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Abstract

P -values and the p < 0.05 rule of thumb came into use before the computing revolution.
Assuming the null hypothesis is true greatly simplified the model, often requiring only manual
calculations. But the traditional straw-man null hypothesis testing approach to establishing
statistical evidence about efficacy or safety of a drug has a number of deficiencies, many of them
caused by the indirectness of the approach, including the use of probabilities of events that al-
ready occurred conditional on facts that are unknown. P -values and type I assertion probability
α are often assumed to provide the error probabilities regulators need, but the chance that an
approved drug is ineffective given the data is actually the direct Bayesian posterior probability
that efficacy falls below an acceptable level. Furthermore, the rules of logic supporting proof
by contradiction, based on certainties and not probabilities, don’t apply to the uncertainties of
traditional null hypothesis testing. Just as in medical diagnosis, forward probabilistic thinking
leads to optimum decisions. The Bayesian approach involves direct estimation of time-forward
probabilities of clinical interest and does not need to concern itself with long-run operating char-
acteristics such as the number of false positives from a large set of imagined exact replications
of exactly null clinical trials. Instead, Bayesian methods aim to maximize the probability of
making the best decision about drug efficacy and safety for the single problem at hand. The
Bayesian approach applies to complex study designs, incorporates applicable prior information,
results in cleaner interpretations on a clinical as opposed to a randomness scale, and provides
a fully self-contained model-based approach to inference needing no after-the-fact adjustments
for context/multiplicities. In some ways frequentist hypothesis testing involves modeling noise
while Bayesian inference involves modeling signal.

The Bayesian approach is outlined, and demonstrated through relatively simple simulations.
By focusing on an extreme example in which one analyzes the data up to 500 times for 500
subjects, the advantages of Bayes for evidence generation and saving sample size by earlier
stopping are shown. A simulated parallel-group randomized clinical trial with two efficacy
endpoints is used to demonstrate how Bayes is used to quantify evidence for efficacy with
joint probabilities involving both outcomes, something impossible to calculate in the frequentist
paradigm. Bayesian methods should be used for simple problems as well as for complex situations
such as adaptive designs and use of prior data where a frequentist solution is not available. When
sponsors and reviewers are comfortable applying and interpreting Bayesian methods in simple
cases they will be more able to interpret results in complex situations. When relevant prior data
are not available for incorporation into the prior distribution, a little skepticism goes a long
way.
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1 HIGH-LEVEL VIEW

1 High-Level View

Would a regulator rather know
1. the chance of making an assertion of efficacy if a drug has no effect

or
2. the chance that the drug is ineffective (either has no effect or harms

the patient)?

Bayesian modeling provides the perfect point in the logic flow at which
to inject context-specific skepticism, or relevant positive evidence from
other studies

So the Bayesian and frequentist approaches are based on inverse mea-
sures: one deals with probabilities of hypotheses given the data and the
other involves probabilities of data sets given hypotheses.

Berry [8]

A fundamental tenet of the Bayesian approach: data does not create
beliefs; rather it modifies existing beliefs.

AFM Smith, Seminar in
Bayesian Statistics, 1982

We need an evidence measure that ignores ignorable contexts and factors
in contexts that matter. And instead of computing a measure of how
surprising the data are if the null hypothesis is true, Bayes reacts to
whatever unknown value of the parameter is thrown at it, focused by the
prior.

What is the principal distinction between Bayesian and classical statis-
tics? It is that Bayesian statistics is fundamentally boring. There is so
little to do: just specify the model and the prior, and turn the Bayesian
handle. There is no room for clever tricks or an alphabetic cornucopia of
definitions and optimality criteria.

Dawid [21]

The difference between Bayesian and frequentist inference in a nutshell:
With Bayes you start with a prior distribution for θ and given your data
make an inference about the θ-driven process generating your data (what-
ever that process happened to be), to quantify evidence for every possible
value of θ. With frequentism, you make assumptions about the process
that generated your data and infinitely many replications of them, and
try to build evidence for what θ is not.
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1 HIGH-LEVEL VIEW

Essence of Bayes: Bayesian statistics is a mechanism for rationally
updating beliefs in the light of new data. It is tailored for decision
making.

Compute probabilities of things you don’t know assuming things
you do.

The chance that an assertion is true is more actionable than the
chance of making the assertion given it’s false.

It is important to be able to compute probabilities of non-trivial
effects and simultaneous probabilities about multiple endpoints.

Posterior probabilities are perfectly calibrated independent of the
analysis frequency and stopping rule.

A Bayesian approach to the simplest study design can without
modification handle complex sequential or adaptive designs.

The benefits of obtaining direct, simply stated evidence about ef-
fects of interest, formally incorporating extra-study data and handling
complex designs, are worth the price of having a prior distribution to
anchor probability calculations.

The process of developing a skeptical, optimistic, or uniformative
prior distribution before a study begins results in better science, and
enhances objectivity in judging evidence at study end.
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1.1 Drug Approval 1 HIGH-LEVEL VIEW

Compute probabilities of things you don’t know assuming things you do.

p-values assume no drug effect and compute the probability of observing
data more extreme than yours; the Bayesian posterior probability is the
chance the effect is positive given the observed data.

The chance that an assertion is true is more actionable than the chance
of making the assertion when it’s false.

The second is the type I assertion probability α. An example of the first
is the chance of a positive drug effect of 0.98, which means that one
has a 0.02 chance of being wrong, whether or not the drug is approved.
A type I (long-run false positive chance) assertion probability of 0.05
may be useful when designing the study, but once results are available
p-value=0.03 is just a measure of how surprising the data are if the null
hypothesis is true, and gives no clue about our evidence for the null and
only indirect evidence for the non-null.

It is important to be able to compute probabilities of non-trivial effects
and simultaneous probabilities about multiple endpoints.

Examples: the chance that blood pressure is lowered ≥ 5mmHg, the
chance that at least 3 of 5 efficacy endpoints are improved by the drug.

Posterior probabilities are perfectly calibrated independent of the
analysis frequency and stopping rule.

The current chance the drug is effective has the same intrepretation
whether or not this probability was also computed 100 subjects ago.

A Bayesian approach to the simplest study design can without modifica-
tion handle complex sequential or adaptive designs.

Frequentist methods must envision replications of the experiment and
must incorporate the intended analysis schedule in computing probabil-
ities of data extremes under the null, which can be very complicated.
Forward Bayesian posterior probabilities are merely functions of the prior
distribution and the current data and are computed the same whether in
the context of a simple one-look data analysis or in an analysis conducted
inside a complex adaptive or sequential strategy.

The benefits of obtaining direct, simply stated evidence about effects of
interest, formally incorporating extra-study data and handling complex
designs, are worth the price of having a prior distribution to anchor
probability calculations.

Example: it is easy to compute the chance of a positive drug effect on
two clinical endpoints in children at the 10th data look given a specific
skeptical prior distribution for this effect, the posterior distribution from
an adult trial, and given that the adult data are 0.7 relevant to children.

1.1 Drug Approval

FDA’s approval of a drug for a medical indication is based on the totality of the evidence for
efficacy and safety from clinical studies. Disapprovals can sometimes be revisited but once a
drug is approved for market the decision is seldom revisited unless significant evidence for safety
problems emerges. Consider late-phase studies, and for now pretend that efficacy and safety
can be assessed independently. In reality, regulators consider benefit-risk tradeoffs whereby the
amount of efficacy that must be demonstrated is increased when there is a safety problem, and
the amount of harm that can be tolerated is increased when the clinical benefit is substantial. As
seen in Section 7, the Bayesian approach can formalize the analysis of benefit-risk tradeoffs[17].

There are several types of errors that can be made in the regulatory process related to efficacy
studies:

1. Disapproval for a drug that is actually safe and effective

5



1.1 Drug Approval 1 HIGH-LEVEL VIEW

2. Approval of a drug that is safe but whose effectiveness has been overestimated and is
positive but clinically trivial

3. Approval of a drug that is not effective (or is not at least trivially effective) but is safe

4. Approval of a drug that is not effective and not safe

5. Approval of a drug that has negative effectiveness but is safe

6. Approval of a drug that has negative effectiveness and is unsafe

Here negative drug effectiveness is taken to mean a worsening of an efficacy outcome that is
not a safety outcome, e.g., the drug shortens walking distance but dues not increase risk of a
clinical event. For the moment assume that the drug having effectiveness in the wrong direction
is unlikely to show statistical evidence for positive effectiveness so that the last two errors are
uncommon.

Errors in decision making are often made because the evidence was misleading. For example,
there could be insufficient evidence from an underpowered study, or the efficacy could be over-
estimated because of statistical variation and imprecision. Wrong decisions can also be made
because the evidence was misinterpreted. For example, a regulator may discount a “statistically
significant” result because she believes a multiplicity adjustment should be applied to it when
from a purely evidentiary viewpoint the other statistical tests that were considered were irrele-
vant. On the other hand, a regulator may approve a drug for which “statistical significance” is
clear but where the magnitude of the drug’s effect is not consistent with noticeable benefit to
patients.

There are different issues for non-inferiority studies including using the wrong non-inferiority
margin or significance level, and problems with interpretations of confidence intervals.

Returning to efficacy studies, the following depicts a simplified version of decisions and outcomes.

Statistical evidence that drug works
+ -

Drug works correct incorrect
Drug doesn’t work incorrect correct

To feel confident in an approval decision, a regulator needs to know that the chance of the error
in the lower left table entry is small. The probability of this error is the conditional probability
that the drug doesn’t work given that the statistical evidence is interpreted to mean that the
drug does work. This probability is not available in the frequentist paradigm but is a natural
product of the Bayesian paradigm. To date frequentist inference is more commonly chosen
in drug development, so regulators attempt to mitigate the lack of a relevant probability of
“regulator’s regret1” by considering the more easily computed probability that the statistical
evidence in the long run favors drug effectiveness (by at least that observed) when in fact the
drug has no effect (and has no chance of a negative effect). But once the statistical evidence is in,
this probability is irrelevant just as the probability of a positive diagnostic test is irrelevant once
the test result is known. Bayes’ rule is needed to turn the probability on its head, as described
later. The probability of getting a false positive statistical result over many trial repetitions is
not the probability of regulator’s regret.

1The Oxford dictionary defines regret as “a feeling of sadness, repentance, or disappointment over an occurrence
or something that one has done or failed to do.” Here we typically mean sadness over approving a drug that in the
final analysis is ineffective or actually has a negative effect. The probability of regret is not just the probability of no
effect or harm given that the drug was approved but is the probability of no effect or harm given the data used in the
determination. Of course, regulators can also experience regret in the other direction—failing to approve a drug that
is actually effective and safe.
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1.2 Statistical Inference 1 HIGH-LEVEL VIEW

The probability that a drug doesn’t work given that the evidence is interpreted to mean ef-
fectiveness is analogous to one minus the positive predicted value in a medical diagnostic test.
The frequentist type I assertion probability, i.e., the probability that the evidence can be posi-
tive given the drug doesn’t work, is analogous to one minus specificity, which does not allow a
physician to make a diagnosis.

An excellent review of the use of p-values at the FDA is by Kennedy-Shaffer [38]. Ionan et al. [36]
have an excellent review of Bayesian approaches used at the FDA.

1.2 Statistical Inference

Biostatistics is evolving to meet ever-increasing complexities of biomedical research. While tra-
ditional statistical inference can meet the needs of relatively simple experimental designs, there
is a growing need for highly sequential or adaptive randomized trials, platform trials, basket
trials, biomarker-guided therapeutic trials, and use of relevant historical information such as
incorporating adult data into pediatric trials that are unable to enroll a sufficient number of
children. Full frequentist solutions are not available in these settings, whereas the Bayesian
approach provides elegant solutions that are relatively simple conceptually. Even in applica-
tions where full frequentist solutions are available, e.g., the two-sample equal-variance t-test, a
Bayesian analysis is easier to interpret, more clinically relevant, and extremely simply handles
multiple data looks in sequential testing.

For inferring causation or association or for making statistical estimates of quantities of interest
and their uncertainties, one must choose one or more of the existing schools of statistical inference
and estimation: frequentist, Bayesian, and likelihood. It is not possible to choose a statistical
paradigm that is devoid of problems. Every paradigm has its own challenges and shortcomings.
A growing number of statisticians recommend use of the Bayesian paradigm, not because it is
perfect but because it has fewer problems than the frequentist approach, provides more clear
and clinically relevant interpretation, and is able to solve complex problems such as obtaining
valid inference in response-adaptive trials.

As discussed in Section 3.1, there are many drawbacks to the traditional frequentist approach,
which is especially challenged by arbitrary multiplicity adjustments and by difficulties in an-
alyzing adaptive randomized trials, incorporating outside information, quantifying clinical sig-
nificance, inferring non-inferiority, drawing simultaneous inference about multiple clinical end-
points, performing sample size re-estimation, and obtaining exact inference in situations that
do not involve a normal distribution. Bayesian inference has one primary difficulty: settling
on a particular encapsulation of the state of prior knowledge (or lack thereof). Once the prior
distribution is selected, the above problems largely fall away. In short, the Bayesian paradigm
replaces a lot of arguments by one big argument. As will be described below, when known-to-be-
highly-relevant prior information is not available, much of the problem can be solved by using
somewhat skeptical priors or non-informative priors.

In a nutshell, the frequentist approach uses only objective data at the beginning, but the inter-
pretation can involve endless subjective debates at the end. The Bayesian approach incorporates
subjectivity in quantifying beliefs at the beginning, and at the end the result is a concise clin-
ically relevant statement about the beliefs as updated objectively by the data. A subtle but
important point is that frequentist interpretations are colored/biased by observing the data,
including having regret about how type I assertion probability α was divided/spent after reveal-
ing p-values, and perhaps even more importantly, these interpretations cause confusion about
totality of evidence from multiple clinical endpoints and risk/benefit trade-offs. The Bayesian
approach allows pre-specification of how all final evidential quantities are to be calculated, not
to be influenced by data. With Bayes, the prior distribution is fixed before data are available,
and may not be changed in light of data from the experiment.

Excellent introductions to Bayesian analysis may be found in [52, 40, 42, 41, 7, 57, 3, 47, 44], and
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2 BACKGROUND

nice introductions and comparisons with frequentist and likelihood approaches may be found
here and here. See also Richard McElreath’s online lectures.

Natanegara et al. [49] provides key historical references and the results of the best available
survey of pharmaceutical industry, regulatory, and research institutions to determine hindrances
to adoption of Bayesian approaches in medical product development. The following were the
the most highly endorsed reasons and needs :

• insufficient knowledge about the Bayesian approach

• lack of clarity from regulatory authorities

• need for better Bayesian training

• need for fully worked-out case studies

• need for more information about trial design, sample size determination, success criteria,
and interim decisions

Self-contained R code [61] that does all the calculations and graphics below is included to make
things more concrete.

Notation

Symbol Meaning

P (A) probability of event A or of the truth of assertion A
P (A|B) conditional probability that assertion A is true

given that assertion B is true
p-value frequentist p-value under a null hypothesis
p() probability distribution or density function
θ an unknown parameter or vector of unknown parameters
PP Bayesian posterior probability given the current data

2 Background

Data are noisy and inferences are probabilistic Kruschke [41, p. 19]

2.1 Probabilistic Thinking and Decision Making

Optimum decisions require good data, a statistical model, and a utili-
ty/loss/cost function. The optimum decision maximizes expected utility
and is a function of the Bayesian posterior distribution and the utility
function3. Utility functions are extremely difficult to specify in late-phase
drug development. Even though we seldom provide this function we need
to provide the inputs (posterior probability distribution) to decisions that
will be based on an informal utility function.

Statistics is all about judgment and decision making under uncertainty. The key to under-
standing uncertainty is understanding probability. Probability theory is all that is needed for
the Bayesian approach, and the advantages of using probability theory to make predictions or
statements about evidence cannot be overstated. Chief among the advantages is the ability to
assign probabilities to assertions of direct interest.

Bayesian inference when exercised in its fullest form optimizes a loss/cost/utility function to
arrive at an optimal decision such as whether a drug should be marketed. In the majority of
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2.1 Probabilistic Thinking and Decision Making 2 BACKGROUND

cases the utility function is unknown, so calculation of probabilities and margins of error are
used to make decisions. As so eloquently described in Silver [54], optimum decisions are made
when the decision maker understands all the key uncertainties and understands probabilities.
This is known to lead to optimal betting strategies and forecasts. For example, Silver points out
that that winningest poker players are those who are well calibrated in estimating probabilities
and who never act as though the probability were exactly 0 or 1.

A key to understanding probability is the notion of which events or assertions are having their
probabilities computed, and which conditions are being assumed or which data are being utilized.
All probabilities are conditional on something. Probabilities that are immediately useful are
probabilities of something unknown given (conditioning on; assuming) something known. Such
probabilities respect the forward flow of information and time.

A nice interactive demonstration of conditional probability is at http://setosa.io/conditional.

The following table provides side-by-side examples of backwards and forwards probabilities. The
third line in the table illustrates the common unhelpful way of reporting disease associations
through such language as “ 1

5

th
of diabetics are African American whereas African Americans

make up only 1
10

th
of the population.”

Type Backwards Probability Forwards Probability

Forecast P (current state|future event occurs) P (future event|current state)
Diagnosis P (positive test|disease) (sensitivity) P (disease|positive test)
Disease Incidence P (black|has diabetes) P (diabetes|black)
General P (data|assertion X) P (assertion X true|data)
p-value vs. PP P (data in general more extreme|no effect) P (effect|these data)

Medical decisons related to disease diagnosis can be thought of as maximizing an expected
utility [62]. One can readily see that the expected utility is a function of the forward probability
of disease and not of sensitivity and specificity.

