684
2 24166 20798 29870 54362 106993 63624

rn <- function(x) round(x, 2)
rn(s[, .(HR=exp(- mean(loghr))), by=OR])

OR HR
1: 0.40 0.77
2: 0.50 0.82
3: 0.60 0.86
4: 0.70 0.90
5: 0.80 0.94
6: 0.90 0.97
7: 1.00 1.00
8: 1.25 1.08

hi <- function(x, lab) {hist(x, nclass=50, main='', xlab=lab); invisible()}
s[, hi(lrchisq, 'Cox Group Test Chi-square')]

NULL

cat('Power of Cox test for time until Y=1\n')

Power of Cox test for time until Y=1

rn(s[, .(power=mean(lrchisq > 3.84)), by=OR])

OR power
1: 0.40 0.84
2: 0.50 0.61
3: 0.60 0.41
4: 0.70 0.21
5: 0.80 0.10
6: 0.90 0.06
7: 1.00 0.03
8: 1.25 0.12
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s[, hi(phchisq, 'PH Test Chi-square')]

NULL

rn(s[, .(rejectPH=mean(phchisq > 3.84)), by=OR])

OR rejectPH
1: 0.40 0.12
2: 0.50 0.10
3: 0.60 0.10
4: 0.70 0.06
5: 0.80 0.06
6: 0.90 0.05
7: 1.00 0.05
8: 1.25 0.06
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The hazard ratio, after taking the reciprocal so that a large HR means a worse outcome, is not equatable to
the odds ratio except at the null value of 1.0.

There is little evidence of non-proportional hazards.

Compute the power of the Markov model treatment comparison, and compare the 𝜒2 statistic from the
transition model to that from the Cox model. For plotting, we take the square root of the 𝜒2 statistics to get
a more symmetric distribution over the simulations. There is one panel per odds ratio. For OR=0.6 also
show the power of a transition model that overfitted time as quadratic.
s[, tchi := est * est / vest]
cat('Power of Markov model test at 28d\n\n')

Power of Markov model test at 28d
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s[, .(power=mean(tchi > 3.84)), by=OR]

OR power
1: 0.40 0.997
2: 0.50 0.972
3: 0.60 0.831
4: 0.70 0.548
5: 0.80 0.254
6: 0.90 0.078
7: 1.00 0.053
8: 1.25 0.267

cat('Power of quadratic in time Markov model at 28d when OR=0.6\n\n')

Power of quadratic in time Markov model at 28d when OR=0.6

est2[, .(power=mean(est * est / vest > 3.84))]

power
1: 0.713

rho <- s[, spearman(tchi, lrchisq)]
cat('Spearman rho correlation between Markov and Cox model chi-square:', rn(rho), '\n')

Spearman rho correlation between Markov and Cox model chi-square: 0.66

gr <- function(x, y, z)
ggfreqScatter(x, y, ylab='PO Model Z Statistic', xlab='Cox Model Z Statistic',

by=z, bins=25) +
geom_abline(intercept=0, slope=1, col='red', alpha=0.3) +

theme(legend.position='bottom', axis.text.x = element_text(angle = 90))
s[, gr(sqrt(lrchisq), sqrt(tchi), exp(parameter))]
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The power of the longitudinal transition model is superior to that of the time to Y=1 comparison. The 𝜒2

statistics from the Markov ordinal longitudinal model are seen to dominate those from the Cox model for
time until Y=1 as judged by the scatterplot. The Spearman 𝜌 between the two statistics is 0.66. There is a
significant loss of power to detect OR=0.6 when the quadratic model is substituted for the true linear (in
time) model.

Bayesian Power
Assume that the distribution of the maximum likelihood estimates is approximately Gaussian, and use a
Gaussian prior distribution for the parameters of interest. Then we can use the maximum likelihood estimates
already simulated to get approximate Gaussian Bayesian posterior distributions, and quickly compute such
things as Bayesian power, e.g., the probability that the posterior probability of a beneficial effect exceeds
0.95 at the end of the study.
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Define the Bayesian assertions and priors to be used for them

• Assertion 1: log(OR) < 0 under prior with prior mean 0 and sigma: P(OR>2)=0.025
• Assertion 2: log(OR) < 0 under flat prior
• Assertion 3: log(OR) > 0 under flat prior (sigma=100)
• Assertion 4: log(OR) > 0 under optimistm prior with mean log(0.85), sigma=0.5

asserts <- list(list('Efficacy', '<', 0, cutprior=log(2), tailprob=0.025),
list('Efficacy flat', '<', 0, mu=0, sigma=100),
list('Inefficacy/harm flat', '>', 0, mu=0, sigma=100),
list('Inefficacy/harm optimistic', '>', 0, mu=log(0.85), sigma=0.5))

s <- gbayesSeqSim(est, asserts=asserts)

head(s)

