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“It’s much easier to get a result than it is

to get an answer.”
— Christie Aschwanden, FiveThirtyEight
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POPULATION

Nature is the nexus of causes
that produce all phenomena
actually or potentially available
for empirical study.




The ‘Epistemologic Arc’

Nature: The complex and nexus of causes that produce the phenomena of our world that are available for empirical study. The underlying
causal structure of nature is often abstruse or inscrutable.

Population: All of the objects (existing, extant and/or tpossible) in the category of interest for study. The population is the realization of causal
process in nature. The Population is the expression ot the ‘long run’ probabilistic tendencies in nature’s causes. The population is also the
primary object of study and inference.

Sample: The subset of the population available for study and observed.

Data: The actual observations made and recorded on the sample. Not all observations/variables of all possible variables from the sample are
collected. Measurements are made imperfecth and recorded with errors. The particular instance of the data (out:of many possible instances)
are the source of the statistical likelihood on which the analysis is predicated.

Analysis: The mathematical procedures that account for both the structure and randomness of the data. Typically a model is used or is at least
implicit. All analyses require assumptions (both strong and weak).

Inference and Belief: The conclusions drawn from the analysis of the data (and in combination with any external information), including
whether any associations observed are causal in nature and likely reproducible effects in independent data. Belief depends on the strength of
_th;a ﬁ?dings e:jnd tf}.e r?search process, coherence with existing knowledge, and numerous cognitive and psychological factors including biases,
intentions and motivations.

Decisions and Actions: The consequences, if any, of the research activities. The impact of the research will depend in part on the strength of
the belief resulting from the inference, and the relevance for problems faced by others. Consequences include clinical behavior and medical
decision making; and scientific behavior including confirmatory reproduction of research, and motivation of additional research.

.



The process of evidence generation
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The process of evidence generation

¢ Omitted variables

» Missing data
e Measurement issues
« Information bias

Conventional
statistical
methods

/

POPULATION

Likelihood: P(data | ©)

« Risk of selection bias;
confounding by indication

* Importance of study /
experimental design
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Fig. 1. — Schematic diogram of a general communication system.

Analytic bias
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Model selection

\ Analytic bias
+ Model selection
Node isapadfonio
. lel misspecification
ANALYSIS BSaten
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Uncertainties « Arbitrary categorization
» Model specification « Collider bias

» Model selection

« Assumptions re. distributions

4.4 Sample Size, Overfitting, and Limits on
Number of Predictors

When a model is fitted that is too complex, that it, has too many free pa-
rameters to estimate for the amount of information in the data, the worth
of the model (e.g., R?) will be exaggerated and future observed values will
not agree with predicted values. In this situation, overfitting is said to be
present, and some of the findings of the analysis come from fitting noise and
not just signal, or finding spurious associations between X and Y. In this sec-
tion general guidelines for preventing overfitting are given. Here we concern
ourselves with the reliability or calibration of a model, meaning the ability of
the model to predict future observations as well as it appeared to predict the
responses at hand. For now we avoid judging whether the model is adequate
for the task, but restrict our attention to the likelihood that the model has
significantly overfitted the data.



Model selection
4.3 Variable Selection

The material covered to this point dealt with a prespecified list of variables

~ rierhios: ~ to be included in the regression model. For reasons of developing a concise
rEeed®a  model or because of a fear of collinearity or of a false belief that it is not

ANALYSIS ww looiti 3 G & s . : :
- Resduslcmioundng | 1€gitiMate to include “insignificant” regression coefficients when presenting
> il spacioetn A calegorization results to the intended audience, stepwise variable selection is very commonly
e employed. Variable selection is used when the analyst is faced with a series of

potential predictors but does not have (or use) the necessary subject matter
knowledge to enable her to prespecify the “important” variables to include
in the model. But using Y to compute P-values to decide which variables
to include is similar to using Y to decide how to pool treatments in a five—
treatment randomized trial, and then testing for global treatment differences
using fewer than four degrees of freedom.

Stepwise variable selection has been a very popular technique for many
years, but if this procedure had just been proposed as a statistical method, it
would most likely be rejected because it violates every principle of statistical
estimation and hypothesis testing. Here is a summary of the problems with
this method.




Structural Causal Models (SCMs)
and Causal-Directed Acyclic Graphs (cDAGs)

» Modeling decisions can be supported with SCMs and
cDAGs ?causal diagrams) C

e« SCMs can be used to ;
_ define bias / l \
E——>D ' F

— identify confounding v

— Identify sets of adjustments necessary for unbiased statistical
estimation (conditional on assumptions)

Statin —— Cholesterol ————— CAD —— Mortality

« | Blind or arbitrary adjustment for confounding may induce SEs /
biaS \ Lifestyle/

» Minimal sets of required adjustments can help to use data
(limited N) efficiently

* Types of systematic bias:

»  Confounding
» Selection bias

¢ Measurement bias
e others




Resources

e Judea Pearl

1. Causal Inference in Statistics: A Primer, 2016
2. Causality: Models, Reasoning and Inference, 2009
3. The Book of Why: The New Science of Cause and Effect, 2018.

» Miguel Hernan
1. The Causal Inference Book
2. edX MOOC: Causal Diagrams: Draw Your Assumptions Before Your Conclusions

» Modern Epidemiology, 3™ ed. Rothman, Greenland, Lash: Chapter 12—Causal Diagrams

» Causal Diagrams for Epidemiologic Research. S. Greenland, J. Pearl, J. Robins.
Epidemiology 1999:10:37-48.

» Epidemiology by Design: A Causal Approach to the Health Sciences, D. Westreich, 2020

* Developing a Protocol for Observational Comparative Effectiveness Research: A User's
Guide: Supplement 2, Use of Directed Acyclic Graphs

* DAGitty - drawing and analyzing causal diagrams (DAGs) (www.dagitty.net/)



https://www.wiley.com/en-us/Causal+Inference+in+Statistics%3A+A+Primer-p-9781119186847
http://bayes.cs.ucla.edu/BOOK-2K/
http://bayes.cs.ucla.edu/WHY/
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://www.edx.org/course/causal-diagrams-draw-your-assumptions-before-your-conclusions
https://journals.lww.com/epidem/Abstract/1999/01000/Causal_Diagrams_for_Epidemiologic_Research.8.aspx
https://journals.lww.com/epidem/Abstract/1999/01000/Causal_Diagrams_for_Epidemiologic_Research.8.aspx
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780190665760.001.0001/oso-9780190665760
https://www.ncbi.nlm.nih.gov/books/NBK126190/pdf/Bookshelf_NBK126190.pdf
http://www.dagitty.net/
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A CAUSAL APPROACH
TO THE HEALTH SCIENCES

DANIEL WESTREICH

Epidemiology by Design, 2019
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Statistical Rethinking 2022 Lecture 06 - Good & Bad Controls

free YouTube lectures! :

Texts in Statistical Science

Statistical Rethinking

A Bayesian Course
with Examples in R and Stan

SECOND EDITION

Richard McElreath

@( RC Press

Statistical Rethinking 2023 Statistical Rethinking, 2020



https://oxford.universitypressscholarship.com/view/10.1093/oso/9780190665760.001.0001/oso-9780190665760
https://xcelab.net/rm/statistical-rethinking/
https://www.youtube.com/playlist?list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN
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Takeaways: Reasons to consider SCMs in model selection for
observational studies
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support identification of biases

recommend a [minimum] set of
adjustments necessary for unbiased
effect estimation

may rationalize model selection
can help you spend df’s effectively
help in de-bugging our thinking
reduce ambiguity in communication
support achieving consensus
mitigate ‘analysis multiplicity’



Complimentary PoV: Variable selection for model selection

RMS

 Eschew automated variable
selection

* Principled data reduction
techniques

« using data reduction methods (masked to
Y ) to reduce the dimensionality of the
predictors and then fitting the number of
parameters the data’s information content
can support

 Shrinkage to mitigate over-fitting
* use shrinkage (penalized estimation) to fit

a large model without worrying about the
sample size.