The order of conditioning is all-important. P (female | U.S. senator) means “of senators what is
the proportion of females?” and is 21

100
as of 2017. P (senator | female) means “of females what is

the proportion of senators” and is 21
165,000,000

. For non-statisticians, the table below gives more
examples of translation of tendencies (assertions) into symbolic probability statements. Below,
∆ refers to the unknown treatment effect/difference.

Assertion Probability Statement

50 year old has disease now P (disease|age = 50)
disease-free 50 y.o. will get a disease within 5y P (T ≤ 5|age = 50)

T = time until disease
50 y.o. male has disease P (disease|age = 50 and male)
A drug really lowers blood pressurea P (θ < 0|data)

θ = unknown bp ∆, data=RCT data
Drug ↓ blood pressure or ↑ exercise time P (θ1 < 0 or θ2 > 0|data)

θ1 =unknown bp ∆, θ2 =unknown ex. time ∆

aBy “really lowers blood pressure” we mean that the process generating the data is such that blood pressure is
lower for subjects on treatment B vs. treatment A, and a random error is added to the treatment-specific mean to
reflect biologic variability. Thus there is a true tendency for subjects on treatment B to have lower blood pressure,
with the tendency camouflaged by biologic variability.

Spiegelhalter’s classic paper [56] demonstrates the power of forward-thinking probabilities in
decision making about patient management and clinical trials.

As discussed later, probabilities arising from the frequentist paradigm are indirect and hard for
non-statisticians (and some statisticians) to understand and to actualize. When a probability
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2.2 Bayes’ Theorem 2 BACKGROUND

being estimated is actually the probability of the event or assertion of interest (as opposed to
the probability of the data given the assertion is true or false), many advantages follow. The
forward probability is self-contained and defines its own error probability for decision making.
In making the decision about licensing a drug for market, a Bayesian PP of 0.96 of efficacy
means exactly that if the drug is licensed, the chance of the decision being incorrect, i.e., of the
drug being ineffective or harmful, is 0.04. This is exactly the probability of regulator’s regret
that is needed. On the other hand, type I ”error”, though comforting to some reviewers, is just
the probability of rejecting H0 given the efficacy is exactly zero. This is not at all the same as
the probability of harm or no benefit for a drug given the data. The needed probability is one
minus the PP.

Thus to claim that the null P value is the probability that chance alone
produced the observed association is completely backwards: The P value
is a probability computed assuming chance was operating alone. The
absurdity of the common backwards interpretation might be appreciated
by pondering how the P value, which is a probability deduced from a set of
assumptions (the statistical model), can possibly refer to the probability
of those assumptions.

Greenland et al. [30] 2016

Just as with rain forecasting, medical diagnosis, and assessing patient prognosis, the key ingredi-
ent to demonstrating the validity of probabilistic reasoning is the accuracy of the probabilities—
what is called calibration in the small. When the relationship between the assessed probabilities
and the true probabilities of the outcome is the line of identity, the probability assessment tool
is perfectly calibrated and is fit for purpose. As has been done extensively in the diagnosis and
prognosis literature, examples below demonstrate how one empirically checks the known math-
ematics by demonstrating perfect calibration of PPs. The calibration curve is the relationship
between an estimated probability and the actual probability. If only a few probability estimates
are made, one checks their calibration merely by comparing the probabilities to the proportion
of occurrences of a condition over a large number of replications. When probability estimates
vary continuously, there are various ways to estimate the true probability as a function of the
estimated probabilities including logistic regression and the loess nonparametric smoother [5],
which is similar to computing smoothed moving proportions.

2.2 Bayes’ Theorem

Bayesian estimation and inference come from Bayes’ theorem. Suppose that one is interested in
whether or not a subject has condition A vs. not A (denoted A) and whether or not the subject
has condition B vs. not B (denoted B). The theorem comes from the laws of conditional and
total probability. P (A|B) denotes the probability that condition A holds given that condition
B holds, and similarly for P (B|A). P (A) is the probability that A holds regardless of B, and
likewise for P (B). Bayes’ theorem is stated as

P (B|A) =
P (A|B)× P (B)

P (A)
(1)

To avoid dealing with the marginal probability of A, Bayes re-expressed the last equation.
Consider the case where B can take on only two values B and B:

P (B|A) =
P (A|B)× P (B)

(1− P (B))× P (A|B) + P (B)× P (A|B)
(2)

This can be written as posterior odds = prior odds × likelihood ratio since a probability equals
odds

1+odds
= 1

1
odds

+1
:

P (B|A)

1− P (B|A)
=

P (B)

1− P (B)
× P (A|B)

P (A|B)
(3)

Bayes’ rule is visualized in Figure 1.
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2.3 What is a Posterior Probability? 2 BACKGROUND

Figure 1: Contingency table illustrating Bayes’ theorem, from Wikimedia Commons, https://commons.
wikimedia.org/wiki/File:Bayes_theorem_visualisation.svg. w x y and z represent frequency counts.
Think of Condition A as representing a positive diagnostic test, Condition not A (Condition A) as a negative
test, Case B as “diseased” and Case B as “non-diseased”.

For example, knowing the fraction of football game watchers who are male, the fraction of males,
and the fraction of people who watch football, one can compute the fraction of males who watch
football. Bayes’ theorem is all about reversal of probabilities or conditions. Knowing the proba-
bility from backwards conditioning one can compute the probability under forwards conditioning,
but only if the appropriate marginal probabilities are known. Without the marginal “anchors”,
it is impossible to compute an absolute probability. All this will be seen to be relevant when
one wants to make a probability statement about a drug effect given the data where the data
model (e.g., data are normal with unknown mean and variance) is a function of the unknown
drug effect. We are interested in the probability that the drug effect exceeds a chosen level given
the data, and the marginal probability (prior) for the unknown efficacy or safety parameter θ is
absolutely necessary for calculation of this conditional probability.

An excellent video tutorial on Bayes basics may be found here.

Bayes’ theorem dictates that two individuals starting with the same be-
liefs (distribution) about an unknown parameter, who are given the same
data, use the same data model, and agree not to redefine their prior be-
liefs after seeing the data, must have identical beliefs about the parameter
(same conclusion about drug effectiveness) after analyzing the data.

2.3 What is a Posterior Probability?

Bayes theorem is a statistical technique that develops inference by incorporating baseline beliefs
(prior) with observed data (trial results) to establish a posterior probability. This can, ideally
should, be performed as an iterative process where each trial serves as the prior for subsequent
trials. The exact effect (magnitude and direction) of a drug is never known with complete
certainty but with the Bayes approach one can determine the probability. Moreover, Bayes
offers the flexibility to ask multiple and a variety of very complex questions, such as what is
the probability that the drug will have a specific effect size and avoid a specific adverse effect.
The probability of a drug having a specific effect is determined through examination of the
posterior distribution (AKA posterior density function) which is a curve akin to a histogram of
the magnitude of the drug’s effect (x-axis) and probability or relative degree of belief in that
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2.4 Example: Prior to Posterior 2 BACKGROUND

effect (y-axis). This posterior distribution plot can be queried in many ways, such as asking
what is the probability (area under the curve) that the drug’s effect is between a and b or is
the drug better than another drug (or placebo). It is, however, critical that the parameters
of interest (potential questions) be pre-specified along with the prior distributions. A singular
advantage of the Bayes approach over the frequentist approach is that it answers the question
that clinicians (and regulators) are most interested in—“What is the probability that this drug
does X?” rather than “What is the probability that I would have observed the same effect or
something more extreme if the trial results were merely due to chance, i.e., if the drug does
nothing?”

Probabilities in the frequentist world are long-run relative frequencies. They do not apply to
one-time events, i.e., experiments that cannot be replicated, and subjectivity is not allowed.
What exactly then is a PP? In the possibly biased coin example in the next section, the PP is
a fully objective probability that has the usual long-run frequency interpretation because the
prior distribution is not from an opinion but rather follows directly from the formulation of the
problem. More generally we do not have an unassailable truth for the state of prior knowledge,
and we are forced to quantify the anchor or starting point using degrees of belief. Before further
discussing degrees of belief, note that one can think of a PP as a kind of conditional probability,
e.g., if the probability that the drug actually improves blood pressure, before we knew the data
from the new study, is 1

2
, the post-data probability of efficacy must be 0.93 because of Bayes’

theorem.

Bayes’ theorem uses new evidence (data) to translate a prior probability to a PP. If the prior
probability is subjective, representing a degree of belief, one can say that the PP is a post-
data degree of belief. Probability here is not a long-run relative frequency but is a metric
that is between 0 and 1 and obeys certain basic axioms. As well described by Kruschke [41],
“probabilities assign numbers to possibilities.” All of the properties of belief probabilities needed
for statistical inference are contained in Kolmogorov’s axioms from 1956:

1. A probability value is ≥ 0.

2. The sum of all the probabilities across all the possibilities is 1.0.

3. If two events are mutually exclusive, the probability that either event occurs (i.e., the
probability of the union of two events) is the probability of the first plus the probability
of the second.

2.4 Example: Prior to Posterior

Consider a discretely-valued unknown parameter θ where it is easy to see how the data update
the prior. A novelty coin maker makes a biased coin with the chance of coming up heads equal
to 0.6. The coin maker randomly mixes in fair coins so that 3

10
of the coins are actually fair. A

coin is chosen at random from the mix and we wish to infer whether it is fair or not by making
n = 40 tosses and observing the number of heads (y). The observed number was y = 23. Only
two values of θ are possible; the PP of θ is zero if θ is not 0.5 or 0.6. The PP that θ = 0.5 is
proportional to 0.3×0.5y×0.5n−y, and the PP that θ = 0.6 is proportional to 0.7×0.6y×0.4n−y.
Summing these two provides the normalizing constant to get actual PPs that range from 0 to
1. These are shown as a function of y in Figure 2.

prior1 ← 0.3; prior2 ← 0.7

n ← 40

y ← 5:35

post1 ← prior1 * (0.5 ∧ y) * (0.5 ∧ (n - y))

post2 ← prior2 * (0.6 ∧ y) * (0.4 ∧ (n - y))

total ← post1 + post2

post1 ← post1 / total

post2 ← post2 / total

plot(y, post1 , type=’n’,

xlab=expression(y), ylab=’Posterior Probability ’) # F i g . 2
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abline(v=c(20, 23), col=gray(.9))

abline(h=prior2 , col=gray(.9))

lines(y, post1)

lines(y, post2 , col=’blue’)

text (23.5, 0.71 , ’P(coin is 0.6 unfair)\nincreases with\n# heads’,

col=’blue’, adj=0)

text (23.5, 0.30 , ’P(coin is fair)\ndecreases with\n# heads’, adj=0)

op1 ← round(post1[y == 23], 2)

op2 ← round(post2[y == 23], 2)
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Figure 2: Posterior P (θ = 0.5|y) (black curve) and P (θ = 0.6|y) (blue curve) as a function of the observed
number of heads y after 40 coin tosses. The prior probability that θ = 0.6 is shown with a horizontal
grayscale line. Vertical grayscale lines are shown at y = 20 and at the observed number of heads, y = 23.

The prior probabilities that the unknown probability of a head is respectively 0.5 and 0.6 were
0.3 and 0.7. With y = 23 the PPs are 0.22 and 0.78 so that evidence for fairness of the coin
has lessened. One can read off PPs from Figure 2 had other numbers of heads been observed.
The break-even value is y = 20 where the observed proportion of heads is 1

2
. The break-even

point is at a proportion of 1
2
and not to the right because the prior probability made it unlikely

apriori for the coin to be fair. That is, observing y = 20 heads out of 40 tosses makes it equally
likely for the coin to be fair vs. biased because of the predisposition to be biased. Had the
prior probability for θ = 0.5 been lower, the break-even point would be shifted to the left. The
maximum posterior density estimate of θ is the value of θ that yields a PP > 0.5 in this example
(where the blue curve is higher than the black), since there are only two alternative values of θ.

2.5 Bayesian Inference Model: General Case

The example above was for a discrete outcome with a finite number of possibilities for the
unknown parameter. In general, we are interested in a continuous parameter space, e.g., in
providing evidence about infinitely many possibilities for a parameter such as a mean, difference
in means, or an odds ratio. When referring to a probability about the mean of a continuous
variable, it must be the case that the probability that the mean equals a specific value is zero.
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So to deal with continuous parameters one must deal with probability density functions instead
of a discrete probability that exactly one value is true. For a continuous probability distribution,
probability pertains only to a range of parameter values. The probability density function is
related to the probability of being near a parameter value; it is the limit of the probability of
being in a small interval divided by the width of that interval, as the width tends to zero.

The general expression used for all Bayesian inference is stated as the probability distribution
function for the unknown parameters θ given the data equals the probability distribution func-
tion p for the data y given the parameter value(s) (called the likelihood function) times the
unconditional distribution function for the parameters, divided by the marginal distribution
of the data. Since the latter does not involve any unknown parameters, it eventually cancels
out and does not effect inference so can be ignored, resulting in a statement of equality being
replaced by a sufficient statement of proportionality. The formal expression is4

p(θ|y) ∝ p(y|θ)p(θ) (4)

This can be expressed as

prior belief about θ
data−→ current belief about θ (5)

This can also be expressed as “if you have degree of belief p(θ) about θ before seeing data from
the experiment, you must have degree of belief p(θ|y) after unveiling the data.”

The posterior density p(θ|y) is often summarized by posterior means, quantiles, cumulative
probabilities, etc. To obtain quantities of interest one must integrate out θ from the above
equation, requiring complex multi-dimensional integration that is usually done numerically.
Simulation methods sample from p(θ|y) to estimate quantities of interest. It is often easier to
sample from the posterior distribution than to derive the distribution’s mathematical form.

A nice interactive demonstration for the two-sample Bayesian t-test (but with variance assumed
to be known) may be found here. The standard deviation σ of the prior may be specified by
the user, to indicate the amount of skepticism to use (here the prior is assumed to have a mean
of zero). The observed effect (standardized difference in means) and sample size n can also
be easily varied. It is easy to see that when n is large the prior has very little effect on the
posterior. When n is large or the prior has a large σ, the posterior agrees with the likelihood
function which summarizes the information in the data alone, ignoring the prior. Another good
interactive demonstration is here.

2.6 What is Bayesian Inference Doing?

Bayesian data analysis is a clear conceptual framework for learning

The Bayesian approach is a common sense approach. It is simply a set of
techniques for orderly expression and revision of your opinions with due
regard for internal consistency among their various aspects and for the
data.

Edwards, Lindman, Savage
(1963) [23]

4A nice overview from Larry Wasserman is available at www.stat.cmu.edu/~larry/=stat705/Lecture14.pdf.
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Type I error for smoke detector: probability of alarm given no fire

Bayesian posterior probability: probability there’s a fire given cur-
rent air data, whether or not an alarm is triggered

Smoke detector designed by a frequentist investigator who runs
single-site RCTs: require a 0.05 false alarm probability, and require a
probability (power) of 0.8 to detect an inferno

Actionable probabilities with a Bayesian smoke detector: set to
sound an alarm if the probability of a fire exceeds 0.02 while you are at
home or exceeds 0.01 while you are away

The Bayesian approach to statistical inference and decision making conditions on what is known
to make probability statements about what is unknown. This is in contrast to the frequentist
approach which conditions in reverse, i.e., conditions on the unknown status of H0 to derive a
probability statement about what is known—the data. This is akin to proof by contradiction,
e.g., one assumes there is no treatment efficacy and then computes the probability of observing
results as or more extreme than those observed, i.e., the p-value. A small p-value (typically
p < 0.05) is taken to mean that what has been observed is surprising enough that one questions
the premise (the null hypothesis). By having to reason while reversing the way that time and
information actually flow, the frequentist approach runs into difficulties caused by (1) multiplic-
ities due to sequential monitoring and multiple clinical endpoints and (2) adaptation of a clinical
trial after it begins. There is also arbitrariness in how exactly the null hypothesis is conceived
when one tries to bring evidence against a large effect as in a non-inferiority study. There is no
unique prescriptive way that statisticians derive multiplicity adjustments when using frequentist
methods, leaving the adjustment open to debate at every stage. A significant portion of the
multiplicity problem arises from the use of null hypothesis testing (as opposed to examining
evidence for non-trivial effects).

Frequentist approaches have no way of incorporating information outside a trial, and they cannot
make evidential statements about totality of evidence. By contrast, a Bayesian PP that a drug
does not raise the probability of death by more than 0.04 and that it either (1) lowers mortality
by any amount, (2) improves exercise time by more than 5 minutes on average or (3) lowers
blood pressure by more than 2 mmHg on average is very easy to compute by taking 50,000
draws from the posterior distributions of the three efficacy/safety parameters and computing
the fraction of the 50,000 for which the above condition holds. See Sections 7 and 8.

Frequentist inference has the virtue and drawback of being multi-focal of
having no single overarching principle of inference. From the user’s point
of view, having multiple principles (unbiasedness, asymptotic efficiency,
coverage, etc.) gives more flexibility and, in some settings, more robust-
ness with the downside being that application of the frequentist approach
requires the user to choose a method as well as a model.

Gelman [27]

Bayesian methods are often characterized as ‘subjective’ because the user
must choose a ‘prior distribution’, that is, a mathematical expression of
prior information. The prior distribution requires information and user
input, that’s for sure, but I don’t see this as being any more ‘subjec-
tive’ than other aspects of a statistical procedure, such as the choice
of model for the data (for example, logistic regression) or the choice of
which variables to include in a prediction, the choice of which coefficients
should vary over time or across situations, the choice of statistical test,
and so forth. Indeed, Bayesian methods can in many ways be more ‘ob-
jective’ than conventional approaches in that Bayesian inference, with
its smoothing and partial pooling, is well adapted to including diverse
sources of information.

