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Chapter 1

Principles of Graph Construction

The ability to construct clear and informative graphs is
related to the ability to understand the data. There are
many excellent texts on statistical graphics (many of
which are listed at the end of this chapter). Some of
the best are Cleveland’s 1994 book The Elements of
Graphing Data and the books by Tufte. The sugges-
tions for making good statistical graphics outlined here
are heavily influenced by Cleveland’s 1994 book. See
also the excellent special issue of Journal of Computa-
tional and Graphical Statistics vol. 22, March 2013.
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1.1 Graphical Perception

• Goals in communicating information: reader percep-
tion of data values and of data patterns. Both accu-
racy and speed are important.

• Pattern perception is done by

detection : recognition of geometry encoding physi-
cal values

assembly : grouping of detected symbol elements;
discerning overall patterns in data

estimation : assessment of relative magnitudes of
two physical values

• For estimation, many graphics involve discrimination,
ranking, and estimation of ratios

• Humans are not good at estimating differences with-
out directly seeing differences (especially for steep
curves)

• Humans do not naturally order color hues

• Only a limited number of hues can be discriminated
in one graphic

• Weber’s law: The probability of a human detecting a
difference in two lines is related to the ratio of the two
line lengths
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• This is why grid lines and frames improve percep-
tion and is related to the benefits of having multiple
graphs on a common scale.

– eye can see ratios of filled or of unfilled areas,
whichever is most extreme

• For categorical displays, sorting categories by order
of values attached to categories can improve accu-
racy of perception. Watch out for over-interpretation
of extremes though.

• The aspect ratio (height/width) does not have to be
unity. Using an aspect ratio such that the average
absolute curve angle is 45◦ results in better percep-
tion of shapes and differences (banking to 45◦).

• Optical illusions can be caused by:

– hues, e.g., red is emotional. A red area may be
perceived as larger.

– shading; larger regions appear to be darker
– orientation of pie chart with respect to the horizon

• Humans are bad at perceiving relative angles (the
principal perception task used in a pie chart)

• Here is a hierarchy of human graphical perception
abilities:

1. Position along a common scale (most accurate task)
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2. Position along identical nonaligned scales
3. Length
4. Angle and slope
5. Area
6. Volume
7. Color: hue (red, green, blue, etc.), saturation (pale/deep),

and lightness
– Hue can give good discrimination but poor order-

ing

1.2 General Suggestions

• Exclude unneeded dimensions (e.g. width, depth of
bars)

• “Make the data stand out. Avoid Superfluity”; De-
crease ink to information ratio

• “There are some who argue that a graph is a suc-
cess only if the important information in the data can
be seen in a few seconds. . . . Many useful graphs
require careful, detailed study.”

• When actual data points need to be shown and they
are too numerous, consider showing a random sam-
ple of the data.
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• Omit “chartjunk”

• Keep continuous variables continuous; avoid group-
ing them into intervals. Grouping may be necessary
for some tables but not for graphs.

• Beware of subsetting the data finer than the sample
size can support; conditioning on many variables si-
multaneously (instead of multivariable modeling) can
result in very imprecise estimates

Murrell [23] has an excellent summary of recommenda-
tions:

· Display data values using position or length.

· Use horizontal lengths in preference to vertical
lengths.

·Watch your data–ink ratio.

· Think very carefully before using color to repre-
sent data values.

· Do not use areas to represent data values.
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· Please do not use angles or slopes to represent
data values.

· Please, please do not use volumes to represent
data values.

1.3 Tufte on “Chartjunk”

Chartjunk does not achieve the goals of its prop-
agators. The overwhelming fact of data graphics
is that they stand or fall on their content, grace-
fully displayed. Graphics do not become attractive
and interesting through the addition of ornamen-
tal hatching and false perspective to a few bars.
Chartjunk can turn bores into disasters, but it can
never rescue a thin data set. The best designs
. . . are intriguing and curiosity-provoking, drawing
the viewer into the wonder of the data, sometimes
by narrative power, sometimes by immense detail,
and sometimes by elegant presentation of simple
but interesting data. But no information, no sense
of discovery, no wonder, no substance is gener-
ated by chartjunk.

