

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

Challenges & Opportunities in Clinical Prediction Modeling

Frank E Harrell Jr

Department of Biostatistics Vanderbilt University School of Medicine Nashville, Tennessee

Office of Biostatistics US FDA Center for Drug Evaluation and Research

MEMTAB 2018 Utrecht NL 2018-07-02

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

How Did We Get Here?

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

- Statistical foundations: maximum likelihood (Fisher), and Bayes
- Long tradition of methodology development in statistics and clinical epidemiology

- Thousands of methodologists
- Statistical computing platforms
- Resampling methods for model validation

Where are We?

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

• Flexible statistical models

- Assume smoothness, not linearity (splines, etc.)
- Penalized maximum likelihood estimation (shrinkage)
- Bayesian model, penalizing through prior distributions

- Semiparametric models for continuous ordinal Y
- Overall modeling strategies
 - Handling complexity
 - Data reduction
 - Missing data, e.g. multiple imputation

Where are We? continued

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

Validation methods

- Bootstrap and other resampling methods
- Less need for external validation
- Validation of predictive discrimination and absolute accuracy (calibration)
- Machine leaning, if black box OK
- Huge number of methods for assessing added value of biomarkers

Challenges

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

- Role of machine learning, and dealing with hype
- Interpreting complex models (... and machine learning algorithms)
- Frequentist statistical inference if using penalization
- Move more to Bayesian models
 - No point estimate of risk but a per-subject risk distribution (pointed if *N* large) taking all uncertainties into account

- No overfitting, just disagreements about priors for regression coefficients
- Handling of missing data much less ad hoc

Challenges: Interactions

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

- Exploratory analysis of interaction largely fails
- Interactions are frequently nonlinear and co-linear
- Curse of dimensionality and difficulty in pre-specification

- Need new approaches; focus on "interaction data reduction" and Bayes
 - Skeptical priors for interactions effects
 - Stop making dichotomous decisions
 - Interactions can be "half in" the model

Challenges, continued

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

- Methodologists keep inventing ad hoc approaches to quantifying and testing added predictive value
- Many are statistically inefficient
- Many use arbitrary categorization/binning
- Many are unnecessary
- Many indexes have problems
 - Suitable only for retrospective sampling (sensitivity, specificity, ROC curves)
 - Arbitrary and statistically insensitive
 - Improper probability accuracy scoring rules are epidemic

Challenges, continued

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

• Statisticians have forgotten the gold standards:

- Frequentist: log-likelihood
- Bayesian: log-likelihood + log prior
- Explained variation
- Simpler, traditional methods handle greater complexity!
 - Interaction between a biomarker and a baseline clinical variable

Key Measures (Frequentist Versions)

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

Log-likelihood; gives rise to

- Logarithmic proper accuracy score
- Overall LR model χ^2 (denote by LR)
- Pseudo R^2 : $1 \exp(-LR/n)$
- Explained variation
 - Linear model: SSR / SST or $var(X\hat{eta})$ / var(Y)
 - Extended by Kent and O'Quigley 1988: SST or var(Y) is distribution-specific
 - Schemper 2003: excellent paper advocating for measures based on absolute rather than squared differences

Relative Explained Variation

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

- Base model A, added predictors B
- LR is the gold standard frequentist method for establishing evidence for some added value
- LR is an optimum, general information measure
- $LR = -n \log(1 R^2)$ (for linear models) For small R^2 , this is approx. nR^2
- Adequacy index (Harrell 2015): LR_A / LR_{AB} Proportion of explainable log likelihood that is explained by A

Proportion of predictive information

Relative Explained Variation, continued

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

• Relative R^2 : $SSR_A / SSR_{AB} = R_A^2 / R_{AB}^2$ $SSR_j = var(X^j \hat{\beta}^j)$ SSR_A / SSR_{AB} : adequacy of A

1 - this : proportion of explainable variation explained by ${\sf B}$

- Can use other measures than $var(X\hat{eta})$
 - mean absolute deviation from mean $X\hat{eta}$
 - *g*-index: Gini's mean difference for $X\hat{\beta}$
 - probability scale, for any of the measures