Gelman, rwconnect.

esomar.org/

the-abcs-of-bayesian-basics
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2.7 The Use of Prior Information . . . Or Not

Since Bayesian methods condition on what is known, it is important to define “known” aside
from the observed data. Examples of what is considered “known” in a Bayesian analysis are:

• nothing (use of a flat or non-informative prior distribution)

• evidence from other studies of the same drug or device

• evidence from other studies of the same class of drug or device

• evidence from a previous clinical trial for which the current trial is a replication

• evidence about the same treatment in a different patient population

• historical evidence from observational studies

• skepticism that a treatment can have major efficacy because either

– multiple previous clinical trials in the drug class were “negative”

– the reviewer who needs to be convinced of an effect is a skeptic

A common misconception is that Bayesian methods will systematically require fewer or more
subjects to be studied or will lower the evidence bar. Also, many non-statisticians assume that
the use of Bayesian methods requires one to borrow information or to use expert opinion or
historical data in the analysis. This is not the case; Bayesian methods are capable of only using
the data at hand in conjunction with any prior distribution: non-informative, skeptical, or opti-
mistic. The evidence bar is under complete control of reviewers according to the prior, what PP
of efficacy is deemed convincing, and which effect cutoff, e.g., minimum mean difference between
treatments, is inserted into the probability calculation. Most importantly, Bayes uses a better
measure of evidence that increases the chance of individually approving and disapproving the
right treatments, not just arriving at a certain false positive probability over multiple datasets
in the long run.

Many Bayesian statisticians are happy to use flat (non-informative) prior distributions to let
the data speak for themselves and to avoid injecting subjective bias in the the analysis. Andrew
Gelman has written extensively about this issue and has pointed out that it often leads to
unreliable inference, e.g., just as with frequentist methods there is a non-negligible probability
of concluding efficacy when the treatment actually causes harm. Simulations presented below can
easily be modified to demonstrate problems from a very practical standpoint. When for example
the unknown mean µ in a single-arm study has a non-informative prior with no restrictions on
its range, many of the simulations will have a value of µ > 1000 when σ = 1. This will result
in power indistinguishable from 1.0 and a needed sample size of 2 subjects. Another problem
with flat priors is that if the study is stopped early for efficacy and the reviewer’s prior does not
allow for enormous treatment effects, the efficacy estimate will be miscalibrated (too high) to
that reviewer (see Figure 13).

Recent excellent papers about forming priors are [66, 20], the latter delving into elicitation of
priors from experts. Kopp-Schneider et al. [39] demonstrate the impossibility of preserving type
I assertion probability if using external information.
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Prior beliefs are overt, explicitly debated, and founded on publicly acces-
sible previous research. A Bayesian analyst might have personal priors
that differ from what most people think, but if the analysis is supposed
to convince an audience, then the analysis must use priors that the au-
dience finds palatable. It is the job of the Bayesian analyst to make
cogent arguments for the particular prior that is used. The research will
not get published if the reviewers and editors think that the prior is un-
tenable. Perhaps the researcher and the reviewers will have to disagree
about the prior, but even in that case the prior is an explicit part of
the argument, and the analysis should be conducted with both priors to
assess the robustness of the posterior. Science is a cumulative process,
and new research is presented always in the context of previous research.
A Bayesian analysis can incorporate this obvious fact. . . . the priors are
overt, public, cumulative, and overwhelmed as the amount of data in-
creases. Bayesian analysis provides an intellectually coherent method for
determining the degree to which beliefs should change.

Kruschke [41, p. 317]

Any frequentist criticizing the Bayesian paradigm for requiring one to
choose a prior distribution must recognize that she has a possibly more
daunting task: to completely specify the experimental design, sampling
scheme, and data generating process that were actually used and would
be infinitely replicated to allow p-values and confidence limits to be com-
puted.

In the early years, many people had philosophical concerns about the
status of the prior distribution, thinking that the prior was too nebulous
and capricious for serious consideration. But many years of actual use
and real-world application have allowed reality to overcome philosophical
anxiety.

. . . the practical results along with the rational coherence of the
approach have trumped earlier concerns. The remaining resistance
stems from having to displace deeply entrenched and institutionalized
practices.

Kruschke and Liddell [42]

The default conclusion from a noninformative prior analysis will almost
invariably put too much probability on extreme values. A vague prior
distribution assigns much of its probability on values that are never going
to be plausible, and this disturbs the posterior probabilities more than we
tend to expect—something that we probably do not think about enough
in our routine applications of standard statistical methods.

Gelman [28]

If your goal is to lie with statistics, you’d be a fool to do it with priors,
because such a lie would be easily uncovered. Better to use the more
opaque machinery of the likelihood. Or better yet—don’t actually take
this advice!—massage the data, drop some “outliers,”, and otherwise en-
gage in motivated data transformation.

McElreath [47]

2.7.1 Priors That Merely Exclude Impossible Values

In some situations a study’s judge may not have any opinion about likely true values for a
parameter of interest, but knows with virtual certainty that certain ranges of values are im-
possible. For example, one may exclude a standard deviation of systolic blood pressure that is
above the mean because negative values of blood pressure are not possible. Another example is
discounting a treatment effect that is larger than anything ever observed in the disease being
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studied. Within an interval of possibility the prior may sometimes be taken as flat.

Consider estimation of the mean µ in a one-sample problem with known σ = 1, and suppose
that the range of plausibility for µ is [a, b]. How does a flat prior in [a, b] with zero probability
outside that interval translate into a posterior distribution for a given observed sample mean?
Let’s take the observed mean to be 4 after a sample of size n = 10. Consider (1) a prior that has
a wider interval of non-zero probability, (2) one that is narrower but still wide enough to include
the observed mean, and (3) one that is still narrower and makes it appear that the observed
mean of 4 is not to be trusted, hence should be discounted. The results are in Figure 3.

# F u n c t i o n t o c o m p u t e t h e p o s t e r i o r d e n s i t y w i t h a t r u n c a t e d f l a t p r i o r o v e r x

i n [ a , b ]

# x = o b s e r v e d s a m p l e m e a n , s = p o p u l a t i o n SD , n = s a m p l e s i z e

pp ← function(x, a, b, s=1, n, xlim=c(0, 8)) {

s ← s / sqrt(n)

mu ← if(missing(a)) seq(xlim[1], xlim[2], length =150)

else

seq(a, b, length =150)

eps ← 0.00001

mus ← seq(min(mu), max(mu), by=eps)

if(missing(a)) return(list(x=mu, y=dnorm(mu, mean=x, sd=s)))

# h t t p :// m a t h . s t a c k e x c h a n g e . c o m / q u e s t i o n s / 1 7 8 7 1 7 7

y ← dnorm(x, mu, s) / (pnorm(b, mu, s) - pnorm(a, mu, s)) *

(mu ≥ a & mu ≤ b)

# E v a l u a t e o n a f i n e r g r i d f o r n u m e r i c a l i n t e g r a t i o n

yf ← dnorm(x, mus , s) / (pnorm(b, mus , s) - pnorm(a, mus , s)) *

(mus ≥ a & mus ≤ b)

# G e t a r e a u n d e r t h e d e n s i t y f u n c t i o n b e c a u s e w e m a y o n l y h a v e t h e f u n c t i o n

# u p t o a c o n s t a n t o f p r o p o r t i o n a l i t y

area ← eps * sum(yf[-1] + yf[-length(yf)]) / 2 # t r a p e z o i d r u l e

y ← y / area; yf ← yf / area

# A l s o c o m p u t e p o s t e r i o r c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n a t s e l e c t e d mu ’ s

mus2 ← seq(2.5, 5.5, by=0.25)

cdf ← approx(mus , eps * cumsum(yf), xout=mus2)

list(x=c(xlim[1], a, mu , b, xlim [2]), y=c(0, 0, y, 0, 0), cdf=cdf)

}

plot(pp(x=4, n=10, a=0, b=6), type=’l’, ylim=c(0,10),

xlab=expression(mu), ylab=’Posterior Density ’) # F i g . 3

lines(pp(x=4, n=10, a=0, b=4), col=’blue’)

lines(pp(x=4, n=10, a=0, b=3), col=’red’)

The prior with the widest interval of possibility for µ yields a posterior that is indistinguishable
from that arising with a completely non-informative prior, and the posterior mode (most likely
value for µ in the posterior distribution) is 4. When the interval of possibility is [0, 4], the
posterior mode is also the sample mean of 4. But when the interval is [0, 3] the posterior mode
moves the sample mean of 4 (that is thought to be an overestimate due to sampling variability)
to the highest possible value for µ of 3.

The y-axis scale in Figure 3 is not important in absolute terms. It can be labeled relative degree
of belief and is scaled so that the area under the posterior density is 1.0. Non-statisticians may
be helped by seeing a histogram-like plot of probabilities that µ will be in intervals of width
0.25 for the black curve above, corresponding to a flat prior on µ ∈ [0, 6]. The height of the
bars sum to 1.0, and the height of each bar is the posterior probability that the unknown µ is
in that bar’s interval. The graph is in Figure 4.

cdf ← pp(x=4, n=10, a=0, b=6)$cdf

xs ← cdf$x

interval.probs ← diff(cdf$y)

cat(’Sum of interval probabilities:’, sum(interval.probs), ’\n’)

Sum of interval probabilities: 0.9999978
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Figure 3: Posterior density functions under flat priors over different intervals. Black: interval of possibility
for µ is [0, 6]; Blue: interval is [0, 4]; Red: interval is [0, 3]. The black posterior density function is the limit
of heights of the bars in Figure 4 divided by the bar width, as the width approaches zero.

plot(0, 0, xlim=c(0,6), ylim=c(0, max(interval.probs)), type=’n’,

xlab=expression(mu), ylab=’Posterior Probability for Interval ’)

segments(xs[-1], 0, xs[-1], interval.probs , col=gray(.8))

lines(c(xs[1], rep(xs[-1], each =2)), # F i g . 4

c(rep(interval.probs , each =2), interval.probs[length(interval.probs)]))

General statistical guidance about selection of priors may be found at https://github.com/

stan-dev/stan/wiki/Prior-Choice-Recommendations.

2.8 Bayesian Inferences are Exact, To Within Simulation Error

A subtlety that is often not given enough attention by statisticians is that in the vast majority
of statistical analyses, p-values and confidence intervals are approximate, and the adequacy of
the approximations used is often not obvious. In the frequentist framework, only a handful of
statistical tests provide exactly correct (and not conservative) p-values, e.g.,

• the linear model when the residuals truly have a normal distribution with equal variances

• the special case of the linear model that is the two-sample t-test with equal variances

• the one-sample t-test

• certain tests from simple exponential distributions

• the Wilcoxon and Wilcoxon signed-rank tests when there are no ties in the data

Other methods such as logistic models, Cox models, and mixed effects models use approxi-
mations. For nonlinear models such as logistic regression, normal approximations and even
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0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

µ

P
os

te
rio

r 
P

ro
ba

bi
lit

y 
fo

r 
In

te
rv

al

Figure 4: Posterior interval probabilities under a flat prior over the interval µ ∈ [0, 6]

likelihood ratio tests can be inaccurate because of the non-quadratic (non-Gaussian) nature of
the log-likelihood function.

By contrast, the Bayesian approach is exact if the data model is correctly specified. Occa-
sionally exact analytic solutions are available, but more often a simulation method is used to
handle the integrations involved. Once one has established that the simulation method used
to obtain Bayesian posterior distributions has properly converged, i.e., the only error remain-
ing is simulation error which can be cured by simulating tens of thousands of posterior draws,
Bayesian inference requires no approximations given sufficiently many simulations5. Even in
something as simple as a 2 × 2 contingency table, frequentists cannot agree on a p-value [15].
Once the Bayesian or reviewer chooses the prior distributions, inference for this situation is
exact6. Even the “exact” confidence interval for a single proportion may not be accurate [2],
whereas a Bayesian credible interval for the unknown probability is exact, given the prior.

3 Measures of Evidence

3.1 Frequentist

The p-value is the probability of obtaining data as or more impressive than the observed data
given the null hypothesis H0 is true. Here probability refers to long-run relative frequency. It
is not the probability that the observations were produced by chance alone. H0 is usually a
test of zero effect/difference, and the test is called a null hypothesis significance test (NHST) by
Bayesians. Even though in most settings outside of frequentist hypothesis testing a probability is
used to describe uncertainty in an assertion given what is actually known, in NHST the p-value
is a probability related to something already observed, given what cannot be known. Being

5For example in the worst case where the PP is 0.5, the margin of error in estimating it from 50,000 draws is 0.004.
6Note that Fisher’s so-called “exact” test is anything but. Type I assertion probabilities can be substantially lower

than claimed [18], hurting power.
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backwards in terms of time/information flow is at the heart of the p-value’s problems as a mea-
sure of evidence, especially when considering sequential tests or multiple endpoints. NHST has
come under fire for lack of clinical relevance [45] as has over-reliance on p-values [65]. p-valuesare
commonly misinterpreted by experienced scientists and even many statisticians [48]. Arbitrary
multiplicity adjustments are needed because of the “what could have happened” approach used
in NHST.

One of the more important varieties of prejudince against the null hypoth-
esis . . . comes about as a consequence of researchers much more identifying
their own theoretical predictions with rejections (rather than with accep-
tances) of the null hypothesis. The consequence is an ego involvement
with rejection of the null hypothesis that often leads researchers to inter-
pret null hypothesis rejections as valid confirmations of their theoretical
beliefs while interpreting nonrejections as uninformative and possibly the
result of flawed mehods.

Greenwald et al. [31]

A baseball analogy may help with the issue of time/information flow: a fan is interested in
knowing the chance that a left-handed hitter will get a hit against a left-handed pitcher, so
the probability of a hit given the handedness is relevant. Few fans (except those interested in
sensitivity and specificity?) would be interested in the probability of being left handed given
the batter just made a hit.

Another analogy is medical diagnostic testing. Physicians are taught that even with the avail-
ability of relevant prospective cohort data, sensitivity and specificity are the quantities that
should be used to arrive at a diagnostic probability. Sensitivity and specificity (sens and spec)
are in reverse time and information order, which presents major problems. Sens is the probabil-
ity that a diagnostic test will be positive (even though we may already know it is negative for the
patient at hand) given the disease is present, i.e. P (T+|D+). Spec is the probability that the
test is negative given the disease is absent, i.e., P (T−|D−). Even though P (D+|T ) is available
as a simple proportion of cohort patients having the test outcome who are shown to have disease,
clinicians relying on sens and spec must use Bayes’ rule to reverse the conditioning: P (D+|T ) =
P (T |D+)P (D+)/P (T ) where P (D+) is the cohort disease prevalence and P (T ) is the prevalence
of the particular test outcome. P (D+|T+) = sens×prevalence

sens×prevalence+(1−spec)×(1−prevalence)
. The use of

time-backwards probabilities sens and spec creates a host of problems including:

1. Many physicians still do not appreciate that very high sens and spec can be ruined by low
disease prevalence, just as p-values provide weak evidence about an effect.

2. It becomes natural to assume that sens and spec are constants, which is far from the
truth [35] 7

3. Because time has been reversed, what could have happened that didn’t becomes important,
just as with sequential frequentist tests and α-spending. Case in point is the need to
make complex adjustments to sens and spec in the presence of verification/referral bias,
e.g., when only a fraction of patients having T− get the procedure that yields the final
diagnosis[19]. Under the assumptions required for the usual adjustment, the adjustment
cancels out once Bayes’ rule is used, leading to the simple forward proportion of diseased
patients in the cohort given the known test result.

For a physician, unlike recommending a biopsy when a high-specificity test is positive, choosing

7Time-backwards probabilities sensitivity and specificity would only be useful if they were unifying constants, but
they vary strongly over types of patients. This is especially true when the disease is on a continuum of severity but has
been dichotomized. Patient factors that are associated with extent of disease will significantly affect sensitivity because
more severe disease is easier to detect. Diagnostic studies based on prospective cohorts should use forward probabilities
(called “positive predictive values” and “negative predictive values” in the unusual case that the diagnostic test is all-
or-nothing) that incorporate patient covariates to automatically model pre-test probabilities. See [34, Chapter 19] for
much more information about diagnostic modeling and diagnostic test evaluation using forward probabilities.
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biopsy when the probability of malignancy is 0.06 means that the chance that the physician
is too aggressive is 0.94. Choosing to biopsy when the probability of cancer is 0.8 means the
chance is 0.2 of the biopsy not being necessary.

Specificity and p-values are closely related and cause similar problems, due to conditioning on
what is unknown to derive a probability statement about what is known (the data and the test
outcome T ).

The p-value has been called “the degree to which the data are embarrassed by the null hypoth-
esis [46].” As such they can only provide evidence against something, never evidence in favor
of something. In efficacy studies evidence against lack of efficacy can be provided, but never
evidence in favor of no efficacy. Efficacy is inferred by having an abundance of evidence against
“no efficacy.”

In NHST one sets a type I (α) assertion probability, i.e., the probability of a false positive result.
This has one well-appreciated and one little-appreciated consequence. Clinically trivial effects
can be declared “significant” because given sufficiently large n signal can be detected in presence
of noise, and the type I probability never gets below α even as the sample size goes to infinity.
If α = 0.05, an expected one in twenty studies will be false positive no matter how large their
sample sizes. Bayesian and likelihood approaches can easily prevent this problem. A likelihood
approach lets both type I and type II probabilities converge to zero [10].

