Altman, D. G. “Categorising Continuous Covariates (Letter to the Editor).” Brit J Cancer 64 (1991): 975.
Altman, D. G., B. Lausen, W. Sauerbrei, and M. Schumacher. “Dangers of Using `optimal’ Cutpoints in the Evaluation of Prognostic Factors.” J Nat Cancer Inst 86 (1994): 829–35.
Altman, Douglas G. “Suboptimal Analysis Using `optimal’ Cutpoints.” Brit J Cancer 78 (1998): 556–57.
Belcher, Heiko. “The Concept of Residual Confounding in Regression Models and Some Applications.” Stat Med 11 (1992): 1747–58.
Bennette, Caroline, and Andrew Vickers. “Against Quantiles: Categorization of Continuous Variables in Epidemiologic Research, and Its Discontents.” BMC Med Res Methodol 12, no. 1 (February 2012): 21+. https://doi.org/10.1186/1471-2288-12-21.
Buettner, Petra, Claus Garbe, and Irene Guggenmoos-Holzmann. “Problems in Defining Cutoff Points of Continuous Prognostic Factors: Example of Tumor Thickness in Primary Cutaneous Melanoma.” J Clin Epi 50 (1997): 1201–10.
Collins, Gary S., Emmanuel O. Ogundimu, Jonathan A. Cook, Yannick L. Manach, and Douglas G. Altman. “Quantifying the Impact of Different Approaches for Handling Continuous Predictors on the Performance of a Prognostic Model.” Stat Med 35, no. 23 (October 2016): 4124–35. https://doi.org/10.1002/sim.6986.
Faraggi, David, and Richard Simon. “A Simulation Study of Cross-Validation for Selecting an Optimal Cutpoint in Univariate Survival Analysis.” Stat Med 15 (1996): 2203–13.
Fedorov, Valerii, Frank Mannino, and Rongmei Zhang. “Consequences of Dichotomization.” Pharm Stat 8 (2009): 50–61. https://doi.org/10.1002/pst.331.
Hilsenbeck, S. G., and G. M. Clark. “Practical P-Value Adjustment for Optimally Selected Cutpoints.” Stat Med 15 (1996): 103–12.
Holländer, Norbert, Willi Sauerbrei, and Martin Schumacher. “Confidence Intervals for the Effect of a Prognostic Factor after Selection of an `optimal’ Cutpoint.” Stat Med 23 (2004): 1701–13. https://doi.org/10.1002/sim.1611.
Lausen, B., and M. Schumacher. “Evaluating the Effect of Optimized Cutoff Values in the Assessment of Prognostic Factors.” Comp Stat Data Analysis 21, no. 3 (1996): 307–26. https://doi.org/10.1016/0167-9473(95)00016-X.
Maxwell, S. E., and H. D. Delaney. “Bivariate Median Splits and Spurious Statistical Significance.” Psych Bull 113 (1993): 181–90. https://doi.org/10.1037//0033-2909.113.1.181.
Moser, Barry K., and Laura P. Coombs. “Odds Ratios for a Continuous Outcome Variable without Dichotomizing.” Stat Med 23 (2004): 1843–60.
Naggara, O., J. Raymond, F. Guilbert, D. Roy, A. Weill, and D. G. Altman. “Analysis by Categorizing or Dichotomizing Continuous Variables Is Inadvisable: An Example from the Natural History of Unruptured Aneurysms.” Am J Neuroradiol 32, no. 3 (2011): 437–40. https://doi.org/10.3174/ajnr.A2425.
Ragland, D. R. “Dichotomizing Continuous Outcome Variables: Dependence of the Magnitude of Association and Statistical Power on the Cutpoint.” Epi 3 (1992): 434–40. https://doi.org/10.1097/00001648-199209000-00009.
Royston, Patrick, Douglas G. Altman, and Willi Sauerbrei. “Dichotomizing Continuous Predictors in Multiple Regression: A Bad Idea.” Stat Med 25 (2006): 127–41. https://doi.org/10.1002/sim.2331.
Schulgen, G., B. Lausen, J. Olsen, and M. Schumacher. “Outcome-Oriented Cutpoints in Quantitative Exposure.” Am J Epi 120 (1994): 172–84.
Suissa, Samy, and Lucie Blais. “Binary Regression with Continuous Outcomes.” Stat Med 14 (1995): 247–55. https://doi.org/10.1002/sim.4780140303.
Wainer, Howard. “Finding What Is Not There through the Unfortunate Binning of Results: The Mendel Effect.” Chance 19, no. 1 (2006): 49–56.