— Tufte p. 121, 1983
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1.4 Tufte’s Views on Graphical Excellence

“Excellence in statistical graphics consists of complex
ideas communicated with clarity, precision, and efficiency.
Graphical displays should

• show the data

• induce the viewer to think about the substance rather
than about methodology, graphic design, the technol-
ogy of graphic production, or something else

• avoid distorting what the data have to say

• present many numbers in a small space

• make large data sets coherent

• encourage the eye to compare different pieces of data

• reveal the data at several levels of detail, from a broad
overview to the fine structure

• serve a reasonably clear purpose: description, ex-
ploration, tabulation, or decoration

• be closely integrated with the statistical and verbal
descriptions of a data set.”
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1.5 Formatting

• Tick Marks should point outward

• x- and y-axes should intersect to the left of the lowest
x value and below the lowest y value, to keep values
from being hidden by axes

• Minimize the use of remote legends. Curves can
be labeled at points of maximum separation (see the
Hmisc labcurve function).

1.6 Color, Symbols, and Line Styles

• Some symbols (especially letters and solids) can be
hard to discern

• Use hues if needed to add another dimension of in-
formation, but try not to exceed 3 different hues. In-
stead, use different saturations in each of the three
different hues.

• Make notations and symbols in the plots as consis-
tent as possible with other parts, like tables and texts

• Different dashing patterns are hard to read especially
when curves inter-twine or when step functions are
being displayed
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• An effective coding scheme for two lines is to use a
thin black line and a thick gray scale line

1.7 Scaling

• Consider the inclusion of 0 in your axis. Many times
it is essential to include 0 to tell the full story. Often
the inclusion of zero is unnecessary.

• Use a log scale when it is important to understand
percent change of multiplicative factors or to cure
skewness toward large values

• Humans have difficulty judging steep slopes; bank
to 45◦, i.e., choose the aspect ratio so that average
absolute angle in curves is 45◦.

1.8 Displaying Estimates Stratified by Categories

• Perception of relative lengths is most accurate — ar-
eas of pie slices are difficult to discern

• Bar charts have many problems:

– High ink to information ratio
– Error bars cause perception errors



CHAPTER 1. PRINCIPLES OF GRAPH CONSTRUCTION 11

– Can only show one-sided confidence intervals well
– Thick bars reduce the number of categories that

can be shown
– Labels on vertical bar charts are difficult to read

• Dot plots are almost always better

• Consider multi-panel side-by-side displays for com-
paring several contrasting or similar cases. Make
sure the scales in both x and y axes are the same
across different panels.

• Consider ordering categories by values represented,
for more accurate perception

1.9 Displaying Distribution Characteristics

• When only summary or representative values are shown,
try to show their confidence bounds or distributional
properties, e.g., error bars for confidence bounds or
box plot

• It is better to show confidence limits than to show ±1
standard error

• Often it is better still to show variability of raw values
(quartiles as in a box plot so as to not assume nor-
mality, or S.D.)
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• For a quick comparison of distributions of a continu-
ous variable against many categories, try box plots.

• When comparing two or three groups, overlaid empir-
ical distribution function plots may be best, as these
show all aspects of the distribution of a continuous
variable.

1.10 Showing Differences

• Often the only way to perceive differences accurately
is to actually compute differences; then plot them

• It is not a waste of space to show stratified estimates
and differences between them on the same page us-
ing multiple panels

• This also addresses the problem that confidence lim-
its for differences cannot be easily derived from inter-
vals for individual estimates; differences can easily
be significant even when individual confidence inter-
vals overlap.

• Humans can’t judge differences between steep curves;
one needs to actually compute differences and plot
them.

The plot in figure 1.1 shows confidence limits for indi-
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Figure 1.1: Means and nonparametric bootstrap 0.95 confidence limits for glycated hemoglobin for males and females, and
confidence limits for males - females. Lower and upper x-axis scales have same spacings but different centers. Confidence
intervals for differences are generally wider than those for the individual constituent variables.

vidual means, using the nonparametric bootstrap per-
centile method, along with bootstrap confidence inter-
vals for the difference in the two means. The R code
used to produce this figure is below.