Type I assertion probability may be useful at the study design stage [11]. Frequentists like type
I ”error” control, but after the study is completed, the only way to commit a type I error is to
know with certainty the treatment has zero effect. But then the study would not have been
necessary. Type I probability is a long-run operating characteristic for a sequence of hypothetical
studies. Thinking of p-values that a sequence of hypothetical studies might provide, when the
type I probability is α this means P (p-value < α|zero effect) = α. Neither a single p-value
nor α is the probability of a decision error. They are “what if” probabilities, if the effect is
zero. The p-value for a single study is merely the probability that data more extreme than ours
would have been observed had the effect been exactly zero and the experiment was capable of
being re-run infinitely often. It is nothing more than this. It is not a false positive probability
for the experiment at hand. To compute the false positive probability one would need a prior
distribution for the effect, and then one might as well be fully Bayesian and enjoy all the benefits.

A basic difficulty for most students is the proper formulation of the
alternatives H0 and H1 for any given problem and the consequent
determination of the proper critical region (upper tail, lower tail,
two-sided). . . .

Comment. Small wonder that students have trouble. They may
be trying to think. . . .

More on the teaching of statistics. Little advancement in the
teaching of statistics is possible, and little hope for statistical methods
to be useful in the frightful problems that face man today, until the
literature and classroom be rid of terms so deadening to scientific enquiry
as null hypothesis, population (in place of frame), true value, level of
significance for comparison of treatments, representative sample.

Statistical significance of B over A thus conveys no knowledge, no
basis for action.

Deming [22]

. . . Another concern is that Bayesian methods do not control error rates as
indicated by p values. . . . This concern is countered by repeated demon-
strations that error rates are extremely difficult to pin down because they
are based on sampling and testing intentions.

Kruschke and Liddell [42]

22



3.1 Frequentist 3 MEASURES OF EVIDENCE

If the design were unknown, then it is not possible to calculate a P value.
. . . Every practicing statistician must deal with data from experiments
the designs of which have been compromised. For example, clinical trials
are plagued with missing data, patients lost to follow-up, patients on the
wrong dosing schedule, and so forth. Practicing statisticians cannot take
the unconditional perspective too seriously or they cannot do statistics!

Berry [8]

There are four other subtle but important problems with p-values. First, the use of “proof by
contradiction” to make inference never applied:

The following is almost but not quite the reasoning of null hypothesis
rejection:

If the null hypothesis is correct, then this datum (D) can not oc-
cur.

It has, however, occurred.
Therefore the null hypothesis is false.

If this were the reasoning of H0 testing, then it would be for-
mally correct. . . . But this is not the reasoning of NHST. Instead, it
makes this reasoning probabilistic, as follows:

If the null hypothesis is correct, then these data are highly un-
likely.

These data have occurred.
Therefore, the null hypothesis is highly unlikely.

By making it probabilistic, it becomes invalid. . . . the syllo-
gism becomes formally incorrect and leads to a conclusion that is not
sensible:

If a person is an American, then he is probably not a member of
Congress. (TRUE, RIGHT?)

This person is a member of Congress.
Therefore, he is probably not an American. (Pollard & Richardson,

1987)
. . . The illusion of attaining improbability or the Bayesian Id’s wishful
thinking error . . .

Induction has long been a problem in the philosophy of science.
Meehl (1990) attributed to the distinguished philosopher Morris Raphael
Cohen the saying “All logic texts are divided into two parts. In the first
part, on deductive logic, the fallacies are explained; in the second part,
on inductive logic, they are committed.”

Cohen [16]
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A person is interested in a probability model. But guided by the
philosophy of p-values, he asks no questions about this model, and
instead asks what is the probability, given the data and some other
model, which is not the model of interest, of seeing an ad hoc statistic
larger than some value. (Any change in a model produces a different
model.) Since there are an infinite number of models that are not the
model of interest, and since there are an infinite number of statistics,
the creation of p-values can go on forever. Yet none have anything to
say about the model of interest.

Why? Fisher (1970) said: “Belief in null hypothesis as an ac-
curate representation of the population sampled is confronted by a
logical disjunction: Either the null is false, or the p-value has attained
by chance an exceptionally low value.”

Fisher’s “logical disjunction” is evidently not one, since the
either-or describes different propositions. A real disjunction can however
be found: Either the null is false and we see a small p-value, or the null
is true and we see a small p-value. Or just: Either the null is true or
it is false and we see a small p-value. Since “Either the null is true or
it is false” is a tautology, and is therefore necessarily true, we are left
with, “We see a small p-value.” The p-value casts no light on the truth
or falsity of the null.

Frequentist theory claims, assuming the truth of the null, we
can equally likely see any p-value whatsoever. And since we always
do (see any value), all p-values are logically evidence for the null and
not against it. Yet practice insists small p-value is evidence the null is
(likely) false. That is because people argue: For most small p-values I
have seen in the past, the null has been false; I now see a new small
p-value, therefore the null hypothesis in this new problem is likely false.
That argument works, but it has no place in frequentist theory (which
anyway has innumerable other difficulties).

Any use of p-values in deciding model truth thus involves a
fallacy or misunderstanding. This is formally proven by Briggs (2016,
chap. 9), a work which I draw from to suggest a replacement for p-values,
which is this. Clients ask, “What’s the probability that if I know X,Y
will be true?” Instead of telling them that, we give them p-values.

Briggs [13]

Second, the p-value is not the probability of achieving a result as impressive as that observed.
That probability is zero when the distributions are continuous. The p-value is the probability
of observing a result more impressive than that observed.

Third, the type I assertion probability is computed under the assumption that the treatment
has no effect, and does not entertain the possibility that it is actually harmful.

Finally, it could be argued that the type I error is always zero, if ”error” is taken to mean being
incorrect in concluding a drug has nonzero effect, as all non-placebos have some effect.

The nil hypothesis is always false. Tukey (1991) wrote that “It is foolish
to ask ‘Are the effects of A and B different?’ They are always different—
for some decimal place”. Schmidt (1992) . . . reminded researchers that,
given the fact that the nill hypothesis is always false, the rate of Type I
errors is 0%, not 5%, and that only Type II errors can be made.

Cohen [16]

Why are p-values still used?

Feinstein [25] believes their status “. . . is a lamentable demonstration of the credulity with
which modern scientists will abandon biologic wisdom in favor of any quantitative ideology
that offers the specious allure of a mathematical replacement for sensible thought.”
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“It is incomparably more useful to have a plausible range for the value of a parameter than
to know, with whatever degree of certitude, what single value is untenable.” — Oakes [50]

Hypothesis testing usually entails fixing n; many studies stop with p = 0.06 when adding 20 more
patients could have resulted in a “positive” study. And the frequentist approach to unblinded
sample size re-estimation would require an adjustment for multiple comparisons that makes the
final test (after adding 20) conservative, effectively ignoring many of the first wave of patients.

Confidence intervals go hand-in-hand with NHST, and the indirect reasoning that is central to
the frequentist approach ensures that confidence intervals have complex interpretations. They
have long-run operating characteristics rather than providing evidence directed solely at the
study at hand. 0.95 confidence limits are numbers so constructed that if reconstructed afresh
for 1000 studies one expects 950 of the confidence limits to contain the true unknown population
parameter. Confidence intervals, because they are flat, also give the false impression that all
values of the unknown parameter are equally likely. This should be contrasted with the Bayesian
posterior distribution.

I see that the 0.95 confidence interval for the mean blood pressure dif-
ference is [2, 7]. But I want to know the confidence I should have in it
being in the interval [0, 5] and you’re telling me it can’t be computed with
frequentist confidence intervals?

see Wagenmakers et al. [63]

As an example of the typical statement of clinical trial results in the frequentist world, the
difference in mean blood pressure between treatments A and B of 6 mmHg is associated with
p = 0.01 and a 0.95 confidence interval of [3, 9]. An event (6 mmHg) of relatively low probability
has just been witnessed if H0 is true.

The worry is that, when data are weak and there is strong prior informa-
tion that is not being used, classical methods can give answers that are
not just wrong—that’s no dealbreaker, it’s accepted in statistics that any
method will occasionally give wrong answers—but clearly wrong; wrong
not only just conditional on the unknown parameter but also conditional
on the data. Scientifically inappropriate conclusions. That’s the meaning
of ‘poor calibration.’ Even this, in some sense, should not be a problem—
after all, if a method gives you a conclusion that you know is wrong, you
can just set it aside, right?—but, unfortunately, many users of statistics
consider to take p < 0.05 or p < 0.01 comparisons as ‘statistically signifi-
cant’ and to use these as a motivation to accept their favored alternative
hypothesis. This has led to such farces, in recent claims, in leading psy-
chology journals that various small experiments have demonstrated the
existence of extra-sensory perception or huge correlations between men-
strual cycle and voting, and so on.

Gelman [27]

So what happened with the development of efficacy measures is we devel-
oped a whole new field called biostatistics. It had been sort of an orphan
corner of mathematics until the Kefauver-Harris Amendments, and there
had been extremely important advances in how do you study efficacy of
drugs. Most of it devolves down to whether or not you’re likely to see a
benefit more than chance alone would predict. But how likely and how
much benefit was left for some free-floating kind of notion by the FDA.
So any benefit in essence, more than any toxicity in essence, would lead
to licensure. That has led to what I call “small effectology.”

Nortin Hadler, Interviewed
by Tom Ashbrook On Point,
WBUR radio, 2016-03-29,
15:26

p-value: the chance that someone else’s data are more extreme than mine
if H0 is true, not the chance that H0 is true given my data
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Aside from ignoring applicable pre-study data, the p-value is at least
monotonically related to what we need. But it is not calibrated to be on
a scale meant for optimum decision making.

The criterion of p < .05 says that we should be willing to tolerate a
5% false alarm rate in decisions to reject the null value. In general,
frequentist decision rules are driven by a desire to limit the probability
of false alarms. The probability of false alarm (i.e., the p value) is
based on the set of all possible test results that might be obtained by
sampling fictitious data from a particular null hypothesis in a particular
way (such as with fixed sample size or for fixed duration) and examining
a particular suite of tests (such as various contrasts among groups).
Because of the focus on false alarm rates, frequentist practice is replete
with methods for adjusting decision thresholds for different suites of
intended tests. . . .

Bayesian decisions are not based on false alarm rates from coun-
terfactual sampling distributions of hyopthetical data. Instead, Bayesian
decisions are based on the posterior distribution from the actual data.

Kruschke and Liddell [42]

. . . Neyman and Pearson outline the price that must be paid to enjoy the
purported benefits of objectivity: We must abandon our ability to mea-
sure evidence, or judge truth, in an individual experiment. . . . Hypothesis
tests are equivalent to a system of justice that is not concerned with which
individual defendent is found guity or innocent (that is , “whether each
separate hypothesis is true or false”) but tries instead to control the over-
all number of incorrect verdicts (that is, “in the long run of experience,
we shall not often be wrong”). Controlling mistakes in the long run is a
laudable goal, but just as our sense of justice demands that individual
persons be correctly judged, scientific intuition says that we should try
to draw the proper conclusions from individual studies.

Goodman [29] .

3.1.1 Computing p-values Using Simulation

Simulation often exposes what is really going on without using math or distribution theory. The
R code below shows how one can compute a p-value using basic ideas and no theory other than
the fact that the mean is an optimal measure of central tendency when the data come from
a normal distribution. As used in detailed Bayesian simulations in later sections, consider the
one-sample problem where the data come from a normal distribution with unknown mean µ
and known variance σ2 = 1, where µ > 0 indicates efficacy in a single arm study. The one-sided
p-value is the probability upon repeated sampling of getting a sample mean at least as large as
the observed mean given µ = 0. We first draw a sample of size n = 30 from a true µ = 0.3. Then
we run 100,000 studies where µ = 0 and save the estimated means. This can be done almost
instantly if we use the knowledge that the sample means have a population mean of zero and a
variance of 1

30
. We take the opportunity to show that the one-sided 0.95 confidence interval has

the intended properties.

In addition we compute what some researchers hope that a p-value represents: the chance of
getting a result as impressive as that observed. Because the sample mean has a continuous dis-
tribution, this probability is actually zero, so we relax the criterion and compute the probability
of getting a sample mean at least as large as that observed but no more than 0.1 units ( σ

10
)

larger than it. This is labeled “probability of approximately as impressive” below.

n ← 30

set.seed (1)

y ← rnorm(n, 0.3, sd=1) # g e n e r a t e d a t a

ybar ← mean(y) # o b s e r v e d m e a n

ucl ← ybar + qnorm(0.95) / sqrt (30) # u p p e r C . L .
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# R u n 1 0 0 , 0 0 0 s t u d i e s a n d c o m p u t e t h e i r s a m p l e m e a n s :

repeated.ybar ← rnorm (100000 , 0, sd=sqrt(1/30))

# T R U E / F A L S E v a r i a b l e s a r e c o n v e r t e d t o 1/ 0 w h e n t a k i n g t h e m e a n

# T h i s i s a n e a s y w a y t o c o m p u t e a p r o p o r t i o n

p ← mean(repeated.ybar ≥ ybar)

pa ← mean(repeated.ybar ≥ ybar & repeated.ybar ≤ ybar + 0.1)

repeated.ucl ← repeated.ybar + qnorm(0.95) / sqrt (30)

cover ← mean(repeated.ucl ≥ 0)

cat(’Observed mean : ’, round(ybar , 3), ’\n’,

’Upper 0.95 1-sided CL : ’, round(ucl , 3), ’\n’,

’One-sided p-value : ’, round(p, 4), ’\n’,

’Exact p-value : ’, round(1 - pnorm(ybar , 0, sd=1/sqrt (30)),

4), ’\n’,

’Confidence coverage : ’, round(cover , 4), ’\n’,

’P(Approx. as impressive): ’, round(pa, 4), ’\n’,

sep=’’)

Observed mean : 0.382

Upper 0.95 1-sided CL : 0.683

One -sided p-value : 0.0186

Exact p-value : 0.0181

Confidence coverage : 0.949

P(Approx. as impressive ): 0.0146

Next, modify the simulation so that two looks are taken at the data and a stopping rule is used.
Using the cutoff on the mean of the first 15 subjects that yields a nominal type I probability of
0.05, stop the study at 15 subjects if the mean exceeds this cutoff. Otherwise use the mean of 30
subjects at the end and consider whether it exceeds the cutoff that preserves type I probability
had a single analysis of 30 subjects been done. Compute the actual p-value under this decision
rule after computing the two nominal p-values. The simulation code exposes some assumptions:
the intended early look is actually carried out (e.g., the data monitoring committee did not
cancel the meeting at the last minute) and is ignored if the nominal p-value > 0.05.

set.seed (1)

# M a k e f i r s t l o o k

y1 ← rnorm(n / 2, 0.3, sd=1)

ybar1 ← mean(y1)

# M a k e s e c o n d l o o k

y2 ← rnorm(n / 2, 0.3, sd=1)

ybar2 ← mean(c(y1, y2)) # c o m b i n e t o g e t n = 3 0

ybar.at.stop ← ifelse(ybar1 * sqrt (15) ≥ qnorm(0.95), ybar1 , ybar2)

ybar.at.stopb ← ifelse(ybar1 * sqrt (15) ≥ qnorm(0.975),ybar1 , ybar2)

# R u n 1 0 0 , 0 0 0 s t u d i e s . F o r e a c h g e t m e a n w i t h n = 1 5 a n d 3 0 a n d a p p l y t h e s a m e

s t o p p i n g r u l e

repeated.ybar1 ← rnorm (100000 , 0, sd=sqrt(1/15))

# C o m p u t e o v e r a l l m e a n w i t h n = 3 0 :

repeated.ybar2 ← (repeated.ybar1 + rnorm (100000 , 0, sd=sqrt(1/15))) / 2

repeated.ybar ← ifelse(repeated.ybar1 * sqrt (15) ≥ qnorm(0.95),

repeated.ybar1 , repeated.ybar2)

repeated.ybarb ← ifelse(repeated.ybar1 * sqrt (15) ≥ qnorm(0.975),

repeated.ybar1 , repeated.ybar2)

pval1 ← mean(repeated.ybar1 ≥ ybar1)

pval2 ← mean(repeated.ybar2 ≥ ybar2)

pval ← mean(repeated.ybar ≥ ybar.at.stop)

pvalb ← mean(repeated.ybarb ≥ ybar.at.stopb)

cat(’Sample mean at first look :’, round(ybar1 , 3), ’\n’,

’Sample mean at end :’, round(ybar2 , 3), ’\n’,

’Nominal p-value at first look :’, round(pval1 , 4), ’\n’,

’Nominal p-value at end :’, round(pval2 , 4), ’\n’,

’p-value accounting for looks :’, round(pval , 4), ’\n’,

’p-value " " with alpha=0.025 :’, round(pvalb , 4), ’\n’, sep=’’)
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Sample mean at first look :0.401

Sample mean at end :0.382

Nominal p-value at first look :0.0604

Nominal p-value at end :0.018

p-value accounting for looks :0.0585

p-value " " with alpha =0.025 :0.0367

When the null hypothesis is exactly true and one has two chances to declare efficacy, even though
half of the subjects in the ”second chance” are also in the first, the true p-value is much larger
than the p-value that would be computed had the first look not been done, even though the
first look was inconsequential8. As expected, if the initial look used a nominal α = 0.025 for
stopping, the true p-value is smaller, because this ignores the first look in a greater number of
simulated trials.