SCMs & causal DAGs

 Subject-matter-knowledge-driven

approaches

 Can aid in selecting covariates in

regression models by identifying the
set(s) of adjustments necessary for
estimation of specific effects without
bias

* Avoid adjustments that

induce bias!



We can & will be fooled by data! =t

“Using the data to guide the analysis is almost as dangerous as not using it!”
---Frank Harrell, RMS

“The data are profoundly dumb!”
---Judea Pearl, Book of Why
 Data helps to describe reality—albeit imperfectly

* Nature is indifferent to furnishing noise vs. signal; the computer
cannot divine causes

* |t is a prevalent mistake to believe that “all the answers [information]
are in the data”

* Relying on statistical approaches to identifying variables for
adjustment and control of confounding can be problematic



Confounding is a causal phenomenon

J

“Data do not understand causes and effects; humans do.’
— Judea Pearl, The Book of Why: The New Science of Cause and Effect

« Statistical data, however large, is insufficient for determining what is
“causal,” and must be supplemented with extra-statistical knowledge to
make sense

» Subject-matter knowledge must be employed to effectively prevent bias

« SCMs/DAGs are concise and explicit expressions of subject-matter
knowledge


https://www.goodreads.com/work/quotes/57834899

“Draw your assumptions before your conclusions.”
—M. Heman

 Causal diagrams describe the data Statin ———» Cholesterol ——————— CAD ——— Mortality

generating process (DGP) e /
. H \ Lifestyle / /

 Causal diagrams help us summarize
what we know about a problem and R Obesity ——» HF
communicate our assumptions about its
causal structure.

 Causal diagrams help us diagnose MD visit
biases in causal inference | '//./\
previous —— RAAS Blocker ——s blood pressure OVID-19 mortality
» Causal diagrams help you organize \ /‘
your expert knowledge visually; and /
therefore, they help make our '

assumptions assumptions more exp||C|t Causal directed acyclic graph of the case scenario depicting the
effect of RAAS blockers on the risk of COVID-19 mortality.

Causal Diagrams: Draw Your Assumptions Before Your Conclusions and The Causal Inference Book



https://www.edx.org/course/causal-diagrams-draw-your-assumptions-before-your-conclusions
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/




Basic notions in causal models

1. Causal relationship vs. independence
2. Causal paths
3. Biasing structures
I. Confounder (the “Fork’)
ii. Mediator (the “Pipe” or “Chain”)
iil. Collider (the “Collider”)
4. Backdoor paths, ‘d-separation’, the ‘do-calculus’



Cause - effect

OEROLG

Absence of causal effects imply Causal effects imply associations
independencies: e.g., P(Y|X) = P(Y) P(Y=y | X=x) # P(Y=y)

* The presence or absence of arrows in DAGs correspond to the presence or
absence of individual causal effect in the population

* DAGs are both causal models and statistical models
(i.e., models that represent associations and independencies)

*See Chapter 1, Pearl, Glymour & Jewell, 2016; and M. Hernan’s Causal Diagrams: Draw Your Assumptions Before Your Conclusions



https://www.edx.org/course/causal-diagrams-draw-your-assumptions-before-your-conclusions

Causal Paths

ONRCO,

CO—

CO—
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« Conditional independence,
given Z

e Direct vs. indirect effects
» Total effect



Confounder structures

e Causal structure with
common causes

 Bias: spurious association;
X and Y are not expected
to be independent

« Conditioning on Z blocks
the biasing path



Confounders vs. Mediators (Intermediate variables)

Hospitalization and death among adults with COVID-19

Obstructive .
sleep apnea > Hypertension —————> Poor outcome

Figure 1. Directed acyclic graph for the effect of obstructive sleep
apnea on poor outcome among patients with coronavirus disease
(COVID-19). Age is a confounder of the association, whereas
hypertension is a causal intermediate.

1. Cade BE, Dashti HS, Hassan SM, Redline S, Karlson EW. Sleep Apnea and
COVID-19 Mortality and Hospitalization. Am J Respir Crit Care Med. 2020 Nov
15;202(10):1462-1464. doi: 10.1164/rccm.202006-2252LE. PMID: 32946275;
PMCID: PMC7667903.

2. Mulla ZD, Pathak IS. Sleep Apnea and Poor COVID-19 Outcomes: Beware of
Causal Intermediates and Colliders. Am J Respir Crit Care Med. 2021 May
15;203(10):1325-1326. doi: 10.1164/rccm.202101-0088LE. PMID: 33684329.

» Mediator: variables that are affected by the
exposure and also affect the outcome

— referred to as a mediator because it mediates, at least
in part, the effect of hypertension on outcome

» Confounder: Variables that are on the
common cause path of the exposure and

outcome

— conditioning on this variable through regression
modelling, stratification in the analytical stage or
restriction and exposure matching in the design stage,
can prevent confounding

* Adjusting for a confounder removes bias,
while adjusting for a mediator may lead to
overadjustment bias.



Collider structures

« Paths with convergent
arrows

* When colliders are not
conditioned on they block
pathways

« Conditioning on a collider
opens the path, inducing
association between X
and Y




Confounders vs. Colliders

Confounder Collider

Exposure Outcome Exposure Outcome

Distorted association when failing to Distorted association when

control for the confounder controlling for the collider

Catalog of Bias



https://catalogofbias.org/biases/collider-bias/

Collider structures

» With colliders X->Z<-Y: XL1Y|Z

* The ‘back-door’ path
X«—o—/Z«—°o—YIs blocked
when Z is not conditioned on

 Conditioning on a colliders opens a
‘back door’ path: X4 Y|Z

* More eloborate collider structures:

e.g. “‘M-bias’, etc.




Conditioning on the

Collider “M-bias”
common effect (Mother’s
Diabetes) imparts an

Income during
childhood
association between two

Mother's Diabetes otherwise independent
variables (Income and

Genetics), leading to
_________ confounding via a
backdoor path

Genetic risk
for Diabetes

Common Structures of Bias; Malcolm Barrett; 2021-01-11



https://cran.r-project.org/web/packages/ggdag/vignettes/bias-structures.html

Beware of Causal Intermediates and Colliders

Hospitalization and death among adults with COVID-19
 Variables can be mediators, colliders

e and confounders (Hypertension is a
/ \ mediator and also a collider)
Qusiucive > Hyperiension ———— Pooraucome  * A DACK-door path can be inadvertently
opened by conditioning on a collider
\ / « Conditioning on a collider can introduce
v a spurious association between its

Figure 2. Directed acyclic graph for the effect of obstructive sleep apnea causes
on poor outcome among patients with coronavirus disease (COVID-19). i

Hypertension is a collider on the path from obstructive sleep apnea to poor ° i i i I
outcome. U is an unmeasured variable such as a medication or illness. COnil:rOlllng fOr a COllIder can reSUIt Ina bIaS
that is strong enough to move the observed

1. Cade BE, Dashti HS, Hassan SM, Redline S, Karlson EW. Sleep Apnea and 1 1 1 1 1 1 1
COVID-19 Mortality and Hospitalization. Am J Respir Crit Care Med. 2020 Nov aSSOCIatlon In a dlreCtIon that IS OppOSIte Of
15;202(10):1462-1464. doi: 10.1164/rccm.202006-2252LE. PMID: 32946275;

PMCID: PMC7667903. the true eﬁeCt.