attach(diabetes)

bootmean ← function(x,B=1000) {

w ← smean.cl.boot(x, B=B, reps=T)

reps ← attr(w,'reps ')

attr(w,'reps ') ← NULL

list(stats=w,reps=reps)
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}

set.seed (1)

male ← bootmean(glyhb[gender =='male '])

female ← bootmean(glyhb[gender =='female '])

dif ← c(mean=male$stats['Mean ']-female$stats['Mean '],

quantile(male$reps-female$reps , c(.025 ,.975 )))

male ← male$stats

female ← female$stats

par(mar=c(4,6,4,1))

plot(0,0,xlab='Glycated Hemoglobin ',ylab='',

xlim=c(5,6.5),ylim=c(0,4), axes=F)

axis (1)

axis(2, at=c(1,2,4),

labels=c('Female ','Male ','Difference '),

las=1, adj=1, lwd =0)

points(c(male[1], female [1]), 2:1)

segments(female [2], 1, female [3], 1)

segments(male[2], 2, male[3], 2)

offset ← mean(c(male[1], female [1])) - dif [1]

points(dif [1] + offset , 4)

segments(dif [2]+ offset , 4, dif [3]+ offset , 4)

at ← c(-.5 ,-.25 ,0,.25 ,.5,.75 ,1)

axis(3, at=at+offset , label=format(at))
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Figure 1.2: Difference in two Kaplan–Meier survival curve estimates with pointwise 0.95 confidence bands for the difference;
produced by the survplotdiff function in the rms package.
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1.11 Displaying Uncertainty

There are are least five ways of depicting the uncer-
tainty of statistical estimates in graphs:

1. Bayesian posterior densities

2. error bars showing confidence limits

3. confidence bands drawn using two lines

4. shaded confidence bands

5. continuously graduated shading

Examples of approaches 2-4 appear in later sections.
Bayesian posterior distributions convey the most accu-
rate perception of uncertainty, and are easy to construct
for a scalar parameter such as a single group mean.
Continuous shading as developed by Jackson (2008)
has several advantages (especially when estimating a
function evaluated at many points) relating to its provi-
sion of the correct psychological effect of the limitations
of information. Jackson has developed an R package
called denstrip implementing these ideas. The exam-
ple graphic below from the right panel of his Figure 5
shows the beauty of this approach in conveying uncer-
tainty about forecasts into the future.
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Figure 1.3: Displaying uncertainty with shading

1.12 Choosing the Best Graph Type

The recommendations that follow are good on the aver-
age, but be sure to think about alternatives for your par-
ticular data set. For nonparametric trend lines, it is ad-
visable to add a “rug” plot to show the density of the data
used to make the nonparametric regression estimate.
Alternatively, use the bootstrap to derive nonparametric
confidence bands for the nonparametric smoother.
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1.12.1 Single Categorical Variable

Use a dot plot or horizontal bar chart to show the propor-
tion corresponding to each category. Second choices
for values are percentages and frequencies. The total
sample size and number of missing values should be
displayed somewhere on the page. If there are many
categories and they are not naturally ordered, you may
want to order them by the relative frequency to help the
reader estimate values.

1.12.2 Single Continuous Numeric Variable

An empirical cumulative distribution function, optionally
showing selected quantiles, conveys the most informa-
tion and requires no grouping of the variable. A box plot
will show selected quantiles effectively, and box plots
are especially useful when stratifying by multiple cate-
gories of another variable. Histograms are also possi-
ble.
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1.12.3 Categorical Response Variable vs. Categorical Ind. Var.

This is essentially a frequency table. It can also be de-
picted graphically

1.12.4 Categorical Response vs. a Continuous Ind. Var.

Choose one or more categories and use a nonpara-
metric smoother to relate the independent variable to
the proportion of subjects in the categories of interest.
Show a rug plot on the x-axis.

1.12.5 Continuous Response Variable vs. Categorical Ind. Var.

If there are only two or three categories, superimposed
empirical cumulative distribution plots with selected quan-
tiles can be quite effective. Also consider box plots, or a
dot plot with error bars, to depict the median and outer
quartiles. Occasionally, a back-to-back histogram can
be effective for two groups (see the Hmisc histbackback

function).
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1.12.6 Continuous Response vs. Continuous Ind. Var.