The fix for the positive bias in the final mean chosen by the stopping rule is quite complicated,
which translates to extreme difficulty in deriving confidence intervals9. The sampling distribu-
tion of the final mean from our stopping rule is given in Figure 5. The discontinuity is at the
critical value of the sample mean from the first test with n = 15. Bayesian inference on the
other hand does not concern itself with sampling distributions. Instead of considering proba-
bilities of observing specific values of summary statistics over study replications and accounting
for stopping rules, Bayesian analysis considers probabilities of specific values of the unknown
efficacy parameter.

hist(repeated.ybar , nclass =100, xlab=expression(bar(Y)), main=’’)

abline(v=qnorm(0.95) / sqrt (15), col=gray(.85)) # F i g . 5

3.2 Bayesian

The Bayesian approach to statistical inference recognizes that there are no absolute truths, yet
we seek the truth about an assertion such as a drug is effective. Bayesian evidence is couched
in terms of degrees of belief (this being the Bayesian notion of probability), and two observers
who started with the same knowledge base and biases, and given the same data and statistical
model for the data, would necessarily arrive at the same conclusion about the assertion. Relative
changes in evidence, e.g., likelihood ratios in the likelihood paradigm or the ratio of posterior
to prior odds in the Bayesian paradigm, are functions only of the data at hand. But a final
evidence measure for an effect can only be quantified on an absolute scale given a pre-data
anchor or prior distribution. At the heart of Bayesian modeling is the movement of prior belief
to current (posterior) belief.

This form (probability of unknown given what is known) has enormous
benefits. It is in plain language; specialized training is not needed to
grasp model statements . . . Everything is put in terms of observables.
The model is also made prominent, in the sense that it is plain there is
a specific probability model with definite assumptons in use, and thus
it is clear that answers will be different if a different model or different
assumptions about that model are used . . .

Briggs [13]

Because Bayesians use full conditioning on available information and do not condition on un-
knowable quantities such as the true treatment effect, probability statements operate forward in
time and information flow and can be interpreted out of context. The Bayesian approach uses a
direct forward probability model [33]. Multiple looks do not matter, and the stopping rule used

8This is because the first look could have been consequential. The simulations take the “could have” detours.
9In fact, the frequentist approach can result in stopping early for efficacy but having the final confidence interval

include the null value.
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Figure 5: Sampling distribution of final estimate of the mean in a two-stage sequential single arm trial, under
the null hypothesis

for a study is not relevant to the interpretation of the data. There are two ways for Bayesians
to cheat: by changing the prior after seeing the data, or by hiding data. If the PP for efficacy
is 0.95 and the study enrolls more subjects to refine the information but the new PP is 0.93,
failure to condition on the new information and instead reporting the 0.95 is cheating.

A Bayesian analysis of the hypothetical blood pressure study mentioned above might be stated as
follows: Using a normal prior distribution that assumed (1) the pre-study chance that the drug
worsens blood pressure is 1

2
and (2) the pre-study chance of a large (≥ 10 mmHg) improvement

in mean blood pressure is only 1
10
, the posterior mean blood pressure reduction was 5 mmHg

with a 0.95 credible interval of [2.5, 8]. The probability of any reduction in blood pressure is
0.97, and the probability of at least a 2 mmHg reduction is 0.9. Note that the credible interval
is what is sought by clinicians when they compute confidence limits. With probability 0.95 the
unknown true mean blood pressure reduction is between 2.5 and 8 mmHg. The probability of a
blood pressure reduction being in a “similarity zone” of [−2, 2] mmHg could easily be computed.
Contrast this with the frequentist result from Section 3.1:

• B-A sample mean blood pressure difference = 6 mmHg: not discounted by prior skepticism

• p = 0.01: chance of observing a mean difference > 6 mmHg in infinitely many repeats of
the same experiment if the true mean difference is zero is 0.01

• 0.95 confidence interval [3, 9]: infinitely many repeats of the same experiment in which
the 0.95 confidence limits were recalculated using new data would have the true unknown
mean difference contained in the new interval 0.95 of the time

The overall result could be plotted as a posterior density function as in the coin tossing example
below. The four probabilities just listed can be depicted by shaded regions of the density
function. Envisioning replications of the study is not a part of the Bayesian interpretation.
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When the posterior probability density function is plotted, it enhances cognition by virtue of
not being flat but of showing regions where the unknown parameter value is more likely to be,
i.e., regions where the function is high. And the progression of increasing information content
in a study as it progresses can be readily seen. Consider a coin-flipping experiment in which
apriori the coin is believed to be more fair than not, encapsulated in a prior distribution for
the probability θ of heads being a beta distribution having shape parameters α = β = 10. The
mean of this distribution is 0.5, and the entire prior distribution is shown in the graph below.
The number of heads from N tosses follows a binomial distribution with parameter θ. A random
number generator is used to “toss the coin” 100 times, and the posterior distribution is shown
after N = 10, 20, . . . , 100 tosses. This distribution is a beta distribution with parameters Y +α
and N −Y +β where Y is the number of heads after N tosses. Prior and posterior distributions
are shown in Figure 6.

x ← seq(0, 1, length =200)

set.seed (1)

alpha ← beta ← 10

Y ← 0

# P l o t b e t a d i s t r i b u t i o n d e n s i t y f u n c t i o n

plot(x, dbeta(x, alpha , beta), type=’l’, ylim=c(0, 10),

xlab=expression(theta), ylab=’’, col=’blue’, bty=’l’)

abline(v=0.5, col=gray(.9)) # F i g . 6

for(N in seq(10, 100, by=10)) {

Y ← rbinom(1, 10, 0.5) # 1 0 n e w t o s s e s

# P o s t e r i o r d i s t r i b u t i o n u p d a t e d

alpha ← alpha + Y

beta ← beta + 10 - Y

lines(x, dbeta(x, alpha , beta),

col=if(N < 100) gray(.95 - N / 120) else ’red’,

lwd=N * 2 / 100)

}

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

θ

Figure 6: Prior distribution (blue) and posterior distributions as the trials progress (darkness of lines in-
creases). The final posterior at N = 100 is in red.

The number of heads tossed by the end (100 tosses) was 53.
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3.3 Contrasting Frequentist and Bayesian Evidence and Errors 3 MEASURES OF EVIDENCE

What if a study had been designed to stop when the PP of efficacy exceeds 0.95 and the
statistician had taken 200 looks at the data? A PP of 0.97 stands and needs no re-interpretation
in light of multiple looks. This is demonstrated in a simulation below.

Some like to think of one minus a PP as being akin to the p-value. This clouds thinking and
is only appropriate in very special cases [28]. As analogies, sens and spec tell a physician very
little about the probability of disease, and the probability that a batter is left handed (which
does not immediately lead to knowing the probability of a hit) is not of interest because the
viewer knows his handedness once he steps to the plate.

3.2.1 Alternative Take on the Prior

When comparing the Bayesian inference under a skeptical prior to Bayesian inference under
a non-informative (flat) prior (or with frequentist inference using an unadjusted p-value), one
can think of the effect of skepticism as being equivalent to discounting the results by effectively
ignoring a certain number of observations [68]. Consider the case where one wishes to estimate an
unknown mean µ from a sample of size n using a skeptical prior that has mean 0 and variance 1

τ
(τ

is called the precision). The population standard deviation is taken to be 1.0. With the observed
sample mean being Y , the posterior density of µ|Y may be shown to be normal with variance

σ̂2 = 1
τ+n

and (discounted) mean µ̂ = nY σ̂2 = n
n+τ

Y . The PP P (µ > 0) = Φ( µ̂
σ̂
) = Φ( nY√

τ+n
),

where Φ is the cumulative distribution function of the standard normal distribution. Now
compare this to the situation where τ = 0, i.e., where the prior for µ is flat indicating no prior
information. In that case µ̂ = Y and σ̂2 = 1

n
and P (µ > 0) = Φ(Y

√
n). What is the effective

skepticism in the estimate of µ with τ > 0 compared to the undiscounted estimate? To answer
this question, suppose that the discounted analysis had used a sample of size m. What is the
value of m that would yield the same PP of µ > 0 as an undiscounted analysis for a lower
sample size n? Assume Y doesn’t change and set Y m√

τ+m
= Y

√
n so that m√

τ+m
=

√
n. Solving

for m yields 2m = n+
√
n2 + 4nτ from which one obtains the increment in sample size m− n

needed to achieve the same level of evidence discounted by a skeptical prior as compared with
the evidence from a flat prior. This is depicted in Figure 7 as a function of the prior precision
τ ( 1

σ2 ).

z ← list()

n ← seq(1, 100, by=2)

for(tau in c(.01 , .25 , 1, 2, 4, 10, 20))

z[[ paste0(’tau=’, tau)]] ←
list(x=n, y=0.5 * (n + sqrt(n∧2 + 4 * n * tau)) - n)

labcurve(z, pl=TRUE , xlab=’Sample Size With No Skepticism ’, # F i g . 7

ylab=’Extra Subjects Needed Due to Skepticism ’)

Moderate skepticism effectively discards around 5 subjects, so one can readily see that the
Bayesian power is not ruined by skepticism once the actual sample size is moderate. The
skepticism eventually wears off, with the data likelihood overwhelming the prior. Contrast this
with frequentist multiplicity adjustments, which never wear off as n ↑.

An optimistic prior (e.g., derived from data on adults where efficacy was positive) can be thought
of as providing additional observations to the analysis of children.

3.3 Contrasting Frequentist and Bayesian Evidence and Errors

Suppose that in a fixed sample size study a single endpoint is compared for treatment A vs. B.
Let E denote the true unknown efficacy measure with E = 0 indicating exactly zero difference.
The frequentist approach attempts to show that the data are implausible under the assumption
that E = 0, and does not make any probability statement about E. E is either zero or not.
The Bayesian approach makes probability statements about the unknown E by computing PPs.
In the vast majority of Bayesian models E is continuous and the probability that E exactly
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Figure 7: Effect of discounting by a skeptical prior with mean zero and precision τ : the increase needed in
the sample size in order to achieve the same posterior probability of µ > 0 as with the flat (non-informative)
prior. τ = 20 corresponds to a very skeptical prior.

equals any specific value e is zero. If E > 0 denotes benefit of treatment B, Bayesian PPs
are often of the form P (E > c|data). If c is zero, the Bayesian inference provides evidence for
any efficacy. If c > 0 then evidence is being quantified for efficacy greater than some, usually
non-trivial, amount. Just as in forecasting the chance of rain tomorrow, there are no Bayesian
“errors” per se; there are just small PPs for something that turned out to happen or larger
probabilities for things that didn’t. In probabilistic thinking one might say that the only real
errors are assigning a probability of exactly zero to something that happened or a probability
of exactly 1.0 to something that didn’t. More errors are made by decision makers who are in
the difficult position of having to act on the probabilities when their actions are constrained to
be all–or–nothing. Decision making under uncertainty is best done using probabilistic thinking,
unless a loss/utility/cost function is available for optimization using Bayesian decision analysis.

The following examples contrast evidential measures and errors for the two paradigms.

Design:

Frequentist: Design the study to have α = 0.05, β = 0.1. Once data are available, these are
not relevant because they are long-run operating characteristics about a sequence of
trials and do not apply to the current trial. α depends on (often unknown) intentions
while β depends on a single parameter value (efficacy). You can also use a frequentist
design to yield a specified confidence interval width if the sample size is fixed.

Bayesian: Choose a prior and design the study to have a 0.95 credible interval of a specified
width or smaller, or to have a proportion > 0.9 of simulated trials such that P (E >
c) > 0.95 for a pre-specified c.

Type of errors:
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Frequentist: Type I assertion probability α: prob. of declaring efficacy when E = 0
Type II error: prob. of failing to declare efficacy when E = c for some particular
c > 0
Prob. of asserting efficacy never drops no matter how N ↑ since we usually fix α

Bayesian: PP=P (E > c|data)
If judge efficacious, chance of an error is 1-PP
If judge ineffective, chance of an error is PP

p = 0.03:

Frequentist: Conclude efficacy. This is either right or wrong; no probability is associated
with the true unknown E.
Interpretation: If E = 0 and one ran a series of identical trials, one would see an
observed estimate of E as large or larger than that observed 0.03 of the time.

Bayesian: PP is its own error probability

p = 0.2:

Frequentist: Can’t conclude E = 0 but fail to have evidence for E ̸= 0. No measure of
P (E = 0) is available.

Bayesian: Simple PP of no effect or harm: P (E < 0)

Clinical significance:

Frequentist: With large N , trivial effect can yield p < 0.05

Bayesian: Compute PP that the true effect is more than trivial

p = 0.04, 5 other trials “negative”:

Frequentist: No way to take the other 5 trials into account other than using non-quantitative
subjective arguments

Bayesian: Skepticism about efficacy in the current treatment setting would already be
captured in the prior; otherwise the other trials could be used as a prior or a Bayesian
hierarchical model could be used to borrow their information.

3.4 Problems Caused by Use of Arbitrary Thresholds

Much has been written about the problems of using arbitrary thresholds for “statistical sig-
nificance” in frequentist NHST [31]. Though Bayesian posterior probabilities would improve
inference in many ways, similar problems could arise were an arbitrary cutoff be placed on PPs.
Science as well as regulatory actions have been damaged by thresholding. Once it is known
whether or not an evidence measure exceeds the declared threshold, conclusions tend to be
stated as if there is no uncertainty [29, 4]. Imagine how a more honest accounting of evidence
could result in greater objectivity with less arbitrariness by considering a sentence that carries
along a PPs in parentheses: Treatment B probably (0.94) resulted in lower blood pressure and
was probably (0.78) safer in comparison with treatment A10.

10A more radical idea would be to have the font size of “was better“ proportional to the PP in “Treatment B was
better than treatment A.”
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4 MULTIPLICITY

4 Multiplicity

Consternation from both statisticians and clinicians about how to handle multiplicities exposes
weaknesses in the frequentist approach. As mentioned above, there are no statistical principles
that lead to unique frequentist solutions for multiple comparison problems. When considering
adaptive clinical trials or sample size re-estimation, the problems magnify.

4.1 Frequentist

It is well known that the more hypotheses that are all false are tested, the greater the chance of
positive assertions of effects increases. The frame of reference for what constitutes “hypotheses”
is not clear. Does it include hypotheses in other studies the investigator may happen to be
involved in? Does it include all patient subgroups, endpoints, and study monitoring looks?
The frequentist approach considers the sample space in inference, which must take into account
hypotheses that might have been tested in addition to those that were tested, in violation of the
likelihood principle, which states that under the chosen statistical model, all of the evidence in
a sample relevant to model parameters is contained in the likelihood function [8]. 11

Consider a 4-treatment study with treatments denoted by A B C D. A frequentist assessment
of A vs. B frequently is discounted because C was compared to D. Next consider a clinical trial
monitored using a group sequential α-spending method. An early look at the data is discounted
because of planned future looks. Later looks are discounted for earlier inconsequential looks.
In unblinded sample size re-estimation, the first wave of data must be discounted to preserve
the overall α level at the end of the extended study. None of these multiplicity adjustments are
satisfactory from a scientific viewpoint [9].

Frequentist multiplicity adjustments are always ad hoc.

4.2 Bayesian

Bayesian PPs are well calibrated no matter what type of or how many multiplicities are present.
Skepticism about an effect is focused on the effect of interest, not other effects tested. The current
posterior density is an accurate reflection of study evidence at any point in time. Bayesian
inference obeys the likelihood principle. The data and not the context for the data are important
for inference12. The benefits of not dwelling on the sample space of contemplated experiments
but instead using the likelihood principle cannot be overstated. Frequentist significance testing
deals with “what would have occurred following results that were not observed at analyses that
were never performed” [24]. The probability of a test statistic as or more extreme than an
observed value depends on all samples that might have arisen, whereas Bayes uses only the
sample that has arisen. To limit the sample space (to for example limit α) there must be more
planning and less flexibility.

In the A B C D treatment study, Bayesian inference for A vs. B is not discounted because C was
compared to D. A vs. B is discounted only because of prior information for how A might compare
to B. In a sequential trial, the current PP is self-contained, well calibrated, and meaningful when
taken out of context of the number of data looks or the stopping rule. As mentioned earlier,

11The “paradox of two sponsors” illustrates how frequentist statistics violates this principle. Suppose that sponsor
1 has designed the study for one interim look, choosing an α cutoff of 0.047 at the second analysis to preserve the
overall type I assertion probability at α = 0.05. The sponsor conducted an inconsequential interim analysis and now
comes with a final dataset with a p-value of 0.049 so does not receive approval for the treatment. Sponsor 2 comes
with identical data but did not conduct an interim analysis so pays no α-spending penalty, resulting in p = 0.049,
significance at α = 0.05, and an approved treatment. This cannot make sense.

12For example, the likelihood principle asserts that the inference about the population probability θ of an event is
identical whether one samples 20 patients and counts 5 events or one enrolls patients until 5 events have occurred
and this happened to require 20 patients. The first situation involves the binomial distribution and the second the
negative binomial distribution. In either case the likelihood of the data is θ5(1 − θ)15 yet the frequentist approach
would obtain two conflicting confidence intervals for θ.
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5 POSTERIOR PROBABILITIES WITH SEQUENTIAL ANALYSIS

cheating around multiple looks is only possible when a study is extended, less promising results
are obtained, and the new data are suppressed.

To get a better sense of why repeated looks do not distort the meaning of PPs, consider a
probabilistic pattern recognition system for identifying enemy targets in combat. Suppose the
initial assessment when the target is distant is a probability of 0.3 of being an enemy vehicle.
Upon coming closer the probability rises to 0.8. Finally the target is close enough (or the air
clears) so that the pattern analyzer estimates a probability of 0.98. The fact that the probabilty
was < 0.98 earlier is of no consequence as the gunner prepares to fire a canon. Even though
the probability may actually decrease while the shell is in the air due to new information, the
probability at the time of firing was completely valid based on then available information.

In the frequentist world, multiplicity comes from the chances you give
data to be extreme, not the chances you give true effects to exist.

5 Posterior Probabilities With Sequential Analysis

(In a Bayesian analysis) It is entirely appropriate to collect data until a
point has been proven or disproven, or until the data collector runs out
of time, money, or patience.