2. Mulla ZD, Pathak IS. Sleep Apnea and Poor COVID-19 Outcomes: Beware of

Causal Intermediates and Colliders. Am J Respir Crit Care Med. 2021 May
15;203(10):1325-1326. doi: 10.1164/rccm.202101-0088LE. PMID: 33684329.



Beware of Causal Intermediates and Colliders

Hospitalization and death among adults with COVID-19 o Hypertension is a collider on the path from
OSAto PO. Variable U is an unmeasured

e variable, such as a medication or illness,
/ \ that affects the risk of both hypertension
and PO. If the data analyst controls for

Obstructive Hvoertension ———» P. t ; :
periension T hypertension but does not control for U in

sleep apnea
\ / this situation, then collider stratification bias
, will occur.

Figure 2. Directed acyclic graph for the effect of obstructive sleep apnea
on poor outcome among patients with coronavirus disease (COVID-19).
Hypertension is a collider on the path from obstructive sleep apnea to poor
outcome. U is an unmeasured variable such as a medication or illness.

1. Cade BE, Dashti HS, Hassan SM, Redline S, Karlson EW. Sleep Apnea and
COVID-19 Mortality and Hospitalization. Am J Respir Crit Care Med. 2020 Nov
15;202(10):1462-1464. doi: 10.1164/rccm.202006-2252LE. PMID: 32946275;
PMCID: PMC7667903.

2. Mulla ZD, Pathak IS. Sleep Apnea and Poor COVID-19 Outcomes: Beware of
Causal Intermediates and Colliders. Am J Respir Crit Care Med. 2021 May
15;203(10):1325-1326. doi: 10.1164/rccm.202101-0088LE. PMID: 33684329.



Collider structures: “Selection bias”

ORIGINAL ARTICLE

Abstract: The term “selection bias” encompasses various biases in
epidemiology. We describe examples of selection bias in case-
control studies (eg, inappropriate selection of controls) and cohort
studies (eg, informative censoring). We argue that the causal struc-
ture underlying the bias in each example is essentially the same:
conditioning on a common effect of 2 variables, one of which is
either exposure or a cause of exposure and the other is either the
outcome or a cause of the outcome. This structure is shared by other
biases (eg, adjustment for variables affected by prior exposure). A
structural classification of bias distinguishes between biases result-
ing from conditioning on common effects (“selection bias”) and
those resulting from the existence of common causes of exposure
and outcome (“confounding”). This classification also leads to a
unified approach to adjust for selection bias.

(Epidemiology 2004;15: 615-625)

pidemiologists apply the term “selection bias” to many
biases, including bias resulting from inappropriate selec-
tion of controls in case-control studies, bias resulting from
differential loss-to-follow up, incidence-prevalence bias, vol-
unteer bias, healthy-worker bias, and nonresponse bias.

As discussed in numerous textbooks,'* the common
consequence of sclection bias is that the association between
exposure and outcome among those selected for analysis
differs from the association among those eligible. In this
article, we consider whether all these scemingly heteroge-
neous types of sclection bias share a common underlying
causal structure that justifies classifying them together. We
use causal diagrams to propose a common structure and show
how this structure leads to a unified statistical approach to
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A Structural Approach to Selection Bias

Miguel A. Herndn,” Sonia Herndndez-Diaz,” and James M. Robins™

adjust for selection bias. We also show that causal diagrams
can be used to differentiate selection bias from what epide-
miologists generally consider confounding

CAUSAL DIAGRAMS AND ASSOCIATION

Directed acyclic graphs (DAGs) are useful for depicting
causal structure in epidemiologic settings.® ' In fact, the struc-
ture of bias resulting from selection was first described in the
DAG literature by Pearl”® and by Spirtes et al.'* A DAG is
composed of variables (nodes), both measured and unmeasured,
and arrows (dirccted edges). A causal DAG is one in which 1)
the arrows can be interpreted as direct causal effects (as defined
in Appendix A1), and 2) all common causes of any pair of
variables are included on the graph. Causal DAGs are acyclic
because a variable cannot cause itself, cither directly or through
other variables. The causal DAG in Figure 1 represents the
dichotomous variables L (being a smoker), E (carrying matches
in the pocket), and D (diagnosis of lung cancer). The lack of an
arrow between E and D indicates that carrying matches does not
have a causal effect (causative or preventive) on lung cancer, ic,
the risk of D would be the same if one intervened to change the
value of E.

Besides representing causal relations, causal DAGs

I de the causal of statistical

In fact, the theory of causal DAGs specifies that an associa-
tion between an exposure and an outcome can be produced by
the following 3 causal structures'>'*:

1. Cause and effect: If the exposure E causes the outcome D,
or vice versa, then they will in general be associated.
Figure 2 represents a randomized trial in which E (anti-
retroviral treatment) prevents D (AIDS) among HIV-
infected subjects. The (associational) risk ratio ARRgpy
differs from 1.0, and this association is entirely attribut-
able to the causal effect of E on D.

Common causes: If the exposure and the outcome share a
common cause, then they will in general be associated
even if neither is a cause of the other. In Figure 1, the
common cause L (smoking) results in E (carrying
matches) and D (lung cancer) being associated, ic, again,
ARRgp, #1.0.

Common effects: An exposure E and an outcome D that
have a common effect C will be conditionally associated if

~

w

615

Figure S2.4. DAG illustrating selection bias. Treatment
(A) is randomized. Subjects randomized to CCBs
(A=1) are more likely to drop out due to adverse

drug effects. Subjects with alcohol abuse (C=1) are
more likely to drop out of the study and they are also
more likely to experience acute liver failure (Y=1).
Conditioning on selection (retention in study) (S=1)
induces as association between A and C, which results
in an open biasing pathway between A and Y.

Ovsty ——— e

Unmeasured
risk factors

FIGURE. Directed acyclic graph of the
hypothesized effects of obesity on mor-
tality among individuals with heart fail-
ure. Potential unmeasured risk factors
include a genetic factors and lifestyle
behaviors.

The “Obesity Paradox”
Explained

To the Editor:
Several prospective  studies have
reported a J-shaped relationship
between obesity and mortality, suggest-
ing increased risk of death in the low-
est and highest body mass index (BMI)
groups in men and women of all ages,
races, and ethnicities.! Although obe-
sity is associated with a higher overall
mortality risk in the general population,
some authors have interpreted these pat-
terns to suggest that obesity confers a
survival advantage in surviving clinical
subpopulations.? This “obesity paradox”
has been reported for various disease
groups including stroke, myocardial
infarction, heart failure, renal disease,
and diabetes.”> We propose that this
apparent paradox is simply the result of
collider stratification, a source of selec-
tion bias that is common in epidemio-
logic research.®
The classic manifestation of this
selection bias is a result of conditioning
on a variable affected by exposure and
sharing common causes with the out-
come (known as a collider). Condition-
ing on a collider distorts the association
between exposure and outcome among
those selected for analysis and can there-
fore produce a spurious protective asso-
ciation between obesity and mortality in
disease groups.

Banack, Hailey R.; Kaufman, Jay S.. The “Obesity Paradox”

Explained. Epidemiology 24(3):p 461-462, May 2013.



https://journals.lww.com/epidem/Fulltext/2013/05000/The__Obesity_Paradox__Explained.20.aspx
https://journals.lww.com/epidem/Fulltext/2013/05000/The__Obesity_Paradox__Explained.20.aspx

Collider structures

« Collider stratification bias
* Selection bias

* Type-1
«“Selection distortion effect’
* Differential follow-up bias

* Berkson's paradox z
e Simpson’s paradox

e ... paradox’s ° °




Collider “M-bias” as “selection bias” and paradoxes

A A NUTRITION SCIENCE’S MOST
PREPOSTEROUS RESULT

to ice cream. Scientists don’t want to talk

What if ice cream is actually good for y

réports on the inding 1

baffling nutrition scientists: “Intake of total dairy product or
individual dairy products were not
associated with CVD risk, with the
exception of an inverse association
between ice-cream intake and CVD
health outcomes.”