A nonparametric smoother is often ideal. You can add
rug plots for the x- and y-axes, and if the sample size
is not too large, plot the raw data. If you don’t trust
nonparametric smoothers, group the x-variable into in-
tervals having a given number of observations, and for
each x-interval plot characteristics (3 quartiles or mean
± 2 SD, for example) vs. the mean x in the interval.
This is done automatically with the Hmisc xYplot func-
tion with the methods=’quantile’ option.

1.13 Conditioning Variables

You can condition (stratify) on one or more variables
by making separate pages by strata, by making sepa-
rate panels within a page, and by superposing groups
of points (using different symbols or colors) or curves
within a panel. The actual method of stratifying on the
conditional variable(s) depends on the type of variables.

Categorical variable(s) : The only choice to make in
conditioning (stratifying) on categorical variables is
whether to combine any low-frequency categories. If
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you decide to combine them on the basis of relative
frequencies you can use the combine.levels function
in Hmisc.

Continuous numeric variable(s) : Unfortunately, to con-
dition on a continuous variable without the use of a
parametric statistical model, one must split the vari-
able into intervals. The first choice is whether the
intervals of the numeric variable should be overlap-
ping or non-overlapping. For the former the built-
in equal.count function can be used for a paneling
or grouping variable in trellis graphics (these over-
lapping intervals are called “shingles” in trellis). For
non-overlapping intervals the Hmisc cut2 function is
a good choice because of its many options and com-
pact labeling.

1.14 Software

Recommended software for statistical graphics: R

· Base graphics functions (an excellent introduction for
R is by Marc Schwartz at http://cran.r-project.
org/doc/Rnews/Rnews_2003-2.pdf)
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· R lattice packages for multi-panel displays and more
(for R documentation with graphical output see http:

//rgm3.lab.nig.ac.jp/RGM/R_image_list?package=

lattice&init=true; see also Deepayan (2008))

· R ggplot2 package implementing much of Wilkinson
(2005) (see http://docs.ggplot2.org/current/)

See R graphics galleries such as http://scs.math.yorku.
ca/index.php/R_Graphs_Gallery, http://www.sr.bham.
ac.uk/~ajrs/R/r-gallery.html, http://rgraphgallery.
blogspot.com.

See ctspedia.org for much useful information about
clinical trials and clinical safety graphics.
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Examples

2.1 General Examples
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Figure 2.1: Empirical cumulative distribution function for four continuous variables in the pbc dataset,
stratified by randomized treatment
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Figure 2.4: Extended box plot displaying quantiles such that 0.25, 0.5, 0.75, and 0.9 of the data are
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dot.
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Glycosolated Hemoglobin
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Figure 2.5: Quartiles of glyhb stratified separately by several variables
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Figure 2.9: Dot plot depicting sensitivity and specificity stratified by method and sex, with the two
sexes superposed. Data are from Galobardes, et al., J Clin Epi 51:875-881, 1998.
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Figure 2.10: Scatterplot for showing large number of observations using hexagonal binning. Num-
ber of observations in each bin is color-coded.
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require(hexbin) # h e x b i n p a c k a g e on C R A N

h ← hexbin(pmin(8,crea3), pmin(8,crea14), xbins =40)

plot(h, xlab='Creatinine Day 3', ylab='Creatinine Day 14',

trans=function(x)x∧ (1/3), inv=function(x)x∧3,

colramp=plinrain)

See http://cran.r-project.org/web/packages/hexbin/

vignettes/hexagon_binning.pdf

2.1.1 Data Provided by Min Wu PhD, Novartis East Hanover

Fasting serum tryglycerides measured longitudinally, mul-
tiple treatments. For some displays only use Control
and Treatment 1. Patients on Treatment 2 had a lead-in
on Treatment 1.
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Figure 2.11: Hexagonal binning plot for week 12 against week 0 triglyceride levels for Treatment 1.
Color mapping of sample sizes is on the cube root scale. Measurements are truncated at 500
mg/dl.
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Figure 2.12: Three quartiles of week 12 triglyceride stratified by baseline triglyceride (100 patients
in each interval) and treatment
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Figure 2.13: loess smoother of week 12 tryglyceride vs. week 0 stratified by treatment. Rug plots
on each curve show distribution of week 0 measurements.
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Figure 2.14: Longitudinal back–to–back violin plots showing the entire distribution of triglyceride by
treatment and time. Circles indicate medians. The black vertical bars have lengths equal to
one-half the length of the 0.95 confidence interval for the difference in medians. When this bar
does not touch the circles, there is a significant difference in medians at the 0.05 level. This type
of display is used in the greport package.
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2.1.2 Displaying Ranks and Confidence Intervals
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Figure 2.15: Dot plot showing rank and bootstrap 0.95 confidence limits for the rank of mean sat-
isfaction with service, stratified by UVa vs. outside referring physicians. Dots are sorted by
descending order of the mean satisfaction across the two strata.
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2.2 Examples from REGRESSION MODELING STRATEGIES, NY: Springer 2001