Diagnostic Risk Modeling

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

Assuming (Atypical) Binary Disease Status

- Y 1:diseased, 0:normal
- X vector of subject characteristics (e.g., demographics, risk factors, symptoms)
- T vector of test (biomarker, ...) outputs
- α intercept
- β vector of coefficients of X
- γ vector of coefficients of T

$$pre(X) = Prob[Y = 1|X] = \frac{1}{1 + exp[-(\alpha^* + \beta^* X)]}$$
$$post(X, T) = Prob[Y = 1|X, T] = \frac{1}{1 + exp[-(\alpha + \beta X + \gamma T)]}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Some Summary Measures for Pre– and Post–test Probabilities

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

- quantile regression (Koenker and Bassett 1978) curves as a function of pre
- overall mean |post pre|
- quantiles of post pre
- du₅₀: **distribution** of post when pre = 0.5 diagnostic utility at maximum pre-test uncertainty
 - Choose X so that pre = 0.5
 - Examine distribution of post at this pre
 - Summarize with quantiles, Gini's mean difference on prob. scale
 - Special case where test is binary (atypical): compute post for \mathcal{T}^+ and for \mathcal{T}^-

Case Study

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

Bibliography

- Patients undergoing cardiac catheterization at Duke University, for chest pain; n = 2258
- Diagnosis of significant coronary artery disease
- See BBR Diagnosis Chapter: fharrell.com/links
- Base model: age, sex; age and age × sex interactions nonlinear using splines

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- New biomarker: total cholesterol
- Cholesterol interacts nonlinearly with age

Effect of Cholesterol at Two Example Ages

Challenges & Opportunities in Clinical Prediction Modeling

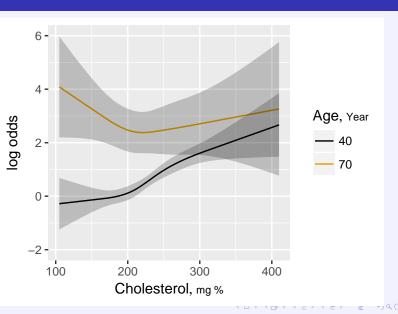
Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study



VANDERBILT School of Medicine BIOSTATISTICS

Diagnostic Utility of Cholesterol Quantile Regression, 0.1 and 0.9 Quantiles

Challenges & Opportunities in Clinical Prediction Modeling

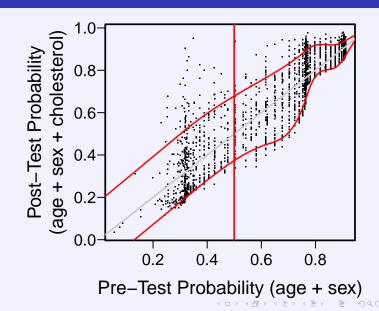
Where are We?

Challenges

Key Measure

Diagnostic Risk Modeling

Case Study



Quantifying Explained Variation

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

	Base	Base+Chol
LR χ^2	496.85	596.99
с	0.77	0.79
R^2	0.27	0.32
Brier	0.18	0.17
g _p	0.24	0.27
Adequacy	0.83	1.00
$var(X\hateta)$	1.18	1.51
Relative $R^2(X\hat{eta})$	0.78	1.00
$var(\hat{P})$	0.05	0.06
Relative $R^2(\hat{P})$	0.84	1.00

VANDERBILT School of Medicine BIOSTATISTICS

Diagnostic Utility of Cholesterol vs. Age, Logit Scale; No Cholesterol \times Age Interaction

Challenges & Opportunities in Clinical Prediction Modeling

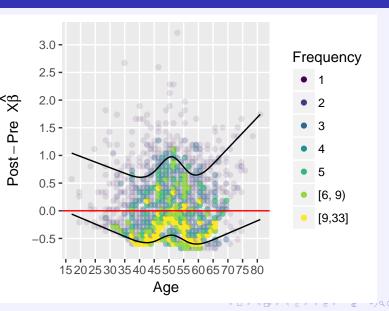
Where are We?

