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How Did We Get Here?

Statistical foundations: maximum likelihood (Fisher), and
Bayes

Long tradition of methodology development in statistics
and clinical epidemiology

Thousands of methodologists

Statistical computing platforms

Resampling methods for model validation
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Where are We?

Flexible statistical models

Assume smoothness, not linearity (splines, etc.)
Penalized maximum likelihood estimation (shrinkage)
Bayesian model, penalizing through prior distributions
Semiparametric models for continuous ordinal Y

Overall modeling strategies

Handling complexity
Data reduction
Missing data, e.g. multiple imputation
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Where are We? continued

Validation methods

Bootstrap and other resampling methods
Less need for external validation
Validation of predictive discrimination and absolute
accuracy (calibration)

Machine leaning, if black box OK

Huge number of methods for assessing added value of
biomarkers
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Challenges

Role of machine learning, and dealing with hype

Interpreting complex models (. . . and machine learning
algorithms)

Frequentist statistical inference if using penalization

Move more to Bayesian models

No point estimate of risk but a per-subject risk distribution
(pointed if N large) taking all uncertainties into account
No overfitting, just disagreements about priors for
regression coefficients
Handling of missing data much less ad hoc
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Challenges: Interactions

Exploratory analysis of interaction largely fails

Interactions are frequently nonlinear and co-linear

Curse of dimensionality and difficulty in pre-specification

Need new approaches; focus on “interaction data
reduction” and Bayes

Skeptical priors for interactions effects
Stop making dichotomous decisions
Interactions can be “half in” the model
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Challenges, continued

Methodologists keep inventing ad hoc approaches to
quantifying and testing added predictive value

Many are statistically inefficient

Many use arbitrary categorization/binning

Many are unnecessary

Many indexes have problems

Suitable only for retrospective sampling (sensitivity,
specificity, ROC curves)
Arbitrary and statistically insensitive
Improper probability accuracy scoring rules are epidemic
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Challenges, continued

Statisticians have forgotten the gold standards:

Frequentist: log-likelihood
Bayesian: log-likelihood + log prior
Explained variation

Simpler, traditional methods handle greater complexity!

Interaction between a biomarker and a baseline clinical
variable
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Key Measures (Frequentist Versions)

Log-likelihood; gives rise to

Logarithmic proper accuracy score
Overall LR model χ2 (denote by LR)
Pseudo R2: 1− exp(−LR/n)

Explained variation

Linear model: SSR / SST or var(X β̂) / var(Y )
Extended by Kent and O’Quigley 1988: SST or var(Y ) is
distribution–specific
Schemper 2003: excellent paper advocating for measures
based on absolute rather than squared differences
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Relative Explained Variation

Base model A, added predictors B

LR is the gold standard frequentist method for establishing
evidence for some added value

LR is an optimum, general information measure

LR = −n log(1− R2) (for linear models)

For small R2, this is approx. nR2

Adequacy index (Harrell 2015): LRA / LRAB

Proportion of explainable log likelihood that is explained
by A
Proportion of predictive information
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Relative Explained Variation, continued

Relative R2:
SSRA / SSRAB = R2

A / R2
AB

SSRj = var(X j β̂j)
SSRA / SSRAB : adequacy of A
1 - this : proportion of explainable variation explained by B

Can use other measures than var(X β̂)

mean absolute deviation from mean X β̂
g -index: Gini’s mean difference for X β̂
probability scale, for any of the measures
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Diagnostic Risk Modeling

Assuming (Atypical) Binary Disease Status

Y 1:diseased, 0:normal
X vector of subject characteristics (e.g., demographics, risk factors, symptoms)

T vector of test (biomarker, . . . ) outputs
α intercept
β vector of coefficients of X
γ vector of coefficients of T

pre(X ) = Prob[Y = 1|X ] = 1
1+exp[−(α∗+β∗X )]

post(X ,T ) = Prob[Y = 1|X ,T ] = 1
1+exp[−(α+βX+γT )]
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Some Summary Measures for Pre– and Post–test
Probabilities

quantile regression (Koenker and Bassett 1978) curves as a
function of pre

overall mean |post – pre|
quantiles of post – pre

du50: distribution of post when pre = 0.5
diagnostic utility at maximum pre-test uncertainty

Choose X so that pre = 0.5
Examine distribution of post at this pre
Summarize with quantiles, Gini’s mean difference on prob.
scale
Special case where test is binary (atypical): compute post
for T+ and for T−
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Case Study

Patients undergoing cardiac catheterization at Duke
University, for chest pain; n = 2258

Diagnosis of significant coronary artery disease

See BBR Diagnosis Chapter: fharrell.com/links

Base model: age, sex; age and age × sex interactions
nonlinear using splines

New biomarker: total cholesterol

Cholesterol interacts nonlinearly with age

fharrell.com/links
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Effect of Cholesterol at Two Example Ages
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Diagnostic Utility of Cholesterol
Quantile Regression, 0.1 and 0.9 Quantiles
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Quantifying Explained Variation

Base Base+Chol

LR χ2 496.85 596.99
c 0.77 0.79
R2 0.27 0.32
Brier 0.18 0.17
gp 0.24 0.27
Adequacy 0.83 1.00

var(X β̂) 1.18 1.51

Relative R2(X β̂) 0.78 1.00

var(P̂) 0.05 0.06

Relative R2(P̂) 0.84 1.00
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Diagnostic Utility of Cholesterol vs. Age, Logit
Scale; No Cholesterol × Age Interaction
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Diagnostic Utility vs. Age, Logit Scale
Cholesterol × Age Interaction Included
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Diagnostic Utility vs. Age, Probability Scale
Interaction Included
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Explained Variation vs. Age, Probability Scale

Absolute difference between P̂ and P in post-test model
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Explained Variation vs. Age and Sex, Probability
Scale
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Summary

There are many remaining challenges in clinical prediction
model development

Need general approaches for reliable interaction modeling
for precision medicine/HTE

Bayesian modeling opens vast possibilities

Need to unlearn a lot of ad hoc methods for assessing
added value of biomarkers

Simple regression and likelihood approaches are

more powerful
more precise
less arbitrary (no binning)
more insightful
more flexible

Need to spend effort translating likelihood and explained
variation measures for clinicians
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