Nutrition Sclenca’s Mast Preposterous Result: Could
Ica Cream Possibly Be Good for You?

Dairy Products and Cardiometabolic Health Outcomes, Andres Victor Ardisson Korate, 2018



https://dash.harvard.edu/handle/1/37925665

Collider “M-bias’ as “Selection bias”

Table S2.3 HRs (95% CI) of cardiovascular disease (CVD) risk according to intakes of various dairy foods
in participants with different diet update approaches in participants from both NHS and HPFS cohorts”

Participative

HR (95% CI) for one serving / day personh ty
Main model! Cancer only? HBP/HC? F .
amily Hx T2DM
Total dairy 1.00 (0.97, 1.02) 1.01 (0.98, 1.04) 0.99 (0.97, 1.02) and/or
High-fat dairy 0.96 (0.92, 1.00) 0.97 (0.93, 1.01) 0.96 (0.93, 1.01) Health Concems
Low-fat dairy 1.02 (0.98, 1.05) 1.02 (0.99, 1.05) 1.02 (0.98, 1.05)
Cheese 1.00 (0.94. 1.07) 1.00 (0.94. 1.06) 1.00 (0.92, 1.08)
Skim/low-fat milk 1.00 (0.96, 1.04) 1.01 (0.97, 1.04) 1.01 (0.96, 1.07)
Whole milk 1.04 (0.94, 1.16) 1.02 (0.91, 1.13) 1.04 (0.94, 1.14)
Yogurt 0.98 (0.85, 1.13) 0.99 (0.86, 1.15) 1.03 (0.83, 1.26)
Fermented dairy products 1.00 (0.94, 1.06) 1.00 (0.94, 1.06) 1.00 (0.90. 1.09)
Cream 0.98 (0.91, 1.05) 0.98 (0.90, 1.05) 1.03 (0.94, 1.12)
Ice cream 0.82 (0.67, 0.99) 0.79 (0.64, 0.96) 0.79 (0.64, 0.96) %
Sherbet 0.92 (0.78, 1.11) 0.92 (0.76, 1.09) 1.29 (0.73, 1.26) Selectlon
Butter* 1.00 (0.95, 1.06) 0.99 (0.94, 1.05) 1.03 (0.98, 1.07) & T2DM
Dairy fat (1% calories) § 0.99 (0.98, 1.00) 0.99 (0.98, 1.00) 1.00 (0.99, 1.01)
* HPFS, Health Professionals Follow-Up Study; NHS, Nurses’ Health Study.
! Model was adjusted for age (continuous), sex, BMI (4 categories), and total energy intake (quintiles), race,

menopausal status [pre or postmenopausal (never, past or current menopausal hormone use)], family history of diabetes
(yes/no), family history of myocardial infarction (yes/no), alcohol intake (0, 1-4.9, 5-14.9, >15 g/day), smoking status
(never, past, current 1-15 cigarettes/day, >15 cigarettes/day), physical activity (0, 0.1-0.9, 1-3.5, >3.5 hrs./week)
current aspirin use (yes/no), current multivitamin use (yes/no), diabetes duration (<5, 5-10, >10 years), baseline
hypertension, baseline hypercholesterolemia, lag-time between T2D diagnosis and return of first FFQ, AHEI, and
mutually adjusted for other dairy products. Diet update was stopped after diagnosis of cancer, CABG, or angina

Dairy Products and Cardiometabolic Health Outcomes, Andres Victor Ardisson Korate, 2018
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Growing awareness of mischief of colliders

ARTI C LE M) Check for updates |
OPEN

g Richard McElreath ) <= @rimcelreath - May 10 ”.. . . . : . .
It's common for students/colleagues to feel a bit betrayed when they COI | |de r b|as u nderm | nes Ou r u n d ersta n d | ng

learn about collider bias (and similar problems). . p P
of COVID-19 disease risk and severity

Gareth J. Griffith 1'2'4, Tim T. Morris 1'2'4, Matthew J. Tudball 1'2'4, Annie Herbert1'2'4, Giulia Mancano1'2'4,
Lindsey Pike'2, Gemma C. Sharp® "2, Jonathan Sterne?, Tom M. Palmer® 2, George Davey Smith® "2,
At least we can share this mood, our common scar Kate Tilling® "2, Luisa Zuccolo"2, Neil M. Davies® 23 & Gibran Hemani® 1245

Why was this not in their first stats class?

Doesn't this wreck how we design and interpret lots of research?

Numerous observational studies have attempted to identify risk factors for infection with
SARS-CoV-2 and COVID-19 disease outcomes. Studies have used datasets sampled from
patients admitted to hospital, people tested for active infection, or people who volunteered to
participate. Here, we highlight the challenge of interpreting observational evidence from such
non-representative samples. Collider bias can induce associations between two or more

’ g variables which affect the likelihood of an individual being sampled, distorting associations
between these variables in the sample. Analysing UK Biobank data, compared to the wider

] k ' cohort the participants tested for COVID-19 were highly selected for a range of genetic,
i - - behavioural, cardiovascular, demographic, and anthropometric traits. We discuss the

That is a _coIIider and should not be controlled for! mechanisms inducing these problems, and approaches that could help mitigate them. While
C:01O. SKiviews collider bias should be explored in existing studies, the optimal way to mitigate the problem is
to use appropriate sampling strategies at the study design stage.

b

Q s T 46 Q 246

MacElreath on Twitter



https://twitter.com/rlmcelreath/status/1391819374252765184?s=20

Adjustment: Information propagation, and interruption

e X and Y are associated:;
X—Z2Z—->Y pess conditioning on Z

X<« 7Y c°XandY areassociated;
unless conditioning on Z

X— /<Y <XandY are not associated:;
unless conditioning on Z



“What causes say about data”

» Causal diagrams show how causal relations are expected to translate into
associations & independencies

1. Initially, associations & independencies derived from subject matter
knowledge are posited in a DAG

2. Then given the posited model, associations & independencies observed
in data are are computed

* A credible causal model will reconcile associations & independencies observed
with the constraints provided by the posited causal model

 Subject to further criticism; revision qualification, elaboration, updating,
refinement



Intervention ~ de-confounding

P(Y | X) = P(Y | do(X))

Why we really care about pipes, forks and colliders? \>~/



P(Y|do(X)) ~ Deconfounding

- - - = -
. .

. ZorU
. or -
N 4
. .

.- - .
. ~
; Z U )
' or '
N .
- .
S e ao=

GO

Heuristic: an RCT helps us define a
causal effect in SCMs
Causal effects of X: arrows leaving X
Confounding requires an arrow into X
“do(X)”: an intervention; no exogenous
determinants

— no arrow into X, no biasing

(backdoor) pathways

An un-confounded estimate emulates

instrumental control:
P(Y | X) = P(Y | do(X))



De-confounding by emulating P(Y|do(X))

 Understanding confounding as P(Y|X) # P(Y|do(X)),

we seek P(Y | X) = P(Y | do(X)) « Variables are d-separated if:
1. not connected with each
» We analyze a DAG for “d-separation”: other (no pathway)
i.e., for any given pattern of paths in the 2. or pathway is blocked
causal model, what pattern of — adjusted non-colliders

— connected only through

dependencies and independencies we path on which at least

should expect in the data one unadjusted collider
* We then seek adjustment strategies for . otherwise there are open

unbiased estimation of effects [where pathways and dependencies

P(Y | X) = P(Y | do(X))] communicated



The “do-calculus”

