The number of registrants for the course is currently 2711 from 91 countries.

Hover the pointer over the leftmost point in each group to see the variable label and overall statistics.

f <- ~ statlit + bayesexp + bayes + degree + position + area + clinres +
       govfund + way + country + how + dtime
des <- describe(f, data=d, descript='')
p <- plot(des)
p$Categorical
p$Continuous

Distribution of Time Zones Stratified by Watching Intentions

Click elements of the legend to make the indicated quantities disappear/reappear. Drag the scrollbar to see more of the legend.

w <- subset(d, way == "by watching the live stream with live chat on Friday mornings U.S. Eastern time")
swr <- function(w, ...) 
    sapply(strwrap(w, ..., simplify=FALSE),
           function(x) paste(x, collapse='<br>'))
levels(d$way) <- swr(levels(d$way), width=25)
with(d, histboxp(x=dtime, group=way))

1044 participants out of 2711 plan to watch the live stream.

Full Tabulation of Participants’ Countries

f <- subset(as.data.frame(table(d$country)), Freq > 0)
names(f) <- c('Country', 'Frequency')
print(f, row.names=FALSE)
                             Country Frequency
                           Argentina         8
                             Armenia         1
                           Australia        58
                             Austria         8
                          Bangladesh        12
                             Belgium         9
                               Benin         1
                             Bolivia         1
                              Brazil        50
                            Cameroon         1
                              Canada       154
                               Chile         6
                               China        15
           China - Hong Kong / Macau         4
                            Colombia        11
                         Congo (DRC)         1
                             Croatia         2
                              Cyprus         2
                      Czech Republic         1
                             Denmark        42
                               Egypt         5
                             Estonia         1
                            Ethiopia         1
                             Finland         8
                              France        15
                               Gabon         3
                              Gambia         1
                             Germany        46
                               Ghana         6
                       Great Britain       209
                              Greece         7
                           Guatemala         2
                             Hungary         4
                             Iceland         8
                               India        56
                           Indonesia         3
 Israel and the Occupied Territories         5
                               Italy        30
                             Jamaica         1
                               Japan         9
                               Kenya        20
                       Korea (South)         5
                              Kosovo         1
                              Kuwait         2
                              Latvia         1
                             Lebanon         2
                              Malawi         3
                            Malaysia         6
                              Mexico        18
                              Monaco         1
                          Mozambique         2
                       Myanmar/Burma         8
                             Namibia         1
                               Nepal         2
                         New Zealand         5
                             Nigeria        19
                              Norway        23
                            Pakistan         5
                            Paraguay         1
                                Peru         4
                         Philippines         8
                              Poland         4
                            Portugal         4
                         Puerto Rico         2
                               Qatar         7
                  Russian Federation         6
                              Rwanda         1
                        Saudi Arabia        54
                              Serbia         3
                        Sierra Leone         3
                           Singapore        23
          Slovak Republic (Slovakia)         1
                        South Africa        27
                               Spain        61
                           Sri Lanka         1
                              Sweden        46
                         Switzerland        15
                            Tanzania         1
                            Thailand         3
                         Netherlands        26
                   Trinidad & Tobago         2
                              Turkey        16
                              Uganda        18
                United Arab Emirates         2
      United States of America (USA)      1336
                             Uruguay         3
                             Vietnam        55
                 Virgin Islands (UK)         4
                              Zambia         8
                            Zimbabwe         1
                               other        34