Figure 2.16: Nomogram for estimating probability of bacterial (ABM) versus viral (AVM) meningitis.
Step 1, place ruler on reading lines for patient’s age and month of presentation and mark inter-
section with line A; step 2, place ruler on values for glucose ratio and total polymorphonuclear
leukocyte (PMN) count in cerebrospinal fluid and mark intersection with line B; step 3, use ruler
to join marks on lines A and B, then read off the probability of ABM versus AVM. Copyright 1989,
American Medical Association. Reprinted by permission.



CHAPTER 2. EXAMPLES 44

Odds Ratio
 0.10  0.50  1.00  2.00  4.00  8.00

dose - 5:0
dtime - 37:11

age - 76:70
wt - 106:89

hx - 1:0
bp - 0.129:-0.645

sz - 24.7:6
sg - 12:9

ap - 7:0.6
bm - 1:0

hg - 14.6:12
pf - ib<50%d:nact

0.
99 0.

9
0.

7
0.

8
0.

95
pf - ib>50%d:nact

ekg - nrml:hrst
ekg - bngn:hrst

ekg - rd&ec:hrst
ekg - hbocd:hrst

ekg - MI:hrst

Figure 2.17: Interquartile-range odds ratios for continuous predictors and simple odds ratios for
categorical predictors. Numbers at left are upper quartile : lower quartile or current group : ref-
erence group. The shaded bars represent 0.7, 0.8, 0.9, 0.95, 0.99 confidence limits. The intervals
are drawn on the log odds ratio scale and labeled on the odds ratio scale. Ranges are on the
original scale, even for transformed variables.
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Figure 2.18: Effect of each predictor on log survival time. Predicted values have been centered so
that predictions at predictor reference values are zero. Pointwise 0.95 confidence bands are also
shown. As all Y -axes have the same scale, it is easy to see which predictors are strongest.
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Figure 2.19: Contribution of variables in predicting survival time in log-normal model.
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Figure 2.20: Nomogram for predicting median and mean survival time, based on approximation of
full model.
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2.3 Other Devices for Obtaining Predictions

2.3.1 Single-Axis Nomogram

When one needs to transform a variable or to evaluate
a prediction model that contains only a single predictor,
a single-axis plot may be the most accurate device. In
the following example, a binary logistic model of a single
continuous predictor variable Score is evaluated to obtain
the predicted probability of the event of interest.

0 20 40 60 80 100 120 140 160 180 200 220
Score

0.001 0.01 0.05 0.2 0.5 0.8 0.95 0.99 0.999

Estimated Risk

Figure 2.21: Single-axis nomogram.

The R code producing this figure is belowa.
pdf('oneAxis.pdf ', width=6, height =1.25)

par(mar=c(3,.5 ,1,.5))

beta ← (qlogis(.999)-qlogis(.001))/177

alpha ← qlogis(.001)-23*beta

plot.new ()

par(usr=c(-10 ,230,-.04 ,1.04))

par(mgp=c(1.5 ,.5 ,0))

axis(1, at=seq(0,220,by=20))

axis(1, at=seq(0,220,by=5), tcl=-.25 , labels=FALSE)

title(xlab='Score ')

aThe intercept alpha and slope beta were computed to match a published model. These would ordinarily be computed from coef(f) where f

is the fit object.
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p ← c(.001 ,.01 ,.05 ,seq(.1 ,.9,by=.1),.95 ,.99 ,.999)

s ← (qlogis(p)-alpha)/beta

axis(1, at=s, label=as.character(p), col.ticks=gray(.7),

tcl=.5 , mgp=c(-3 ,-1.7 ,0))

p ← c(seq(.01 ,.2 ,by=.01),seq(.8 ,99,by=.01))

s ← (qlogis(p)-alpha)/beta

axis(1, at=s, labels=FALSE , col.ticks=gray(.7), tcl=.25)

title(xlab='Estimated Risk ', mgp=c(-3,-1.7 ,0))

dev.off ()