A causal path from exposure to outcome
1. Is open (by definition it does not contain any collider variables)
2. Should be left open (do not adjust for any variables on these causal paths)

Theory of Causal DAGs A non-causal path from exposure to outcome containing no collider variables
3. Is open if no variables on the path are adjusted for
+ Mathematically 4. Is closed if one or more variables on the path are adjusted for
formalized by ! Tl

— Pearl [19€3, 1595, 2000)
Sprites, Gymour, and
Scheines {1993, 2000)

A non-causal path from exposure to outcome containing one collider variable

5. Is closed if no variables on the path are adjusted for

6. Is closed if only non-collider variables are adjusted for

7. 1s open if the collider variable,* is the only variable on the path adjusted for

8. Is closed if the collider variable,* and one or more other (non-collider) variables are adjusted for

Ly

A non-causal path from exposure to outcome containing more than one collider variable
9. Is closed if no variables (or only non-collider variables) on the path are adjusted for

10. Is closed if at least one collider variable,* is not adjusted for

11. Is open if all the collider variables,* but no non-collider variables, are adjusted for

12. Is closed if all collider variables,* and one or more other (non-collider) variables are adjusted for

Figure 2 Rules to decide whether a particular path is open or closed in a causal diagram. *The same rules apply if, instead of adjusting
for a collider, we adjust for a variable that is caused by that collider.



It can get complicated ...

Parental smoking asthma predisposition '

Childhood asthma .

Williamson, et al, 2014



It can get complicated ...

Classical

\

Age at baseline
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=

Disease Musculoskeletal
Progression Function System
OrthoPedSurgeries

/ . \
‘Wheelchair use ‘Wheelchair-bound

Age at

TX init Tx (cont)

DzSeverity

non-MSK
co-morbidities

Cardiac health Infections

Time Age at baseline

\ /

Age at "
Tx init Tx (cont) Classical e \
i . Musculoskeletal ENT surg non-MPS
Dz severity Height e N
System coconditions co-morbidities
Respiratory
Function
Respiratory
Infections
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perform test



Elucidate complexity
. Sex\\_  Infection éuscM

ARDS séverity

. neutrophil recruitment
Proinflammatory cytokine
N V :
Geograph 0 "
Vit-D supﬁ)lement
AR :

= \
, ‘ S
moking Hx
SES . CRP
) |

>

VitD A J] [no
:\\

7=
Hx CVD

ssssss Q/ \Q
LDL
GFR

Htn DM

‘1

=y

= O
n-Ca] Mortality

“The whole art and practice of
scientific [work] is comprised of
the skillful interrogation of Nature.”

— Joan Fisher Box

SCMs allow us to

make our assumptions explicit
communicate complexity to
stakeholders

qualify our findings

address sources of uncertainty
license “transportability” of
effects



... to analyze the DAG

We have to do the work of positing and articulating a SCM,;
but we have tools to do the causal ‘calculus with a DAG

Parental asthma

Parental smoking '

Childhood asthma I Chronic bronchitis

¥/ Variable

Asthma

O exposure

outcome

) adjusted
unobserved

View mode

» Effect analysis
¥ Diagram style
¥ Coloring
¥ Legend
® exposure
@® outcome
ancestor of exposure
@ ancestor of outcome

ancestor of exposure and
outcome

O adjusted variable
unobserved (latent)
other variable

== causal path

== biasing path

S
Parental Smoking

Model | Examples | How to ... | Layout | Help

FEX
Parental Asthma

VAN
N

(Childhood asthma

<
Underlying atopy

SO
Chronic bronchitis

Smoking

Asthma

¥ Causal effect identification

[Adjustment (lota efiect) ]
Minimal sufficient adjustment
sets for estimating the total
effect of Smoking on Asthma:

« Childhood asthma, Chronic
bronchitis, Parental
Smoking, SES, Sex

¥ Testable implications

The model implies the following

conditional independences:

« Smoking . Parental Asthma
I Childhood asthma, Chronic:
bronchitis, Parental
Smoking, Sex

+ Parental Smoking L Chronic
bronchitis | Parental Asthma

+ Parental Smoking 1 SES

+ Parental Smoking L Sex

« Parental Asthma L SES

+ Parental Asthma L Sex

+ Childhood asthma 1 SES

« Chronic bronchitis 1 SES

« SES L Sex

Export R code.

» Model code
¥ Summary

exposure(s) Smoking
outcome(s) Asthma
covariates 7
causal paths 1



Daggity: - drawing and analyzing causal diagrams (DAGs

(www.dagi

.net/)

[¥| Diagram style

Model | Examples | How to ... | Layout | Help

[¥] Causal effect identification

© classic
' SEM-like

[¥] View mode

[¥] Coloring

causal paths
biasing paths
ancestral structure

[¥] Effect analysis

~| atomic direct effects

[¥] Legend

® exposure
@ outcome

ancestor of exposure
@ ancestor of outcome

' ancestor of exposure
and outcome

O adjusted variable
unobserved (latent)
other variable

=== causal path

=== biasing path

[¥) Summary

exposure(s) Smoking
outcome(s) ESRD
covariates 8

causal paths 10

Age;_Sex;_Ethnicity; County; Education

Prior_D

—
Smoking_in_early_adulthood

oA 5
BMI;_Current_drinker—~"

>
Smoking

Renal_status

W72

ESRD

[ Adjustment (total effect) #]
Minimal sufficient adjustment
sets for estimating the total
effect of Smoking on ESRD:

« Age;_Sex;_Ethnicity;_County
Prior_Dzs

[¥] Testable implications

The model implies the following
conditional independences:

« ESRD L BMI;_Current_drinker

|
Age;_Sex;_Ethnicity;_County;_E
BP, Prior_Dzs, Renal_status,
Smoking

« ACR L BMI;_Current_drinker |
BP, Renal_status, Smoking

« ACR L Prior_Dzs | BP,
Renal_status, Smoking

« ACR L
Age;_Sex;_Ethnicity;_County;_E
| BMI;_Current_drinker,
Prior_Dzs, Smoking

« ACR L
Age;_Sex;_Ethnicity;_County;_E
| BP, Renal_status, Smoking

« Renal_status L
BMI;_Current_drinker |
Smoking

« Renal_status L Prior_Dzs |
Smoking

« Renal_status L
Age;_Sex;_Ethnicity;_County;_E
| Smoking

« BP L
Age;_Sex;_Ethnicity;_County;_E
| BMI;_Current_drinker,
Prior_Dzs, Smoking

Fxnort R cade


http://www.dagitty.net/

[¥] Variable
[non-Ca] Mortality
() exposure
outcome

(J adjusted

(J unobserved

[¥] View mode
(| Effect analysis

¥l Diagram style

3

Coloring

<)

Legend

@® exposure
@ outcome

ancestor of exposure
@ ancestor of outcome

ancestor of exposure and
outcome

O adijusted variable
unobserved (latent)
other variable

=== causal path

=== biasing path

Model | Examples | How to ...

Age

AN
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N
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| Layout | Help
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/
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i\
ARDS severity

. Promflammatory cytokine
Vit-D supplement \
2\
g &>
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N
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eGFR

Epidemiologic studies of
vitamin-D and mortality

Htn DM

\
AN

Q
\

[non-Ca] Mortality

¥| Causal effect identificatio

[ Adjustment (total effect) v|
The total effect cannot be
estimated by covariate
adjustment.