Edwards, Lindman, Savage
(1963) [23]

With sequential testing and early study termination, the current point estimate is promoted or
pulled back by the prior, providing perfect calibration. Bayesian inference can only go wrong
because of an incorrectly specified data model (which hurts frequentist inference alike) or because
the prior distribution used in the analysis is in conflict with the prior used by the study’s judge.

What if the efficacy of a treatment were assessed at will and the study terminated the first
time that a PP of efficacy exceeded 0.95? The PP at this point will on average be above 0.95,
but remains perfectly calibrated for a reviewer as long as she does not substitute a different
prior during the review than was used during the analysis. In the following simple simulation
example, a one-arm study has a maximum sample size of N = 500 subjects, and efficacy is
assessed after each subject, resulting in 500 data looks. The efficacy measurement is assumed to
have a normal distribution with standard deviation (SD) 1.0. Efficacy corresponds to the mean
subject response µ being greater than zero.

5.1 Skeptical Prior

Though the choice of prior has no impact on the PP calibrations shown below, let’s use a
skeptical prior that favors no effect, allows for harm to be as likely as benefit, and places a low
probability on a large effect. Specifically the prior is a 1:1 mixture of two normal distributions
each having mean zero. The SD of the first distribution is chosen so that P (µ > 1) = 0.1, and
the SD of the second distribution is chosen so that P (µ > 0.25) = 0.05. The prior density is
shown in Figure 8. Mixtures of normals are one of many good approaches for bringing skepticism
about large treatment effects into the final study interpretation [59]13.

sd1 ← 1 / qnorm(1 - 0.1)

sd2 ← 0.25 / qnorm(1 - 0.05)

wt ← 0.5 # 1 : 1 m i x t u r e

pdensity ← function(x) wt * dnorm(x, 0, sd1) + (1 - wt) * dnorm(x, 0, sd2)

x ← seq(-3, 3, length =200) # F i g u r e 8

13Mixtures of distributions can provide a formal way to handle pertinent historical data. The prior could be a
3:1 mixture of a non-informative or somewhat skeptical distribution and the posterior distribution from a completed
study if experts believed that the completed study was 1

4
applicable to the new setting [53, 6].
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plot(x, pdensity(x), type=’l’, xlab=expression(mu), ylab=’Prior Density ’)
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Figure 8: Skeptical prior distribution for the unknown mean in a single arm study. This is a 1:1 mixture of
zero mean normals with SD=0.780 and 0.152 respectively.

Next simulate 10,000 studies to reflect the real-world case in which the true treatment effect
is not known. For each study a single value of µ is sampled from the above prior distribution.
Then 500 data values are simulated from a normal distribution having mean µ and SD=1. The
500 values are revealed one-at-a-time so that data look j has a sample size of j subjects.

simseq ← function(N, prior.mu=0, prior.sd , wt, mucut=0, mucutf =0.05 ,

postcut =0.95 , postcutf =0.9,

ignore =20, nsim =1000) {

prior.mu ← rep(prior.mu , length =2)

prior.sd ← rep(prior.sd , length =2)

sd1 ← prior.sd [1]; sd2 ← prior.sd [2]

v1 ← sd1 ∧ 2

v2 ← sd2 ∧ 2

j ← 1 : N

cmean ← Mu ← PostN ← Post ← Postf ← postfe ← postmean ← numeric(nsim)

stopped ← stoppedi ← stoppedf ← stoppedfu ← stopfe ← status ←
integer(nsim)

notignored ← - (1 : ignore)

# D e r i v e f u n c t i o n t o c o m p u t e p o s t e r i o r m e a n

pmean ← gbayesMixPost(NA, NA, d0=prior.mu [1], d1=prior.mu [2],

v0=v1, v1=v2, mix=wt, what=’postmean ’)

for(i in 1 : nsim) {

# S e e h t t p :// s t a t s . s t a c k e x c h a n g e . c o m / q u e s t i o n s / 7 0 8 5 5

component ← if(wt == 1) 1 else sample (1 : 2, size=1, prob=c(wt, 1. - wt))

mu ← prior.mu[component] + rnorm (1) * prior.sd[component]

# m u ← r n o r m (1 , m e a n = p r i o r . m u , s d = p r i o r . s d ) i f o n l y 1 c o m p o n e n t

Mu[i] ← mu

y ← rnorm(N, mean=mu, sd=1)
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ybar ← cumsum(y) / j # a l l N m e a n s f o r N s e q u e n t i a l a n a l y s e s

pcdf ← gbayesMixPost(ybar , 1. / j,

d0=prior.mu [1], d1=prior.mu [2],

v0=v1, v1=v2, mix=wt, what=’cdf’)

post ← 1 - pcdf(mucut)

PostN[i] ← post[N]

postf ← pcdf(mucutf)

s ← stopped[i] ←
if(max(post) < postcut) N else min(which(post ≥ postcut))

Post[i] ← post[s] # p o s t e r i o r a t s t o p p i n g

cmean[i] ← ybar[s] # o b s e r v e d m e a n a t s t o p p i n g

# I f w a n t t o c o m p u t e p o s t e r i o r m e d i a n a t s t o p p i n g :

# p c d f s ← p c d f ( m s e q , x = y b a r [ s ] , v = 1 . / s )

# p o s t m e d [ i ] ← a p p r o x ( p c d f s , m s e q , x o u t = 0 .5 , r u l e = 2 ) $ y

# i f ( a b s ( p o s t m e d [ i ] ) = = m a x ( m s e q ) ) s t o p ( p a s t e ( ’ p r o g r a m e r r o r ’ , i ) )

postmean[i] ← pmean(x=ybar[s], v=1. / s)

# C o m p u t e s t o p p i n g t i m e i f i g n o r e t h e f i r s t " i g n o r e " l o o k s

stoppedi[i] ← if(max(post[notignored ]) < postcut) N

else

ignore + min(which(post[notignored] ≥ postcut))

# C o m p u t e s t o p p i n g t i m e i f a l s o a l l o w t o s t o p f o r f u t i l i t y :

# p o s t e r i o r p r o b a b i l i t y m u < 0 . 0 5 > 0 . 9

stoppedf[i] ← if(max(post) < postcut & max(postf) < postcutf) N

else

min(which(post ≥ postcut | postf ≥ postcutf))

# C o m p u t e s t o p p i n g t i m e f o r p u r e f u t i l i t y a n a l y s i s

s ← if(max(postf) < postcutf) N else min(which(postf ≥ postcutf))

Postf[i] ← postf[s]

stoppedfu[i] ← s

# # A n o t h e r w a y t o d o t h i s : f i n d f i r s t l o o k t h a t s t o p p e d f o r e i t h e r

# # e f f i c a c y o r f u t i l i t y . R e c o r d s t a t u s : 0 : n o t s t o p p e d e a r l y ,

# # 1 : s t o p p e d e a r l y f o r f u t i l i t y , 2 : s t o p p e d e a r l y f o r e f f i c a c y

# # S t o p p i n g t i m e : s t o p f e , p o s t p r o b a t s t o p : p o s t f e

stp ← post ≥ postcut | postf ≥ postcutf

s ← stopfe[i] ← if(any(stp)) min(which(stp)) else N

status[i] ← if(any(stp)) ifelse(postf[s] ≥ postcutf , 1, 2) else 0

postfe[i] ← if(any(stp)) ifelse(status[i] == 2, post[s],

postf[s]) else post[N]

}

list(mu=Mu, post=Post , postn=PostN , postf=Postf ,

stopped=stopped , stoppedi=stoppedi ,

stoppedf=stoppedf , stoppedfu=stoppedfu ,

cmean=cmean , postmean=postmean ,

postfe=postfe , status=status , stopfe=stopfe)

}

set.seed (3)

z ← simseq (500, prior.mu=0, prior.sd=c(sd1 , sd2), wt=wt, postcut =0.95 ,

postcutf =0.9, nsim =10000)

mu ← z$mu

post ← z$post

postn ← z$postn

st ← z$stopped

sti ← z$stoppedi

stf ← z$stoppedf

stfu ← z$stoppedfu

cmean ← z$cmean

postmean← z$postmean

postf ← z$postf

rmean ← function(x) formatNP(mean(x), digits =3)
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In Figure 9 is shown the relationship between the PP of efficacy at the conclusion of the study
and the posterior computed at the time of stopping early for efficacy (or final posterior if no
early stopping).

cuts ← c(1, 5, 10, 25, 50, 100, 250, 500, 1000, 3000, 4000)

ggfreqScatter(postn , post , xlab=’Posterior at Study End’, cuts=cuts ,

ylab=’Posterior Upon Stopping ’) # F i g . 9
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Figure 9: Scatterplot of posterior P (µ > 0|y) at final assessment after all 500 subjects vs. posterior at
stopping for efficacy. Points were binned using a 50 × 50 grid, with frequency of simulated trials indicated
by colors. The prior in Figure 8 was used.

The proportion of trials stopped early with PP ≥ 0.95 for which the final PP after all 500
analyses was < 0.7 is 0.039. This could be taken as estimating the probability of being misled
by early looks.

To see how the PPs are calibrated against the true probability of efficacy, the loess smoother is
used to relate final PPs to the binary variable indicating that the true µ > 0 (Figure 10).

v ← val.prob(postn , mu > 0, m=400, logistic.cal=FALSE , # F i g . 10

xlab=expression(paste(’Posterior Probability ’, mu > 0, ’ at Study End’

)),

ylab=expression(paste(’Proportion of Trials with ’, mu > 0)))

hist(mu[post ≥ 0.95], nclass =50, xlim=c(-1 ,4),

xlab=expression(mu), main=’’) # F i g . 11

abline(v=0, col=’red’, lwd=0.5)

k ← post ≥ 0.95

regret ← mean(mu[k] ≤ 0)

text(-0.5 , 500, paste0(’Proportion regret=’, round(regret , 3)), srt =90)

4321 of 10,000 trials were stopped early for efficacy with a PP ≥ 0.95. Of these, 169 actually
had µ ≤ 0 (proportion of 0.039 as shown in Figure 11). 1732 of the trials stopped before the 21st
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Figure 10: Calibration curve for the posterior probability of efficacy at study end, estimated using the loess
nonparametric smoother (dotted line). Line of identity is the thick grayscale line. Simple grouped proportions
based on intervals of posterior probability containing 400 trials per group are shown as triangles. Unlike with
smooth nonparametric estimates, grouping must be done to get an adequate denominator for proportions.
The frequency distribution of posterior probabilities is depicted with vertical line segments. The prior in
Figure 8 was used.
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Figure 11: Frequency distribution of true values of µ when stopping early for efficacy (concluding µ > 0),
using prior in Figure 8

look. If we did not look before the 21st subject, the number of stopped trials actually having
µ ≤ 0 was 137.

The proportion of trials stopped with a PP ≥ 0.95 was 0.432. This is the Bayesian power of
the study design. Note that in this calculation 1

2
of the trials had negative efficacy, i.e., 1

2
of

the simulated values of µ used to simulate the trials were negative. It is important to note
that to achieve a high probability of detecting a clinically important effect one would have to
be optimistic, i.e., to suspend the belief that the prior distribution is symmetric about zero.
This can perhaps be better dealt with by leaving the skeptical prior intact and computing the
proportion of trials that were stopped early for efficacy when µ > 0.25, which was 1.000. The
proportion stopped early when µ ∈ [0.15, 0.20] was 0.987. The relationship between true µ and
the stopping time can be estimated. 14 of the 10,000 studies were stopped after one observation,
with a mean PP of 0.978 and a mean true value of µ of 1.257. Stopping after one observation
would not be possible had the variance of the outcome variable not been known. The average
sample size (and stopping time) was 318 if we treat non-stopped studies as having a sample size
500. A better approach treats non-stopped studies as having a right-censored time-to-stopping
of 500; the results are in Figure 12.

dd ← datadist(mu); options(datadist=’dd’)

f ← psm(Surv(st, st < 500) ∼ rcs(mu, 6), dist=’lognormal ’)

plot(Predict(f, mu, fun=exp , conf.int=FALSE), xlim=c(-.25 , 1), ylim=c(0, 500),

ylab=’Median Stopping Time’, # F i g . 12

abline=list(list(v=0, col=gray(.9))))

Cost savings of the Bayesian approach is even more obvious when one tests continually for
futility. Let’s define futility as a posterior P (µ < 0.05) ≥ 0.9. The number of trials stopped
early for either efficacy or futility was 9744, with a mean sample size at stopping of 65. The
number of trials that were stopped early for futility, ignoring efficacy, is 5884. The mean sample
size at stopping only for futility was 235.
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Figure 12: Estimated median stopping time for efficacy as a function of true value of µ, using a log-normal
survival time distribution and a restricted cubic spline in µ with 6 default knots. Studies never stopping are
right censored at 500 trials. The prior in Figure 8 was used.

Next examine the relationship between (1) the sample mean and true µ at the time of stopping
and (2) the posterior mean and true µ at the time of stopping, using the nonparametric regression
“super smoother” [26]. These are shown in Figure 13.

plot(0, 0, xlab=expression(paste(’Estimated ’, mu)), # F i g . 13

ylab=expression(mu), type=’n’, xlim=c(-2, 4), ylim=c(-2, 4))

abline(a=0, b=1, col=gray(.9), lwd=4)

lines(supsmu(cmean , mu))

lines(supsmu(postmean , mu), col=’blue’)

It can readily be seen that the ordinary sample mean is biased high when studies are stopped
early because Y is large when large true values of µ are not favored by the prior. But the
posterior mean is perfectly calibrated. The same would be found for the posterior median. Had
the prior distribution had heavy tails, i.e., had we believed that very large treatment effects
were likely, the sample mean would not have been so biased (see Figure 19). Note that in the
frequentist setting how one adjusts for bias in point effect estimates when early stopping has
occurred is unclear, and proposed solutions are complex.

Returning to calibration of PPs, the proportion of trials that stopped with a PP ≥ 0.95 that
actually had a true value of µ > 0 was 0.961. The mean PP when stopping early was 0.960.

The proportion of trials that did not stop early that had a true value of µ ≤ 0 was 0.870. The
mean PP P (µ ≤ 0) at the end of such studies was 0.869.

From these estimates, calibration of PPs is perfect, as expected. Figure 14 shows calibration in
more detail by estimating the relationship between the PP at stopping to the true P (µ > 0).

v ← val.prob(post , mu > 0, m=400, logistic.cal=FALSE , # F i g . 14

xlab=expression(paste(’Posterior Probability ’, mu > 0, ’ Upon Stopping
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Figure 13: True µ vs. sample mean at stopping (black line) and vs. posterior mean at stopping (blue line)
using the prior in Figure 8. Thick grayscale line is the line of identity.

’)),

ylab=expression(paste(’Proportion of Trials with ’, mu > 0)))

The interpretation of PPs is independent of the stopping rule, which allows for painless unblinded
sample size re-estimation as well as allowing studies to begin without preliminary data needed
for sample size estimation.

If efficacy is ignored and we considered stopping early only for futility, the PP of futility at the
time of stopping is well calibrated as shown in Figure 15.

v ← val.prob(postf , mu < 0.05 , m=400, logistic.cal=FALSE , # F i g . 15

xlab=expression(paste(’Posterior Probability ’, mu < 0.05 , ’ Upon

Stopping ’)),

ylab=expression(paste(’Proportion of Trials with ’, mu < 0.05)))

5.2 Flatter Prior

To understand the effect of using a flatter prior for the unknown mean µ, we now let the prior
distribution be Gaussian still with mean 0 but with standard deviation of 3, with no mixing
with another normal distribution. The prior is shown in Figure 16.

mu ← seq(-6, 6, length =200) # F i g . 16

plot(mu, dnorm(mu, 0, 3), type=’l’, ylim=c(0, 1.5),

xlab=expression(mu), ylab=’Prior Density ’)

Figure 17 shows the frequency distribution of true values of
mu for the subset of studies that reached a PP of efficacy of 0.95 at any of the sequential tests.

set.seed (4)
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Figure 14: Calibration curve for the posterior probability of efficacy upon stopping or the posterior at the
final sample size if no stopping, estimated using the loess nonparametric smoother (dotted line). Line of
identity is the thick grayscale line. Simple grouped proportions based on intervals of posterior probability
containing 400 trials per group are shown as triangles. The frequency distribution of posterior probabilities
is depicted with vertical line segments. The prior in Figure 8 was used.
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Figure 15: Calibration curve for the posterior probability of futility upon stopping for futility, or the posterior
at the final sample size if no stopping for futility, estimated using the loess nonparametric smoother (dotted
line). Line of identity is the thick grayscale line. Simple grouped proportions based on intervals of posterior
probability containing 400 trials per group are shown as triangles. The frequency distribution of posterior
probabilities is depicted with vertical line segments. The prior in Figure 8 was used.
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Figure 16: Flatter prior; normal with mean 0 and σ = 3, using same y-axis scale as skeptical prior.
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z ← simseq (500, prior.mu=0, prior.sd=3, wt=1, postcut =0.95 ,

postcutf =0.9, nsim =10000)

mu ← z$mu

post ← z$post

st ← z$stopped

sti ← z$stoppedi

stf ← z$stoppedf

stfu ← z$stoppedfu

cmean ← z$cmean

postmean← z$postmean

postf ← z$postf

hist(mu[post ≥ 0.95], nclass =50, # x l i m = c ( -1 , 4 ) ,

xlab=expression(mu), main=’’) # F i g . 17

k ← post ≥ 0.95

abline(v=0, col=’red’, lwd=0.5)

regret ← mean(mu[k] ≤ 0)

text(-.6 , 150, paste0(’Proportion regret=’, round(regret , 3)), srt =90)
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Figure 17: Frequency distribution of actual µ when using a flatter prior (Figure 16) and stopping early for
efficacy.