sim parameter look est vest loghr lrchisq phchisq OR
1: 1 -0.9162907 600 -0.8464192 0.03248727 0.2731569 9.392125 2.0164343 0.4
2: 2 -0.9162907 600 -1.3748037 0.03884948 0.3514165 15.332860 1.2068413 0.4
3: 3 -0.9162907 600 -1.3463036 0.04016280 0.4252279 23.252161 0.2551884 0.4
4: 4 -0.9162907 600 -0.9642204 0.03604569 0.3115848 12.365327 0.3557162 0.4
5: 5 -0.9162907 600 -1.0711671 0.03659671 0.3452703 15.097609 0.8866927 0.4
6: 6 -0.9162907 600 -0.7515171 0.03502086 0.2838002 10.177597 2.0171424 0.4

tchi p1 mean1 sd1 p2 mean2 sd2
1: 22.05250 0.9999857 -0.6718937 0.1605884 0.9999987 -0.8464165 0.1802420
2: 48.65149 1.0000000 -1.0489714 0.1721687 1.0000000 -1.3747983 0.1971023
3: 45.12966 1.0000000 -1.0190612 0.1743575 1.0000000 -1.3462982 0.2004062
4: 25.79285 0.9999962 -0.7485003 0.1672763 0.9999998 -0.9642169 0.1898567
5: 31.35251 0.9999996 -0.8286862 0.1682626 1.0000000 -1.0711632 0.1913023
6: 16.12690 0.9998070 -0.5871186 0.1654081 0.9999704 -0.7515145 0.1871383

p3 mean3 sd3 p4 mean4 sd4
1: 1.326520e-06 -0.8464165 0.1802420 2.977781e-06 -0.7677677 0.1695615
2: 1.528830e-12 -1.3747983 0.1971023 1.944171e-11 -1.2117546 0.1833694
3: 9.221416e-12 -1.3462982 0.2004062 1.031643e-10 -1.1824504 0.1860206
4: 1.900564e-07 -0.9642169 0.1898567 5.772599e-07 -0.8631950 0.1774921
5: 1.075963e-08 -1.0711632 0.1913023 4.501535e-08 -0.9551381 0.1786716
6: 2.961916e-05 -0.7515145 0.1871383 5.331920e-05 -0.6791462 0.1752650

attr(s, 'asserts')

label cutprior tailprob mu sigma assertion
1 Efficacy 0.6931472 0.025 0.0000000 0.353653 < 0
2 Efficacy flat NA NA 0.0000000 100.000000 < 0
3 Inefficacy/harm flat NA NA 0.0000000 100.000000 > 0
4 Inefficacy/harm optimistic NA NA -0.1625189 0.500000 > 0

alabels <- attr(s, 'alabels') # named vector to map p1 p2 p3 p4 to labels

First let’s examine the effect of the priors by making two pairwise comparisons: differences in posterior
probabilities of efficacy under skeptical vs. flat prior, and differences in posterior probabilities of inefficacy
under flat and optimistic priors.
w <- data.table(s)
u <- w[, .(p12max=max(abs(p1 - p2)), p12mean=mean(abs(p1 - p2)),

p34max=max(abs(p3 - p4)), p34mean=mean(abs(p3 - p4))), by=.(look)]
z <- melt(u, measure.vars=c('p12max', 'p12mean', 'p34max', 'p34mean'),

variable.name='which', value.name='diff')
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k <- c(p12max='Efficacy max', p12mean='Efficacy mean',
p34max='Inefficacy max', p34mean='Inefficacy mean')

z[, w := k[which]]
z

look which diff w
1: 600 p12max 0.02980499 Efficacy max
2: 600 p12mean 0.01065486 Efficacy mean
3: 600 p34max 0.05205469 Inefficacy max
4: 600 p34mean 0.01235886 Inefficacy mean

Compute the probability of hitting assertion-specific targets at the planned study end.
# Reshape results into taller and thinner data table so can plot over 3 assertions

ps <- names(alabels)
m <- melt(w,

measure.vars=list(ps, paste0('mean', 1:4), paste0('sd', 1:4)),
variable.name='assert', value.name=c('p', 'mean', 'sd'))

m[, assert := alabels[assert]]
head(m)

sim parameter look est vest loghr lrchisq phchisq OR
1: 1 -0.9162907 600 -0.8464192 0.03248727 0.2731569 9.392125 2.0164343 0.4
2: 2 -0.9162907 600 -1.3748037 0.03884948 0.3514165 15.332860 1.2068413 0.4
3: 3 -0.9162907 600 -1.3463036 0.04016280 0.4252279 23.252161 0.2551884 0.4
4: 4 -0.9162907 600 -0.9642204 0.03604569 0.3115848 12.365327 0.3557162 0.4
5: 5 -0.9162907 600 -1.0711671 0.03659671 0.3452703 15.097609 0.8866927 0.4
6: 6 -0.9162907 600 -0.7515171 0.03502086 0.2838002 10.177597 2.0171424 0.4

tchi assert p mean sd
1: 22.05250 Efficacy 0.9999857 -0.6718937 0.1605884
2: 48.65149 Efficacy 1.0000000 -1.0489714 0.1721687
3: 45.12966 Efficacy 1.0000000 -1.0190612 0.1743575
4: 25.79285 Efficacy 0.9999962 -0.7485003 0.1672763
5: 31.35251 Efficacy 0.9999996 -0.8286862 0.1682626
6: 16.12690 Efficacy 0.9998070 -0.5871186 0.1654081
# Define targets
target <- c(Efficacy = 0.95,