¥l Testable implications

The model implies the follov
conditional independences:

« Vit-D supplement L Age |
Sex, Smoking Hx

e Vit-D supplement L
Geography

e Vit-D supplement L DM

« Vit-D supplement L Htn

* Vit-D supplement L eGFF

« Vit-D supplement L CRP
Smoking Hx, Vit-D

¢ Vit-D supplement L LDL

« Vit-D supplement L seas:

« Vit-D supplement L [non-
Mortality | Age, CRP, Hx
CVD, Smoking Hx, Vit-D

Show all ...
Export R code

»| Model code
¥/ Summary

exposure(s) Vit-D

non-Ca
outcome(s) Evlo rtalit\](
covariates 18
causal
paths 5



¥l Variable Model | Examples | How to ... | Layout | Help
Vit-D ICU baseline

() exposure

() outcome

(J adjusted

(J unobserved

¥! View mode

v| Effect analysis

(J atomic direct effects

Sex . i -
Infection Susceptibility [Lie, 2006]

Age Vit
¥l Diagram style geé Vit-D supplement

¥J Coloring Q

Race

¥l Legend —
Vit-D ICU baseline
@ exposure
@ outcome
Geography
ancestor of exposure
@ ancestor of outcome

ancestor of exposure and
outcome

O adjusted variable
unobserved (latent)

DTN
Proinflammatory cytokine [Zhang, 2012]

I

\
neutrophil recruitment [Takano, 2011]]

ARDS severity [Dancer, 2015]

other variable Pre-infection Vit-D Vit-D Tx

=== causal path
=== biasing path

The VIOLET Randomized
Controlled Trial of vitamin-D
and mortality

~@

ARDS Mortlity

¥ Causal effect identification

| Adjustment (total effect) V|

No adjustment is necessary to
estimate the total effect of Vit-D
Tx on ARDS Mortlity.

¥l Testable implications

The model implies the following
conditional independences:

* ARDS Mortlity L Pre-
infection Vit-D | ARDS
severity [Dancer, 2015], Vit-D
Tx

ARDS Mortlity L Vit-D ICU
baseline | ARDS severity
[Dancer, 2015], Vit-D Tx
ARDS Mortlity L Vit-D
supplement | Pre-infection
Vit-D

ARDS Mortlity L Vit-D
supplement | ARDS severity
[Dancer, 2015], Vit-D Tx
ARDS Mortlity L Age | Pre-
infection Vit-D

ARDS Mortlity L Age | ARDS
severity [Dancer, 2015], Vit-D
Tx

ARDS Mortlity L Geography
| Pre-infection Vit-D

ARDS Mortlity . Geography
| ARDS severity [Dancer,
2015], Vit-D Tx

ARDS Mortlity L Race | Pre-
infection Vit-D

Showall ...
Export R code

» Model code

¥l Summary

exposure(s) Vit-D Tx
outcome(s) ARDS Mortlity
covariates 11

causal paths 2



Proposed process for using SCMs and DAGs

i

Model the data generating & ‘
process

. oA ‘
List out all paths AW _V\
Find a set of variables that -IIE_Pfe "
close all back doors e

Design and Causality

Measure and control for all =
those variables The Effect: An Introduction to

Research Design and Causality
Nick Huntington-Klein, 2022



Proposed process for using SCMs and DAGs

Think hard about the research question and problem of effect
Identification (“skillful interrogation of Nature”)

Develop DAGs based on subject matter knowledge without

Iooklng at data: do not contort the DAG based on data
availability

Do the ‘causal calculus’ in Daggity to identify the set of minimum
necessary adjustment for unbiased effect estimation

Do analysis and reconcile observations with causal model (this
IS science)

Publish the DAG with the research report



The Limitations!




The limitations
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Limitations of individual causal models, causal graphs,
and ignorability assumptions, as illustrated by random
confounding and design unfaithfulness

Causal Diagrams: Pitfalls and Tips
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Abstract We describe how ordinary interpretations of
causal models and causal graphs fail to capture important
distinctions among ignorable allocation mechanisms for
subject selection or allocation. We illustrate these limita-
tions in the case of random confounding and designs that
prevent such confounding. In many experimental designs
individual treatment allocations are dependent, and explicit
population models are needed to show this dependency. In
particular, certain designs impose unfaithful covariate-
treatment distributions to prevent random confounding, yet
ordinary causal graphs cannot discriminate between these

Keywords Causal graphs - Confounding - Directed
acyclic graphs - Ignorability - Inverse probability
weighting - Unfaithfulness

Introduction

Potential-outcome (counterfactual) and graphical causal
models are now standard tools for analysis of study
designs and data. Expositions can be found in modern
textbooks [1-3]; in most applications we see, however, the

ABSTRACT
Graphical models are useful tools in causal inference, and causal directed acyclic graphs (DAGs) are used extensively to determine
the variables for which it is ient to control for confounding to estimate causal effects. We discuss the following ten pitfalls and

tips that are easily overlooked when using DAGs: 1) Each node on DAGs corresponds to a random variable and not its realized
values; 2) The presence or absence of arrows in DAGs corresponds to the presence or absence of individual causal effect in the
population; 3) “Non-manipulable” variables and their arrows should be drawn with care; 4) It is preferable to draw DAGs for the
total population, rather than for the exposed or unexposed groups; 5) DAGs are primarily useful to examine the presence of
confounding in distribution in the notion of confounding in expectation; 6) Although DAGs provide qualitative differences of causal
structures, they cannot describe details of how to adjust for confounding; 7) DAGs can be used to illustrate the consequences of
matching and the appropriate handling of matched variables in cohort and case-control studies; 8) When explicitly accounting for
temporal order in DAGs, it is necessary to use separate nodes for each timing; 9) In certain cases, DAGs with signed edges can be
used in drawing conclusions about the direction of bias; and 10) DAGs can be (and should be) used to describe not only
confounding bias but also other forms of bias. We also discuss recent developments of graphical models and their future directions.

Key words: bias; causal inference; causality; confounding; directed acyclic graphs

Copyright © 2020 Etsuji Suzuki et al. This is an open access article distributed under the terms of Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The limitati
€ iniations * [t can be difficult: “Causal Inference”

(“the skillful integration of Nature®) is a
complex scientific task

mechanisms » Specifying SCMs/DAGs is not easy

e T Longes Rereand: IM Gren R Kouyos? — achieving consensus on SCM even

Directed acyclic graphs (DAGs) play a large role in the modern approach to causal inference. DAGs ¢ y . "

describe the relationship between measurements taken at various discrete times including the effect of — a CO m p I ete S C M (n O O m Itted Va rl a b I eS )
interventions. The causal mechanisms, on the other hand, would naturally be assumed to be a continuous

process operating over time in a cause—effect fashion. How does such immediate causation, that is R

causation occurring over very short time intervals, relate to DAGs constructed from discrete h a rd e r Stl | I

observations? We introduce a time-continuous model and simulate discrete observations in order to

judge the relationship between the DAG and the immediate causal model. We find that there is no clear

relationship; indeed the Bayesian network described by the DAG may not relate to the causal model.

Typically, discrete observations of a process will obscure the conditional dependencies that are P - - .
represented in the underlying mechanistic model of the process. It is therefore doubtful whether a IC Ca u Sa p ro el I IS a re eaS I e r’

DAGs are always suited to describe causal relationships unless time is explicitly considered in the

Article

Methe in Medi
25(5) 2294-231

Statist
2016, Vol.

Can we believe the DAGSs?

A comment on the relationship e
smm.sagepub.com
between causal DAGs and ©SAGE

model. We relate the issues to mechanistic modeling by using the concept of local (in)dependence.

An example using data from the Swiss HIV Cohort Study is presented. ti me_dependent Confou nd i ng req u i reS
special methods

“What is simple is always wrong. What is not is unusable.” —Valéry, Paul (1942)



https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1268/2021/03/ciwhatif_hernanrobins_30mar21.pdf

The limitations

* [t's not ‘automatic’: Specifying
SCMs/DAGs is not easy

* Regression assumptions, C(Y|X)=X3,
include no omitted predictors

* DAGs should include all relevant variables,
including those where direct measurements
are unavailable

— Explicitly depicting unobserved variables helps to
highlight potential sources of unobserved
confounding.