4938 of 10,000 trials were stopped early for efficacy with a PP ≥ 0.95. Of these, 82 actually
had µ ≤ 0. 4618 of the trials stopped before the 21st look. If we did not look before the 21st

subject, the number of stopped trials actually having µ ≤ 0 was 25.

The Bayesian power, ie., proportion of trials stopped with a PP ≥ 0.95, was 0.494. The pro-
portion of trials that were stopped early for efficacy when µ > 0.25 was 1.000. The proportion
stopped early when µ ∈ [0.15, 0.20] was 1.000. 2844 of the 10,000 studies were stopped after one
observation, with a mean PP of 0.993 and a mean true value of µ of 3.342. The average sample
size (and stopping time) was 257 if we treat non-stopped studies as having a sample size 500.
Treating non-stopped studies as having a right-censored time-to-stopping leads to the results in
Figure 18.

dd ← datadist(mu); options(datadist=’dd’)
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# l o g n o r m a l t i m e t o e v e n t m o d e l , l o g m e d i a n a r e s t r i c t e d c u b i c s p l i n e i n t r u e m u

f ← psm(Surv(st, st < 500) ∼ rcs(mu, 6), dist=’lognormal ’)

plot(Predict(f, mu, fun=exp , conf.int=FALSE), xlim=c(-.5 , 1), ylim=c(0, 500),

ylab=’Median Stopping Time’, # F i g . 18

abline=list(list(v=0, col=gray(.9))))
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Figure 18: Estimated median stopping time for efficacy as a function of true value of µ, using a log-normal
survival time distribution and a restricted cubic spline in µ with 6 default knots. The prior has mean 0,
σ = 3 (Figure 16). Studies never stopping are right censored at 500 trials.

The number of trials stopped early for either efficacy or futility was 9994, with a mean sample
size at stopping of 5. The number of trials that were stopped early for futility, ignoring efficacy,
is 5289. The mean sample size at stopping only for futility was 239.

Figure 19 shows the relationships between estimated and actual µ. Since the prior now allows
for a wider distribution for µ, the sample mean upon stopping early is less biased than with the
more skeptical prior.

plot(0, 0, xlab=expression(paste(’Estimated ’, mu)), # F i g . 19

ylab=expression(mu), type=’n’, xlim=c(-2, 4), ylim=c(-2, 4))

abline(a=0, b=1, col=gray(.9), lwd=6)

lines(supsmu(cmean , mu))

lines(supsmu(postmean , mu), col=’blue’)

Returning to calibration of PPs, the proportion of trials that stopped with a PP ≥ 0.95 that
actually had a true value of µ > 0 was 0.983. The mean PP when stopping early was 0.985.

The proportion of trials that did not stop early that had a true value of µ ≤ 0 was 0.992. The
mean PP P (µ ≤ 0) at the end of such studies was 0.991.

From these estimates, calibration of PPs is perfect, as expected. Figure 20 shows calibration in
more detail by estimating the relationship between the PP at stopping to the true P (µ > 0).
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Figure 19: True µ vs. sample mean at stopping (black line) and vs. posterior mean at stopping (blue line)
when the prior (Figure 16) is flatter. Thick grayscale line is the line of identity.

v ← val.prob(post , mu > 0, m=400, logistic.cal=FALSE , # F i g . 20

xlab=expression(paste(’Posterior Probability ’, mu > 0, ’ Upon Stopping

’)),

ylab=expression(paste(’Proportion of Trials with ’, mu > 0)))

If efficacy is ignored and we considered stopping early only for futility, the posterior probability
of futility at the time of stopping is well calibrated as shown in Figure 21.

v ← val.prob(postf , mu < 0.05 , m=400, logistic.cal=FALSE , # F i g . 21

xlab=expression(paste(’Posterior Probability ’, mu < 0.05 , ’ Upon

Stopping ’)),

ylab=expression(paste(’Proportion of Trials with ’, mu < 0.05)))

6 Posterior Probabilities in Decision Making

The optimum Bayes decision is the one that optimizes expected utility/loss/cost. This decision
is a function of the posterior distribution and the utility function. The utility function is very
difficult to specify, and there is likely as much disagreement about utilities among reviewers as
there is disagreement about likely efficacy. In practice, reviewers will make decisions on the
basis of PPs, taking into account their own utilities in an informal way. For example, a new
treatment for an incurable disease may be judged more liberally than when there are already
five effective drugs on the market for the disease. “Hard” endpoints such as death may be
judged more liberally than “soft” endpoints such as quality of life. Evidence for any reduction
in mortality may be judged more strictly than evidence for a major reduction.

Though some would prefer to have hard cutoffs on PPs for demonstration of efficacy, we prefer
not to entertain prescribed cutoffs because that would prevent utilities related to the points just
discussed from being used. That being said, the following table provides examples of how PPs
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Figure 20: Calibration curve for the posterior probability of efficacy upon stopping or the posterior at the
final sample size if no stopping, estimated using the loess nonparametric smoother (dotted line). Line of
identity is the thick grayscale line. Simple grouped proportions based on intervals of posterior probability
containing 400 trials per group are shown as triangles. The frequency distribution of posterior probabilities
is depicted with vertical line segments. The prior is normal with mean 0 σ = 3 as shown in Figure 16.
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Figure 21: Calibration curve for the posterior probability of futility upon stopping for futility, or the posterior
at the final sample size if no stopping for futility, estimated using the loess nonparametric smoother (dotted
line). A flatter prior (Figure 16) is used. Line of identity is the thick grayscale line. Simple grouped
proportions based on intervals of posterior probability containing 400 trials per group are shown as triangles.
The frequency distribution of posterior probabilities is depicted with vertical line segments.
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might be considered in decision making, taking into account only some of the types of utilities
relevant in practice. In the table, λ represents the true treatment B : A hazard ratio in a time
to death analysis, LVEF is left ventricular ejection fraction, ∆ is the true reduction in mean
LVEF. For multiple outcomes see also the next section.

Indication or Harm Posterior Probability

Mortality reduction P (λ < 1) ≥ 0.95 or P (λ < 0.8) ≥ 0.8
Any mortality reduction or P (λ < 1) ≥ 0.9 or P (∆ > 0.15) ≥ 0.95
large improvement in LVEF

Mortality Increase P (λ > 1) ≥ 0.9
Mortality reduction in P (λ < 1) ≥ 0.8
in a Phase 2 trial

Major improvement in one P (specific target ↓ 20%) ≥ 0.95 or
target or improvement in P (≥ 3 targets improved any) ≥ 0.95
any 3 of 5 targets

7 Multiple Outcomes and Totality of Evidence

Because Bayes provides a direct probability for an assertion of interest, the assertion can be
a compound one involving multiple patient outcomes. In this way one can make an overall
evidentiary statement about multiple efficacy parameters as well as compute PPs simultaneously
involving efficacy and safety. The following list contains examples of conditions for which a single
PP may easily be calculated. When using a simulation technique to make draws of efficacy and
safety parameters from all of the posterior distributions, computation of the overall PP is as
simple as computing the fraction of posterior draws satisfying one of the conditions below as
done in Section 8.

Type of Assertion/Condition
Assessment

Efficacy Mean blood pressure ↓ 5 mmHg or
exercise time ↑ 4m

Mean blood pressure ↓ 5 mmHg and
exercise time ↑ 4m

(Any mortality ↓ and exercise time ↑ 4m)
or mortality ↓> 0.02

Improvement in any two of blood pressure,
exercise time, LV function, or need for diuretics

Efficacy or Mortality ↓ or (mortality ↑ by < 0.02
non-inferiority and blood pressure ↑ by < 3 mmHg)

Risk/benefit Incidence of stroke ↓ and
significant bleeding ↑ by factor < 1.1

One could imagine a clinical trial with 5 endpoints where success is declared if the probability
of hitting any two of them is greater than 0.95. This could be a more honest way to deal with
the fact that one seldom has an unarguable unique clinically or patient-guided list of endpoints,
especially in view of the compromises made in the choice of endpoints due to statistical power
considerations. The bar can be set higher by making the five targets be non-null targets, i.e.,
clinically non-trivial improvements in patient outcomes.
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7.1 Example: Acute Treatment of Migraine

In the FDA Center for Drug Evaluation and Research’s draft guidance for industry Migraine:
Developing Drugs for Acute Treatment, October 2014, it is stated that

“. . . approval of drugs for the acute treatment of migraine involved the demonstration
of an effect on 4 co-primary endpoints: pain, nausea, photophobia, and phonophobia.
More recently, approval based on an effect on headache pain and nausea as co-primary
endpoints has been considered. An alternative approach would consist of having
patients prospectively identify their most bothersome migraine-associated symptom
in addition to pain. Using this approach, the two co-primary endpoints would be (1)
having no headache pain at 2 hours after dosing and (2) a demonstrated effect on
the most bothersome migraine-associated symptom at 2 hours after dose. Regardless
of the associated symptom identified as the most bothersome, al three important
migrained-associated symptoms (i.e., nausea, photophobia, and phonophobia) should
be assessed as secondary endpoints.”

Bayesian PPs can be easily computed for any combination of the four symptoms, and can even
handle the situation where the patient is unsure of which symptom is the most bothersome,
by attaching patient-provided probabilities of bothersomeness. Here are some example PPs
that can be calculated for migraine trials. Let A, B, C, D denote the events of hitting the 4
targets, respectively. Let Y B

i denote a binary outcome for patient i achieving relief from her
most bothersome symptom within 2 hours and target E denote achieving an increase in the odds
of achieving this target for drug compared to placebo.

Hit all 4 targets: PP(A and B and C and D)

Hit 2 and at least one other: PP(A and B and (C or D))

Hit any 3: PP(number of A, B, C, D ≥ 3)

Pain-free and improve most bothersome: PP(A and E)

8 Bayesian Analysis of Simulated RCT with Two Endpoints

Simulated randomized clinical trials (RCT) are useful because we know the true treatment
effects being estimated. Consider a two-treatment (A, B) RCT for hypertension where covariate
adjustment is used for baseline systolic blood pressure (SBP) and where there are two outcomes:
(1) incidence of death or stroke (DS) within one year and (2) systolic blood pressure at one year
after randomization. Even though time to DS would be a preferred outcome (and would handle
censoring) we ignore the timing of events for this example and use a binary logistic model for
DS. SBP is assumed to follow a normal distribution with constant SD σ = 7 given baseline
SBP. The true B:A treatment effect is assumed to be a mean 3mmHg difference in SBP with
B. We assume a correlation between SBP reduction and incidence of DS by forming a true
logistic model for DS in which baseline and 1y SBP each have a regression coefficient of 0.05
for predicting DS and treatment has a coefficient of log(0.8) corresponding to B:A odds ratio
of 0.8. To estimate the true effect of treatment on DS not adjusted for follow-up SBP we first
simulate a trial with n = 40000.

# S i m u l a t e a s i n g l e t r i a l w i t h s a m p l e s i z e n

sim ← function(n) {

trt ← c(rep(’A’, n / 2), rep(’B’, n / 2))

sbp0 ← rnorm(n, 140, 7)

sbp ← sbp0 - 5 - 3 * (trt == ’B’) + rnorm(n, sd=7)

logit ← -2.6 + log(0.8) * (trt == ’B’) + 0.05 * (sbp0 - 140) +

0.05 * (sbp - 130)

ds ← ifelse(runif(n) ≤ plogis(logit), 1, 0)

data.frame(trt , sbp0 , sbp , ds)

}
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set.seed (1)

d ← sim(n=40000)

require(rms)

ols(sbp ∼ sbp0 + trt , data=d)

Linear Regression Model

ols(formula = sbp ~ sbp0 + trt, data = d)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 40000 LR χ2 28287.46 R2 0.507
σ 7.0270 d.f. 2 R2

adj 0.507
d.f. 39997 Pr(> χ2) 0.0000 g 8.038

Residuals
Min 1Q Median 3Q Max

−30.12 −4.736 −0.0007268 4.737 27.48

β̂ S.E. t Pr(> |t|)
Intercept -4.2576 0.7026 -6.06 <0.0001
sbp0 0.9944 0.0050 198.58 <0.0001
trt=B -2.9380 0.0703 -41.81 <0.0001

lrm(ds ∼ sbp0 + sbp + trt , data=d)

Logistic Regression Model

lrm(formula = ds ~ sbp0 + sbp + trt, data = d)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 40000 LR χ2 2142.26 R2 0.113 C 0.717
0 36293 d.f. 3 R2

3,40000 0.052 Dxy 0.434
1 3707 Pr(> χ2) <0.0001 R2

3,10090.4 0.191 γ 0.435
max | ∂ logL

∂β
| 2×10−9 Brier 0.079 τa 0.073

β̂ S.E. Wald Z Pr(> |Z|)
Intercept -16.6218 0.3847 -43.21 <0.0001
sbp0 0.0517 0.0036 14.40 <0.0001
sbp 0.0522 0.0026 20.32 <0.0001
trt=B -0.2594 0.0367 -7.07 <0.0001

f ← lrm(ds ∼ sbp0 + trt , data=d)

print(f)

Logistic Regression Model

lrm(formula = ds ~ sbp0 + trt, data = d)
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Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 40000 LR χ2 1719.66 R2 0.091 C 0.697
0 36293 d.f. 2 R2

2,40000 0.042 Dxy 0.394
1 3707 Pr(> χ2) <0.0001 R2

2,10090.4 0.157 γ 0.394
max | ∂ logL

∂β
| 3×10−11 Brier 0.080 τa 0.066

β̂ S.E. Wald Z Pr(> |Z|)
Intercept -16.5559 0.3807 -43.49 <0.0001
sbp0 0.1019 0.0026 38.49 <0.0001
trt=B -0.4045 0.0358 -11.31 <0.0001

btrt ← coef(f)[’trt=B’]

The regression coefficient for treatment in the proper outcome model that did not adjust for 1y
SBP was -0.4045 which corresponds to a B:A odds ratio of 0.6673, taken as the true treatment
effect on the binary outcome.

The trial could easily be run sequentially but we treat the sample size as fixed at n = 1500 and
simulate the trial data as such. The traditional frequentist analysis follows.

set.seed (7)

d ← sim(n=1500)

re ← round(cor(d$ds, d$sbp), 3)

dd ← datadist(d); options(datadist=’dd’)

f ← ols(sbp ∼ sbp0 + trt , data=d)

f

Linear Regression Model

ols(formula = sbp ~ sbp0 + trt, data = d)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 1500 LR χ2 1087.47 R2 0.516
σ 7.0059 d.f. 2 R2

adj 0.515
d.f. 1497 Pr(> χ2) 0.0000 g 8.177

Residuals
Min 1Q Median 3Q Max

−24.58 −4.619 0.154 4.241 24.29

β̂ S.E. t Pr(> |t|)
Intercept -5.4630 3.6567 -1.49 0.1354
sbp0 1.0048 0.0260 38.62 <0.0001
trt=B -3.1831 0.3620 -8.79 <0.0001

summary(f)

Low High ∆ Effect S.E. Lower 0.95 Upper 0.95

sbp0 135.22 144.52 9.2964 9.3411 0.24186 8.8667 9.8156
trt — B:A 1.00 2.00 -3.1831 0.36199 -3.8932 -2.4730
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f ← lrm(ds ∼ sbp0 + trt , data=d)

f

Logistic Regression Model

lrm(formula = ds ~ sbp0 + trt, data = d)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 1500 LR χ2 53.82 R2 0.075 C 0.670
0 1357 d.f. 2 R2

2,1500 0.034 Dxy 0.339
1 143 Pr(> χ2) <0.0001 R2

2,388.1 0.125 γ 0.340
max | ∂ logL

∂β
| 2×10−5 Brier 0.083 τa 0.059

β̂ S.E. Wald Z Pr(> |Z|)
Intercept -15.1566 1.8989 -7.98 <0.0001
sbp0 0.0920 0.0132 6.96 <0.0001
trt=B -0.2715 0.1807 -1.50 0.1330

summary(f)

Low High ∆ Effect S.E. Lower 0.95 Upper 0.95

sbp0 135.22 144.52 9.2964 0.85487 0.12286 0.61408 1.095700
Odds Ratio 135.22 144.52 9.2964 2.35110 1.84800 2.991200

trt — B:A 1.00 2.00 -0.27146 0.18069 -0.62559 0.082684
Odds Ratio 1.00 2.00 0.76227 0.53494 1.086200

Pearson’s r correlation between the SBP outcome and the death/stroke outcome is 0.22. If the
frequentist analysis with n = 1500 is repeated 2500 times, the correlation across the 2500 of the
estimated treatment effects on DS and the estimated treatment effects on SBP is 0.142.