Challenges

Key Measure

Diagnostic Risk Modelin

Case Study



Diagnostic Utility vs. Age, Logit Scale Cholesterol \times Age Interaction Included

Challenges & Opportunities in Clinical Prediction Modeling

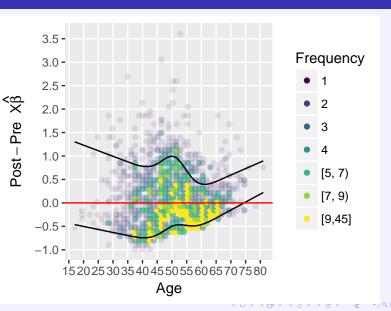
Where are We?

Challenges

Key Measure

Diagnostic Risk Modelin

Case Study



Diagnostic Utility vs. Age, Probability Scale Interaction Included

Challenges & Opportunities in Clinical Prediction Modeling

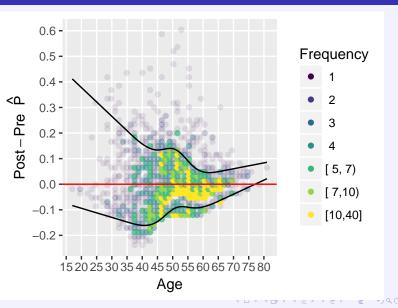
Where are We?

Challenges

Key Measure

Diagnostic Risk Modeling

Case Study



Explained Variation vs. Age, Probability Scale

Challenges & Opportunities in Clinical Prediction Modeling

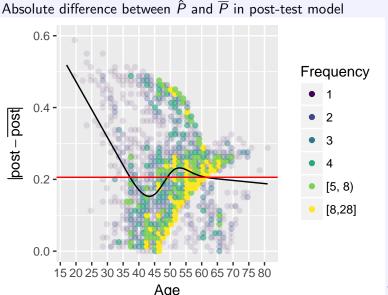
Where are We?

Challenges

Key Measures

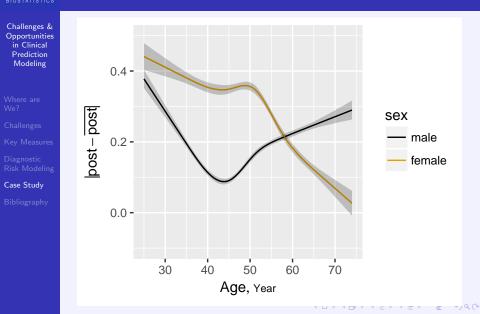
Diagnostic Risk Modeling

Case Study



20

Explained Variation vs. Age and Sex, Probability Scale



Summary

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling

Case Study

- There are many remaining challenges in clinical prediction model development
- Need general approaches for reliable interaction modeling for precision medicine/HTE
- Bayesian modeling opens vast possibilities
- Need to unlearn a lot of ad hoc methods for assessing added value of biomarkers
- Simple regression and likelihood approaches are
 - more powerful
 - more precise
 - less arbitrary (no binning)
 - more insightful
 - more flexible
- Need to spend effort translating likelihood and explained variation measures for clinicians

Challenges & Opportunities in Clinical Prediction Modeling

Where are We?

Challenges

Key Measures

Diagnostic Risk Modeling Case Study

Bibliography

References

Harrell, F. E. (2015). Regression Modeling Strategies, with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Second edition. New York: Springer. isbn: 978-3-319-19424-0 (cit. on p. 10).

Kent, J. T. and J. O'Quigley (1988). "Measures of dependence for censored survival data". In: *Biometrika* 75, pp. 525–534 (cit. on p. 9).

Koenker, R. and G. Bassett (1978). "Regression quantiles". In: *Econometrica* 46, pp. 33–50 (cit. on p. 13).

Schemper, M. (2003). "Predictive accuracy and explained variation". In: *Stat Med* 22, pp. 2299–2308 (cit. on p. 9).

value of R^2 with binary response data; measures of average absolute prediction errors with continuous response