'Efficacy flat' = 0.95,
'Inefficacy/harm flat' = 0.9,
'Inefficacy/harm optimistic' = 0.9)

m[, target := target[assert]] # spreads targets to all rows
# hit = 0/1 indicator if hitting target at the single fixed sample size
u <- m[, .(hit = mean(p > target)), by=.(OR, assert)]
u

OR assert hit
1: 0.40 Efficacy 0.997
2: 0.50 Efficacy 0.979
3: 0.60 Efficacy 0.857
4: 0.70 Efficacy 0.591
5: 0.80 Efficacy 0.294
6: 0.90 Efficacy 0.095
7: 1.00 Efficacy 0.036
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8: 1.25 Efficacy 0.001
9: 0.40 Efficacy flat 0.999
10: 0.50 Efficacy flat 0.991
11: 0.60 Efficacy flat 0.905
12: 0.70 Efficacy flat 0.656
13: 0.80 Efficacy flat 0.370
14: 0.90 Efficacy flat 0.133
15: 1.00 Efficacy flat 0.046
16: 1.25 Efficacy flat 0.002
17: 0.40 Inefficacy/harm flat 0.000
18: 0.50 Inefficacy/harm flat 0.000
19: 0.60 Inefficacy/harm flat 0.000
20: 0.70 Inefficacy/harm flat 0.000
21: 0.80 Inefficacy/harm flat 0.003
22: 0.90 Inefficacy/harm flat 0.029
23: 1.00 Inefficacy/harm flat 0.100
24: 1.25 Inefficacy/harm flat 0.546
25: 0.40 Inefficacy/harm optimistic 0.000
26: 0.50 Inefficacy/harm optimistic 0.000
27: 0.60 Inefficacy/harm optimistic 0.000
28: 0.70 Inefficacy/harm optimistic 0.000
29: 0.80 Inefficacy/harm optimistic 0.002
30: 0.90 Inefficacy/harm optimistic 0.018
31: 1.00 Inefficacy/harm optimistic 0.074
32: 1.25 Inefficacy/harm optimistic 0.479

OR assert hit

ggplot(u, aes(x=OR, y=hit, color=assert)) + geom_line() +
xlab('OR') + ylab('Proportion Hitting Posterior Probability Target') +
guides(color=guide_legend(title='Assertion'))
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Frequentist Power of Single Day Ordinal Outcomes
Let’s consider only the detection of OR=0.6 for an unadjusted proportional odds two-group comparison of
ordinal outcomes measured at a single day. When simulating the data using the same model as above, we
carry absorbing states forward here. So once Y=4 occurs on a given day, Y=4 is considered to be in effect at
all later days.
nsim <- 1000
if(simdone.single) ch <- readRDS('simch.rds') else {

ch <- matrix(NA, nrow=nsim, ncol=length(times))
colnames(ch) <- as.character(times)
set.seed(3)
for(isim in 1 : nsim) {

s1 <- simMarkovOrd(n=300, 1:4, times, initial=2, X=c(group=1),
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absorb=4, intercepts=ints, g=g, carry=TRUE)
s2 <- simMarkovOrd(n=300, 1:4, times, initial=2, X=c(group=2),

absorb=4, intercepts=ints, g=g, carry=TRUE)
s <- rbind(s1, s2)
for(tim in times) {

f <- lrm(y ~ group, data=s, subset=time == tim)
ch[isim, as.character(tim)] <- f$stats['Model L.R.']

}
}
saveRDS(ch, 'simch.rds')

}
apply(ch, 2, function(x) mean(x > 3.84))

1 3 7 14 28
0.057 0.061 0.101 0.324 0.621

The power for testing differences on day 1 has to only be 𝛼 because the true treatment effect is zero on that
day. The power increases as time marches on. But even on day 28 the power is significantly below the power
of the ordinal longitudinal model that uses all days.

More Information
• Full R markdown script
• COVID-19 statistical resources
• Bayesian design and analysis resources

Computing Environment
To cite R in publication use:

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. https://www.R-project.org/.
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https://hbiostat.org/R/Hmisc/simMarkovOrd.Rmd
https://hbiostat.org/proj/covid19
https://hbiostat.org/bayes
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