For the Bayesian analysis, we use use Stan and the rstan R package [14]14. Two models are
analyzed simultaneously. The regression coefficients in both models have a prior distribution
which is multivariate normal with means equal to zero. The standard deviation of the prior for
the treatment effect is specified so that the prior probability that the blood pressure reduction
is more than 10mmHg is 0.1. The standard deviation for the prior for the B:A log odds ratio
is taken so that the prior probability that the odds ratio is less than 0.5 (regression coefficient
< log(0.5)) is 0.05. A flat distribution on [0,∞] is used as the prior for the residual standard
deviation. 5,000 post-warmup iterations are run using Stan’s No-U-turn sampler in 4 chains,
resulting in 20,000 draws from the posterior distributions and taking 10 minutes of run time on
a 4-core machine.

require(rstan)

rstan_options(auto_write = TRUE)

options(mc.cores = parallel :: detectCores ()) # 4 C P U s u s e d

model ← "

data {

int n;

vector[n] x;

real y1[n];

int y2[n];

vector[n] treat;

14Thanks to Prof. Chris Fonnesbeck, Vanderbilt Department of Biostatistics, for writing the Stan script for this
model.
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vector [2] Zero;

vector<lower =0>[2] sigma_b;

}

parameters {

vector [2] alpha;

vector [2] beta;

vector [2] mu;

real<lower =0> sigma_y;

cholesky_factor_corr [2] L_b;

}

transformed parameters {

vector[n] theta1;

vector[n] theta2;

theta1 = mu[1] + alpha [1]*x + beta [1]*treat;

theta2 = mu[2] + alpha [2]*x + beta [2]*treat;

}

model {

beta ∼ multi_normal_cholesky(Zero , diag_pre_multiply(sigma_b , L_b));

L_b ∼ lkj_corr_cholesky (1); // correlation matrix for reg. parameters , LKJ

prior

y1 ∼ normal(theta1 , sigma_y);

y2 ∼ bernoulli_logit(theta2);

}

generated quantities {

matrix [2,2] Omega;

matrix [2,2] Sigma;

Omega = multiply_lower_tri_self_transpose(L_b);

Sigma = quad_form_diag(Omega , sigma_b);

}

"

s ← stan(model_code = model , iter =10000 , seed=7,

data=with(d, list(x=sbp0 , treat=1*(trt == ’B’),

y1=sbp , y2=ds,

sigma_b=c(-10 / qnorm(0.1),

log(0.5) / qnorm(0.05)),

Zero=c(0,0), n=nrow(d))))

s

betas ← extract(s, pars=’beta’)$beta

Inference for Stan model: cd388c9aa01c1c78a612ddca57e2c5c6.

4 chains , each with iter =10000; warmup =5000; thin =1;

post -warmup draws per chain =5000, total post -warmup draws =20000.

mean se_mean sd 2.5% 97.5% n_eff Rhat

alpha [1] 1.0047 0.0002 0.0259 0.9539 1.0557 11616 1.0006

alpha [2] 0.0923 0.0001 0.0133 0.0666 0.1182 11596 1.0006

beta [1] -3.1780 0.0027 0.3607 -3.8797 -2.4695 18285 1.0001

beta [2] -0.2129 0.0012 0.1596 -0.5325 0.1026 16387 1.0001

mu[1] -5.4464 0.0339 3.6436 -12.6012 1.6968 11581 1.0006

mu[2] -15.2366 0.0177 1.9063 -18.9511 -11.5603 11583 1.0006

Samples were drawn using NUTS(diag_e) at Mon Dec 19 13:51:42 2016.

For each parameter , n_eff is a crude measure of effective sample size ,

and Rhat is the potential scale reduction factor on split chains (at

convergence , Rhat =1).
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Posterior densities are obtained using kernel density estimators, shown in Figure 22.

b1 ← betas[, 1]

b2 ← betas[, 2]

plot(density(b1), type=’l’, xlab=’B-A SBP Difference ’, main=’’) # F i g . 22

plot(density(exp(b2)), type=’l’, xlab=’B:A OR for Death or Stroke ’, main=’’)
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Figure 22: Posterior densities for treatment effects on two outcomes

Posterior means, medians, and 0.95 credible intervals are computed simply by using ordinary
samples estimates on the posterior draws.

ci1 ← quantile(b1, c(0.025 , 0.975))

ci2 ← quantile(b2, c(0.025 , 0.975))

data.frame(Mean=c(mean(b1), mean(b2)), Median=c(median(b1), median(b2)),

Lower=c(ci1[1], ci2 [1]), Upper=c(ci2[1], ci2 [2]), row.names=c(’b1’, ’

b2’))

Mean Median Lower Upper

b1 -3.178025 -3.1782677 -3.8796797 -0.5324795

b2 -0.212865 -0.2117236 -0.5324795 0.1025766

The posterior mean and median log odds ratio is less impressive than the frequentist maximum
likelihood estimate of -0.271 because of the skeptical prior.

A variety of posterior probabilities are easily calculated. Here non-inferiority is defined by SBP
increase less than 1mmHg and DS increased by an odds ratio less than 1.05. Similarity with
respect to the effect on DS is taken to be an odds ratio between 0.85 and 1

0.85
. The final

calculation is the mean number of targets achieved when the targets are any SBP reduction and
any reduction of odds of DS.

cat(’Prob(SBP reduced at least 2 mmHg) = ’, rmean(b1 < -2), ’\n’,

’Prob(B:A OR for DS < 1) = ’, rmean(b2 < 0), ’\n’,

’Prob(SBP reduced by 2 and OR < 1) = ’, rmean(b1 < -2 & b2 < 0), ’\n’,

’Prob(SBP reduced by 2 or OR < 1) = ’, rmean(b1 < -2 | b2 < 0), ’\n’,

’Prob(Non-inferiority) = ’, rmean(b1 < 1 & b2 < log(1.05)),’\n’,
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’Prob(DS similar) = ’, rmean(exp(b2) > 0.85 &

exp(b2) < 1 / 0.85), ’\n’,

’E(# targets achieved) = ’, rmean((b1 < 0) + (b2 < 0)), ’\n’,

sep=’’)

Prob(SBP reduced at least 2 mmHg) = 0.999

Prob(B:A OR for DS < 1) = 0.908

Prob(SBP reduced by 2 and OR < 1) = 0.908

Prob(SBP reduced by 2 or OR < 1) = 1.000

Prob(Non -inferiority) = 0.948

Prob(DS similar) = 0.363

E(# targets achieved) = 1.908

The six probabilities above are forward probabilities directly addressing the clinical questions.
Frequentist solutions for these questions are either highly indirect or unavailable.

9 Bayesian Clinical Trial Design

Here we consider standard non-adaptive trial designs with possible sequential monitoring.

9.1 Sample Size Estimation

For fixed sample size designs, there are several Bayesian approaches that have been developed for
sample size estimation. These approaches are a bit more honest than frequentist ones because
they admit uncertainty in key parameters such as subject-to-subject standard deviations and
effect sizes of interest. An excellent recent paper showing how to estimate the sample size
needed to compare control with a set of active treatments (e.g., different doses of one drug) is
by Whitehead et al. [67]. Their goal is to have high PP that one or more treatments is better
than control or high PP that none of the treatments is better than control. See also [43, 58,
32, 60, 1, 37, 51, 55, 64, 12]. Spiegelhalter et al. [58] provide a clear rationale for computing
the unconditional power, which integrates over the prior distribution for the treatment effect,
providing a “realistic assessment of the predictive probability of obtaining a ‘significant’ result.”
They also discuss the damage done by using a fixed, optimistic, treatment effect in a standard
power calculation.

9.2 Bayesian Power Example

Bayesian power may be defined as the probability that the posterior probability will exceed
a certain value such as 0.95. Instead of the more honest calculations discussed above that
incorporate uncertainty in the true treatment effect, one may compute Bayesian power as a
function of the unknown effect. Consider the situation used in Section 3.2.1 where the data are
normal with variance 1.0 and the prior is normal with mean zero and variance 1

τ
. Take µ > 0

to indicate efficacy. The PP for P (µ > 0|data) is Φ( nY√
n+τ

).

Y is normally distributed with mean µ and variance 1
n
. Since the long-run average of Y is µ,

the long-run median of Y is also µ so the median PP is Φ( nµ√
n+τ

). Letting z = Φ−1(0.95), the

chance that the PP exceeds 0.95 is P (Φ( nY√
n+τ

) > 0.95) = P ( nY√
n+τ

> z) = Φ(nµ−z
√
n+τ√

n
). For

varying n and τ the median PP and the Bayesian power are shown in Figure 23.

require(ggplot2)

d ← expand.grid(mu=seq(-2, 2, length =200),

n=c(1, 2, 5, 10),

tau=c(0, 2, 10),

what =1:2)

d ← transform(d,
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p = ifelse(what == 1,

pnorm(n * mu / sqrt(n + tau)),

pnorm((n * mu - qnorm(0.95) * sqrt(n + tau)) / sqrt(n))),

n = factor(n),

tau = factor(tau)

)

d$Probability ← factor(d$what)

levels(d$n) ← paste0(’n==’, levels(d$n))

levels(d$tau) ← paste0(’tau==’, levels(d$tau))

ggplot(d, aes(x=mu, y=p, col=Probability)) + geom_line () +

scale_color_discrete(labels=expression(Median∼P(mu > 0),

P(P(mu > 0) > 0.95))) +

facet_grid(tau ∼ n, labeller=label_parsed) +

xlab(expression(mu)) +

ylab(’Probability ’) # F i g . 23

9.3 Sequential Monitoring and Futility Analysis

As discussed above, standard posterior probabilities may be used as often as desired to monitor
a study, either at prespecified times, at will, or continuously. Often a clinical trial is designed to
yield more evidence than necessary for efficacy because safety endpoints are rare. The Bayesian
approach can easily provide a formal approach to satisfying this need. A criterion for study
termination for success could be for example a PP > 0.95 for efficacy and a PP > 0.95 for safety
where “safety” is interpreted to mean that the experimental:control hazard ratio for a safety
event ≤ 1.2.

Spiegelhalter et al. [58] argue that a ‘range of equivalence’ be used in monitoring. For example,
one might terminate a study if the probability that a new agent is more than δ better than
standard therapy is high, or if the probability that the standard treatment is better than the
new agent by any amount is high. Here δ could be chosen as a clinical equivalence threshold to
take into account toxicity tradeoffs. The value of δ is related to the ‘uncertainty principle’ that
allows one to ethically randomize subjects [58].

The Bayesian sequential designs discussed above are written as if there is no cap on the ultimate
sample size. That may be the case in some studies, but one often reaches a point where clinically
important efficacy is unlikely to be achieved within a reasonable sample size. Bayesian methods
can in many cases cut costs by declaring futility earlier than frequentist methods, and futility
can be more formally defined with Bayes. There are three overall Bayesian attacks.

1. Stop when the current PP that the efficacy is very small or is negative exceeds some
probability level such as 0.9

2. Use the predictive distribution at a planned ultimate sample size to decide on futility [7].

3. Pre-specify the maximum sample size and continue the study until that is reached if the
trial is not stopped early for efficacy or harm (a more expensive approach).

Spiegelhalter et al. [58] have a very insightful equation that for a simple statistical setup and a
flat prior estimates the chance of ultimate success given only the Z-statistic at an interim look
that was based on a fraction f of subjects randomized to date. This is shown in Figure 24.
Spiegelhalter et al. take issue with the practice of stochastic curtailment or conditional power
analysis that assumes a single value of the true unknown efficacy parameter. This Bayesian
predictive approach requires no such choice.

pf ← function(z, f) pnorm(z/sqrt(1 - f) - 1.96 * sqrt(f) / sqrt(1 - f))

zs ← seq(-1, 3, length =200)

fs ← c(.1, .25 , .4, .75 , .9)

d ← expand.grid(Z=zs, f=fs)

f ← d$f
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Figure 23: Bayesian power and median posterior probability for varying true effect values, sample sizes, and
degrees of skepticism
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d$p ← with(d, pf(Z, f))

d$f ← NULL

p ← split(d, f)

labcurve(p, pl=TRUE , ylab=’Predictive Probability ’) # F i g . 24
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Figure 24: Predictive probability of the final 0.95 credible interval excluding zero, and the treatment effect
being in the right direction, given the fraction f of study completed and the current test statistic Z when
the prior is flat. f values are written beside curves.

For example, to have any reasonable hope of demonstrating efficacy if an interim Z value is 1.0,
one must be less than 1

10

th
of the way through the trial.

The published report of any study attempts to answer the crucial ques-
tion: What does this trial add to our knowledge? The strength of the
Bayesian approach is that it allows one to express the answer formally.
It therefore provides a rational framework for dealing with many crucial
issues in trial design, monitoring and reporting. In particular, by making
explicitly different prior opinions about efficacy, and differing demands
on new therapies, it may shed light on the varying attitudes to balancing
the clinical duty to provide the best treatment for individual patients,
against the desire to provide sufficient evidence to convince the general
body of clinical practice.

Spiegelhalter, Freedman, and
Parmar [58]

10 General Recommendations

It is clear that there is a major role for Bayesian methods in all aspects of drug development.
Though the following ideas are only the authors’ personal recommendations, they are a reason-
able starting place.

When a sponsor launches a study to be used for their own drug development purposes, the
sponsor may reasonably decide that the choice of the prior is entirely up to them. But it
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should be specified in a statistical analysis plan before the new study begins. When a trial is
to play an important role in a regulatory submission, the prior distribution to be used in the
primary analyses should be developed in an iterative process between the sponsor and medical
and statistical reviewers in the regulatory agency, before the study begins.

When trustworthy, relevant information exists before a study, and the information comes from
a similar disease, treatment, and dosing setting, it may be entirely reasonable to use such
information when developing the prior. It will seldom be appropriate for expert opinion alone
to be used in prior formulation, but strong pharmacology and existing drug class information
could be used to form a weakly optimistic prior. When a Phase 2 study has a strong design and
has strong similarities to a proposed Phase 3 study, it may be appropriate to use the Phase 2
posterior distribution as a prior for Phase 3. In some situations, the previous results my be
discounted using, for example, a mixture of a skeptical prior and the previous study posterior
as in our pediatrics example above.

When there is no applicable prior information, it is usually appropriate to use a somewhat
skeptical prior for the new study. In exchange, the sponsor would have the ability to take
unlimited, unscheduled looks at the data, and at early looks the skeptical prior would properly
pull back the efficacy estimates. As shown in Figure 7, the effect of skepticism is equivalent to
ignoring data on a small number of subjects, and this effect wears off as n gets large.

When final results are reported, it is important to provide details about the prior, how it was
developed, and when. Entire posterior distributions should be emphasized, and posterior prob-
abilities of any efficacy as well as of more-than-trivially-important efficacy should be reported.
We do not recommend a hard cutoff for “winning” on a posterior probability, but instead rec-
ommend provision of evidence of efficacy and clinically significant efficacy, with the posterior
probability of the latter necessarily being less. When applicable, totality of evidence should be
summarized by a posterior probability of a compound condition.

For treatments deemed not to be superior, it would be useful to future drug developers to report
the probability of similarily between acive and control treatments. For non-inferiority studies,
the PP of similarity should be reported as well as the PP of non-inferiority.

For reporting of main efficacy results, we recommend reporting the posterior probability of any
efficacy, the PP of more than the minimally clinically significant efficacy, and a 0.95 credible
interval for the unknown efficacy parameter. It should be noted that the exlusion of zero from
this two-sided credible interval is not what one should emphasize in the final judgment of efficacy.
Instead, the directional PPs should be used.

11 Summary

Characteristics of frequentist and Bayesian approaches are summarized in the table below.
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Attribute Frequentist Bayesian

Nature of probabilities long-run relative frequencies degree of beliefa

Probabilities calculated P (data|no effect) P (effect > c|data)

Timing of arguments After the study, Before the study
influenced by data

Type of arguments Multiplicity re:multiple endpoints, Prior distribution
treatments, times; clinical
significance; α-spending function;
complex designs;
how to accurately compute p-value;
how to use outside information

Everyday challenges Conceptual Computational

Type I assertion Can be controlled but arbitrary Not relevant; can prevent
probability if multiple tests. Never zero declaring evidence for

regardless of n; does not prevent trivial effects by directly
detection of clinically trivial computing probability of
effects; NOT the probability non-trivial effect
of regulator’s regret

Efficacy probability Not available Posterior probability;
If approve drug with PP=0.96,
probability of error=0.04
(regulator’s regret)

Clinical relevance Tests must be augmented Built-in because of direct
by confidence limits estimation of P (effect)

Sample size Guessed; hard to adjust Savings due to unlimited looks
once study starts with no penalty; can stop

early for harm, futility, or
efficacy; can extend any study;
sample size estimate can
incorporate uncertainty

Effect estimates Overstated Perfectly calibrated by prior
if stop early

Skepticism Effect of multiplicity adjustment Wears off as n ↑
is constant

Design Does not extend to complex Extends to complex designs
designs such as response-adaptive and has formal mechanism
randomization and incorporating for incorporating relevant
prior information prior information

aBayesian probabilities can also be actual probabilities in the frequentist sense. See the biased coin example in
Section 2.4.

The Bayesian approach provides direct measures of evidence that are on the clinical scale and
not the randomness scale. PPs have meaning no matter what the context, including aggres-
sive sequential testing. Examining how the Bayesian approach works in an extreme multiple
comparisons situation sheds light on the much cleaner interpretation of PPs than p-values.
Bayesian inference works well in standard fixed sample size clinical trials but also allows one
to use highly flexible designs that allow earlier learning, while achieving reliability of results
without any notion of type I assertion probability. PPs are perfectly calibrated even when used
as a stopping rule. Bayesian effect estimates, e.g., posterior means, modes, or medians, are also
perfectly calibrated even with early stopping. Fully sequential designs with no need to plan the
look frequency in advance, but rather allowing it to be dictated by how outside knowledge or
within-study data evolve, are easily allowed with Bayes. There is a potential to stop studies
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earlier for futility or harm, and sometimes for efficacy. Simultaneous probability statements
about multiple endpoints are easily made. When historical data are justified in formulating the
prior distribution, Bayes is the only formal approach available.

For More Information
See Harrell’s blog at fharrell.com along with comments others have posted there, especially
fharrell.com/post/journey. Post your own comments and questions.

Some useful interactive demonstrations of Bayesian calculations for a two-sample t test may be
found at

• rpsychologist.com/d3/bayes

• sumsar.net/best_online

An excellent resource for Bayesian methods in clinical trials may be found at trialdesign.org,
especially for Phase 1 and 2 studies.

A large number of R scripts illustrating Bayesian analysis are available from github.com/

avehtari/BDA_R_demos.
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