Distribution of Email Suffixes

em <- tolower(d$email)
w <- strsplit(em, '.', fixed=TRUE)
suffix <- sapply(w, function(x) x[length(x)])
table(suffix)
suffix
  ae   ai   ar   at   au   be   br   ca  cat   cc   ch   cl   co  com  con  ddu 
   1    1    2    3   33    2   10   97    2    1    4    1    5 1204    2    1 
  de   dk  edu   es   eu  eus   fi   fr  gov   gr   id   ie   il   in info  int 
  29   31  548   14    5    1    5    7   32    1    1   14    1    5    1    1 
  is   it   jp   ke   me  mil   mm   mx  net   ng   nl   no   nz  org   pe   ph 
   7   18    7    1    1    2    1    3   30    1   10   14    3  342    1    2 
  pk   pl   qa   ru   sa   se   sg   to   uk   vn   za 
   3    1    1    1    4   33    5    1  145    2    7 
w <- strsplit(em, '@', fixed=TRUE)
server <- sapply(w, function(x) x[length(x)])
tab <- table(server)
cat('\nTop 30 servers\n\n')

Top 30 servers
tab <- (-sort(-tab))[1:30]
tab
server
         gmail.com           vumc.org        hotmail.com          yahoo.com 
               918                192                 83                 61 
    vanderbilt.edu           duke.edu            vai.org        fda.hhs.gov 
                59                 33                 29                 25 
           umn.edu           jhmi.edu         clin.au.dk          kcl.ac.uk 
                25                 24                 21                 19 
       celgene.com        outlook.com            nhs.net          ucl.ac.uk 
                17                 17                 13                 13 
         ucr.uu.se utsouthwestern.edu         ttuhsc.edu    mgh.harvard.edu 
                13                 13                 12                 11 
      beaumont.org          brown.edu   manchester.ac.uk        ucalgary.ca 
                10                 10                 10                 10 
      virginia.edu          wustl.edu          emory.edu   mail.utoronto.ca 
                10                 10                  9                  9 
   med.cornell.edu           musc.edu 
                 9                  9 

Describing Tendencies to Accept a Bayesian Approach

Let’s see how various participant descriptors relate to the degree of acceptance of a Bayesian approach to statistics. Only participants with a self-graded understanding of Bayesian methods exceeding 5 on a 100-point scale were asked to provide their Bayesian acceptance 0-100 scale. Start by getting ordinary unadjusted stratified means by the categorical descriptors. Note: The course does not concentrate on Bayesian methods; this information is primarily for designing future educational efforts.

label(d$bayes) <- 'Acceptance of Bayes for Data Analysis & Inference'
summaryDp(bayes ~ degree + area + clinres, data=d)

Now consider a multivariable regression analysis. Degree of Bayesian understanding, modeled with a restricted cubic spline function, is one of the predictors. The semiparametric proportional odds ordinal logistic model is used for this analysis. First, the ordinary Spearman rank correlation between Bayes knowledge and Bayes acceptance is given. The first graph below shows the relative predictive information of each of the competing predictors.

with(d, spearman(bayesexp, bayes))
      rho 
0.3389622 
options(prType='html')
d <- subset(d, select=-survey)
dd <- datadist(d); options(datadist='dd')
f <- orm(bayes ~ rcs(bayesexp, 5) + rcs(statlit, 5) + degree + area +
           clinres, data=d)
M <- Mean(f)   # derive R function to translate log odds to mean
print(f, coefs=FALSE)
Logistic (Proportional Odds) Ordinal Regression Model
 orm(formula = bayes ~ rcs(bayesexp, 5) + rcs(statlit, 5) + degree + 
     area + clinres, data = d)
 
Frequencies of Missing Values Due to Each Variable
    bayes bayesexp  statlit   degree     area  clinres 
     1287      467        0        0        0        0 
 
Model Likelihood
Ratio Test
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1424 LR χ2 277.23 R2 0.177 ρ 0.390
Distinct Y 94 d.f. 24 g 0.863
Y0.5 65 Pr(>χ2) <0.0001 gr 2.370
max |∂log L/∂β| 1×10-7 Score χ2 295.56 |Pr(Y ≥ median)-½| 0.135
Pr(>χ2) <0.0001
plot(anova(f))
p <- plotp(Predict(f, fun=M), vnames='names',
           ylab='Mean Bayes Acceptance Score', ncols=1)
p$Continuous
p$Categorical