* Not clear that a “complete” SCMs ever
achieved.




“identifiability” does not imply “estimability”
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What can be estimated? Identifiability, estimability, causal
inference and ill-posed inverse problems

Oliver J. Maclaren OLIVER.MACLAREN@AUCKLAND.AC.NZ
Department of Engineering Science

University of Auckland

Auckland 1142, New Zealand.

Ruanui Nicholson RUANULNICHOLSON@AUCKLAND.AC.NZ
Department of Engineering Science

University of Auckland

Auckland 1142, New Zealand.

Editor: TBD

Abstract

We consider basic conceptual questions concerning the relationship between statistical es-
timation and causal inference. Firstly, we show how to translate causal inference prob-
lems into an abstract statistical formalism without requiring any structure beyond an
indexed family of probability models. The ism is simple but can incorpo-
rate a variety of causal modelling frameworks, including ‘structural causal models’, but also
models expressed in terms of, e.g., differential equations. We focus primarily on the struc-
tural graphical causal modelling literature, however. Secondly, we consider the extent to
which causal and statistical concerns can be cleanly separated ining the fund
question: ‘What can be estimated from data?’. We call this the problem of estimability.
We approach this by analysing a standard formal definition of ‘can be estimated” commonly
adopted in the causal inference literature - ity - in our abstract statistical formal-
ism. We use clementary category theory to show that identifiability implies the existence of
a Fisher-consistent estimator, but also show that this estimator may be discontinuous, and
thus unstable, in general. This difficulty arises because the causal inference problem is, in
general, an ill-posed inverse problem. Inverse problems have three conditions which must

be satisfied to be consi Il-posed: existence, uni and stability of solutions.
Here identifiability corresponds to the question of uniqueness; in contrast, we take estima-
bility to mean satisfaction of all three conditions, i.e. well Lack of stability
implies that naive ion of a causally identifiable quantity into an achi statisti-

cal estimation target may prove impossible. Our article is primarily expository and aimed
at unifying ideas from multiple fields, though we provide new constructions and proofs.
Key ility, causal inference, structural causal models, in-
verse p!oblcms stability, robust statistics, statistical lcarmng theory, sensitive parameters,
applied category theory

1. Introduction

A common idea in much of the causal inference literature (see e.g. Pearl, 2009, and re-
lated work) is that there is a natural separation of concerns between causal inference and
statistical estimation of the form:

Models, identifiability, and estimability in causal inference

Oliver J. Maclaren '

Abstract

Here we discuss two common but, in our view,
‘misguided assumptions in causal inference. The
first assumption is that one requires potential out-
comes, directed acyclic graphs (DAGs), o struc-
tural causal models (SCMs) for thinking about
causal inference in statistics. The md is Ihl
identifiability of a quantity impl
of that quantity. These views are not universal,
but we believe they are sufficiently common to
warrant comment.

1. Overview

The focus of this extended abstract is two common but, in
our view, misguided assumptions in causal inference. While
these assumptions are not universal, and causal inference is
diverse and multidisciplinary, we believe explicit discussion
of them is worthwhile. The first assumption concems the
role and meaning of models in causal inference. It is com-

Ruanui Nicholson '

statistics. For example, is a model a single probability distri-
bution, a family of distributions, a ‘generative mechanism’,
or a set of structural equations? Or something else? A more
general, informal definition of ‘model is simply: ‘theoret-
ical construct that implies distributions over observables'.
Starting from this perspective, Maclasen & Nicholson (2019)
translate a standard DAG/SCM causal inference framework
into an abstract statistical framework. In (1), we give a high-
level view of this translation, with the left-hand side based
on Pearl & Barcinboim (2014), and the right-hand side a
further abstracted version of the statistical framework for
inverse problems given by Evans & Stark (2002):

Mo 8
MMM & 66266
QM) & q(8)
P:M =P, M~ P(M) ¢ P:6 5P, 65 P(6).

[0}

In the above, structural causal models in the sense of Pearl

mon to assume that causal inference in statistics
requires special causal modelling formalisms such as poten-
tial outcomes, directed acyclic graphs (DAGs), or structural
causal models (SCMs). The second assumption concerns
the between and X
Formal logics of causal inference often take identifiability
nf 2 quantity 0 imply nx statistical csum-bnlny lhcn giving
primary i Here means,
it that statistical estimation with fin guar-
antees is possible. Maclaren & Nicholson (2019) give a
detailed background and analysis of the above assumptions.
and explain why they are misguided. The present work gives
a condensed overview of their article.

1.1, Causal models and statistical frameworks

The first assumption above is closely related to how the
term “‘model” should be understood in causal inference and

' Department of Engineering Science, The University of Auck.
land, Auckland, New Zealand. Correspondence to: Oliver J. Ma-
claren <oliver maclaren® auckland ac.nz>>.

Workshop on the Neglected Assumptions in Causal Inference
(NACI) at the 95" Intermational Conference on Machine Learning,
2021

& (014), by M, M;,
to abstract models or 'theories’ 8,,8,; the causal class of
Pearl & Barcinboim (2014), M, ds to the abstract

model space © to which 8;. 8, belong, and causal queries
Q(M) correspond to (interest) parameters o ‘queries’ g(6).
The function P on the left, which maps any fully-specified
structural causal model M to its probability distribution
P(M), is translated as the so-called ‘forward mapping’ P
in the abstract framework.

Both interventional and counterfactual concepts can be
expressed as interest parameters in the above abstract sta-
tistical framework. Importantly, these are defined as func-
tions or functionals on a basic ‘model space’, rather than
the space of distributions. This translation is fully compati-
ble with specific causal modelling frameworks like SCMs
or DAGs but also expands the scope of causal inference to
include model types often neglected in the causal inference
literature, for example differential equations, agent-based
models, or continuous-time stochastic process models.

1.2, Identifiability and estimability

The second assumption arises from a common idea in the
formal causal inference literature (e.g. Pearl & Bareinboim,
2014, and references therein). This idea is that there is &
natural separation of concerns between causal inference and
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Perhaps the hardest part: bringing ingenuity to generating the DAG

« ADAG is a narrative...

» describing the processes that gave rise
to the data

* No infinite regress: for a DAG to be
complete, the shared cause of any two
variables in the DAG must be included

* requires
— abstraction
— lateral and orthogonal thinking
— collaboration with SME’s
—iteration and revision
—time, perseverance
—and ideally, consensus But positing assumptions so conjectures about

implications can be made is ‘doing science’!

Writing out DAG means ‘sticking your neck out.
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Solving Irreproducible Science
Will the recently p ibili itiative succeed in cleaning up research and

reducing retractions?

By Connor Bamford | September 26, 2012
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Last month, researchers released a new initiative
that would allow scientists to pay to have their
data validated by an independent source before or
after publication. Known as the Reproducibility
Initiative (RI), the program was hailed by many in
the scientific community as an answer to the
growing number of irreproducible experiments and
retractions. But wil it solve the problem?

The RI plans to match researchers with
independent third parties to repeat their
experiments, then gives scientists the option of
publishing those validation studies along with the
original experiments in PLOS ONE. The initiative's
founders claim that such authentication will identify and commend researchers who produce high-quality,
reproducible research. while helpina to suppress the increasina numbers of retractions.
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CHALLENGES IN IRREPRODUCIBLE RESEARCH

No research paper can ever be considered to be the final word, and the replication and
‘corroboration of research restilts is key to the scientific process. In studying complex entities,

especially animals and human beings, the complexity of the system and of the techniques can all
too easily lead to resuits that seem robust in the lab, and valid to editors and referees of joumals,

but which do not stand the test of further studies. Nature has published a series of articles about
the worrying extent to which research resuits have been found wanting in this respect. The editors
of Nature and the Naturs lfe sciences research joumals have also taken substantive steps to put
our own houses in order, in improving the transparency and robustness of what we publish.
Joumals, research laboratories and institutions and funders all have an interest in tackling issues
of imeproducibiity. We hope that the articles contained in this collection wil help.
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* Afcrisis’ in Science: research findings often do not replicate on
independent data
* How are SCMs and RMS connected to the crisis of scientific “credibility”?
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The multiplicity of analysis
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For a given research question, there are usually a large variety
of possible analysis strategies acceptable according to the
scientific standards of the field, and there are concerns that this
multiplicity of analysis strategies plays an important role in the
non-replicability of research findings. Here, we define a general
framework on common sources of uncertainty arising in
computational analyses that lead to this multiplicity, and apply
this framework within an overview of approaches proposed
across disciplines to address the issue. Armed with this

and a set of ions derived therefrom,
researchers will be able to recognize strategies applicable to
their field and use them to generate findings more likely to be
replicated in future studies, ultimately improving the credibility
of the scientific process.
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Takeaways: Reasons to consider SCMs in regression modeling
strategies for observational studies

N\

Analytic bias
* Model selection

. el misspecification
ANALYSIS [Biite
* Residual confounding

Uncertainties
» Model specification
* Model selection

« Assumptions re. distribution

h:

« Arbitrary categorization
+ Collider bias

SCMs ...

1. are a great way of de-bugging your
thinking

2. support identification of biases

3. can recommend adjustments
necessary for unbiased effect
estimation

4. can rationalize model selection

5. can help you spend df’s effectively

6. reduce ambiguity in communication

/. support achieving consensus



Explanation vs. Prediction

* Evaluates the validity of using prediction as a proxy
for explanation in Bayesian statistical models
i. a conceptual introduction and overview of the

relationship of explanation and prediction as well as
their connection to causality;

ii. large-scale simulations of Bayesian generalized-linear
models to study said relationship under various causal
and statistical misspecifications;

iii. initial evidence that causality is indeed the missing link
that connects prediction and explanation when
comparing statistical models

* Using prediction as a proxy for explanation is valid
and safe only when the considered models are
sufficiently consistent with the underlying causal
structure of the true data generating process.

JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION e Ial)’ L?r &GFranas
https://doi.org/10.1080/00949655.2024.2449534 aylorSiFrancis Lroup

'.) Check for updates

Prediction can be safely used as a proxy for explanation in
causally consistent Bayesian generalized linear models

Maximilian Scholz © and Paul-Christian Burkner

Cluster of Excellence SimTech, University of Stuttgart, Stuttgart, Germany

ABSTRACT

Bayesian modeling provides a principled approach to quantifying
uncertainty and has seen a surge of applications in recent years.
Within the context of a Bayesian workflow, we are concerned with
model selection for the purpose of finding models that best explain
the data or underlying data generating process. Since insight into
the true process is rare, what remains is incomplete causal knowl-
edge and model predictions of the data. This leads to the important
question of when the use of prediction as a proxy for explanation for
the purpose of model selection is valid. We approach this question
by means of large-scale simulations of Bayesian generalized linear
models where we investigate various causal and statistical misspec-
ifications. Our results indicate that the use of prediction as proxy for
explanation is valid and safe if the models under consideration are
sufficiently consistent with the underlying causal structure of the true
data generating process.
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Remember to.anchor on the ideal [1]

1. Analysts should be [pro-]Jactively involved in study
design & measurement design!

« Simulate the design, the analysis, and the expression of results
for stakeholders.

« Simulation is especially useful for
 sample size estimation,

« setting realistic expectations about
precision/uncertainty in results

« exposing futility

exposing sources of uncertainty in the evidence
generating.process.




Remember to.anchor on the ideal [2]

2. Receive data from a well-designed "experiment’, with
optimal measurement, either restricting or blocking on
important &/or relevant sources of variability

« Count your blessings!

Treatment assignment / exposure has no association with any other
independent variables

« ‘The “unreasonable effectiveness” of Randomization in Natural
Sciences’

Adjust for efficiency / precision in estimation
Follow principles and examples in RMS, and use RMS tools



https://webhomes.maths.ed.ac.uk/~v1ranick/papers/wigner.pdf
https://webhomes.maths.ed.ac.uk/~v1ranick/papers/wigner.pdf

Remember to.anchor on the ideal [3]

["Degenerate situation”] Receive observational data
(including SDA of RCTs)

use DAGs to expose and summarize your assumptions about the
relevant system for the estimation

identify the variables that must be measured and controlled to
obtain unconfounded effect estimates given those assumptions

use Dagqity, until you get good at parsing paths by eye

simulate the DGP, and confirm that your analysis methods can
recover the posited estimate to everyone’s satisfaction

simulate the design, the analysis, and the expression of results for
stakeholders in advance of analysis



https://www.dagitty.net/

[“Degenerate.situation”] “External comparator”

Statistical Thinkinq Frank Harrell About Posts Talks Courses Datamethods News Links Bio Publications

Gonterts Incorporating Historical Control Data Into « code -
ackgroun an RCT

Another Approach

Example: Augmenting a [ DRUG-EVALUATION ] [ BAYES ] [ DESIGN ] [ DRUG-DEVELOPMENT ] [ INFERENCE ] [ OBSERVATIONAL ] [ POSTERIOR ] [ PRIOR ]

Control Arm with HD

Example: Creating a Control
Arm With HD Historical data (HD) are being used increasingly in Bayesian analyses when it is difficult to randomize

Example Analytic Workflow enough patients to study effectiveness of a treatment. Such analyses summarize observational
Summary studies’ posterior effectiveness distribution (for two-arm HD) or standard-of-care outcome
distribution (for one-arm HD) then turn that into a prior distribution for an RCT. The prior distribution
is then flattened somewhat to discount the HD. Since Bayesian modeling makes it easy to fit multiple
models at once, incorporation of the raw HD into the RCT analysis and discounting HD by explicitly
modeling bias is perhaps a more direct approach than lowering the effective sample size of HD. Trust
the HD sample size but not what the HD is estimating, and realize several benefits from using raw HD
in the RCT analysis instead of relying on HD summaries that may hide uncertainties.

Resources

AUTHOR AFFILIATION
Frank Harrell Department of Biostatistics
Vanderbilt University School of Medicine
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EHRs and RCT's: Outconte.Prediction vs. Optimal Treatment Selection



https://www.fharrell.com/post/ehrs-rcts/

Some ‘exotic’ situations and solutions

Propensity Score Adjustment:
- Covariate
- Matching
- Weighting

- Stratification

In BBR, see
Misunderstandings About Propensity Scores
Reasons for Failure of Propensity Analysis



https://hbiostat.org/bbr/propensity.html
https://hbiostat.org/bbr/
https://hbiostat.org/bbr/propensity.html
https://hbiostat.org/bbr/propensity.html

Some ‘exotic’ situations and solutions

* Front-Door Criterion: use mediators when confounders
are unmeasured

 Instrument affects treatment
* Independent of outcome except through treatment

* Not associated with confounders

» Examples: policy changes, random assignment
« Marginal Structural Models (MSMs) with IPTW
« Sensitivity Analysis & Negative Controls




Some ‘exotic’ situations and solutions

e G-Methods
* G-Formula (Parametric G-Computation)
 (G-Estimation of Structural Nested Models

* Machine Learning + Causal Inference
» Targeted Maximum Likelihood Estimation (TMLE)

* Double Machine Learning (DML)
 (Causal Forests and HTE estimation




Keep your standards up!!
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Thank you

Any questions?