CHAPTER 2. EXAMPLES 50

2.4 Example Pharmaceutical Safety Displays

Most Frequent On−Therapy Adverse Events Sorted by Risk Difference
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Figure 2.22: Side-by-side dot plots displaying crude incidence of commonly occuring adverse events
in a clinical trial with two treatments (A and B, left panel) and the difference in proportions with
0.95 confidence interval (right panel). AEs (both panels) are sorted by descending difference in
proportions. Modification of Amit et al, 2008.
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# # T h e f o l l o w i n g f u n c t i o n s a r e in t h e HH p a c k a g e

panel.ae.dotplot ←
function (x, y, groups , ... , col.AB , pch.AB , lower , upper)

{

panel.num ← if.R(s = get("cell", frame = sys.parent ()),

r = panel.number ())

if (panel.num == 1)

panel.ae.leftplot(x, y, groups = groups ,

col = col.AB , pch = pch.AB , ...)

if (panel.num == 2)

panel.ae.rightplot(x, y, ... , lwd = 6, pch = 16,

lower = lower , upper = upper)

}

panel.ae.leftplot ← function(x, y, groups , col.AB , ...)

{

panel.abline(h = y, lty = 2, lwd = 0, col = 1)

panel.superpose(x, y, groups = groups ,

col = col.AB , ...)

}

panel.ae.rightplot ←
function(x, y, ... , lwd = 6, lower , upper)

{

if.R(r = {

}, s = {

panel.segments ← segments

panel.points ← points

})

panel.abline(v = 0, lty = 3, lwd = 0)

panel.abline(h = y, lty = 2, lwd = 0, col = 1)

panel.segments(lower , y, upper , y, lwd = 2)

panel.xyplot(x, y, ... , col = 1, cex = 0.7)

panel.points(lower , y, pch = 3, col = 1, cex = 0.4)

panel.points(upper , y, pch = 3, col = 1, cex = 0.4)
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}

# # V e r s i o n of HH ' s a e . d o t p l o t t h a t u s e s r i s k d i f f e r e n c e a n d

# # u s e s p r o p o r t i o n s i n s t e a d of p e r c e n t s

riskdiff ← function(data , tx='treat ', prefterm='PREF ',

events='SAE', n='SN',

conf.int=.95)

{

zcrit ← qnorm ((1+ conf.int)/2)

i ← order(data[[ prefterm]], data[[tx]])

data ← data[i,]

N ← data[[n]]

prop ← data[[ events ]]/N

pt ← data[[ prefterm ]]

treat ← data[[tx]]

if(nrow(data) != 2*length(unique(pt)))

stop('asymmetric data ')

utrt ← sort(unique(as.character(treat )))

diff ← prop[treat==utrt [1]] - prop[treat ==utrt [2]]

diff.order ← order(diff)

pt ← ordered(pt, levels =(pt[treat ==utrt [1]])[ diff.order ])

diff2 ← as.vector(rbind(diff , diff))

p1 ← prop[treat==utrt [1]]

n1 ← N[treat ==utrt [1]]

p2 ← prop[treat==utrt [2]]

n2 ← N[treat ==utrt [2]]

se ← sqrt(p1*(1-p1)/n1 + p2*(1-p2)/n2)

se2 ← as.vector(rbind(se, se))

lower ← diff2 - zcrit*se2

upper ← diff2 + zcrit*se2

data.frame(pt, treat , prop , diff=diff2 , lower , upper)
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}

# To g e t a e a n o n y m : r e q u i r e ( HH );

# a e a n o n y m ← r e a d . t a b l e ( hh (" d a t a s e t s / a e d o t p l o t . d a t ") , h e a d e r = TRUE , s e p =" ,")

w ← riskdiff(aeanonym , tx='RAND ', prefterm='PREF ',

events='SAE', n='SN')

ae.dotplot ←
function(data , A.name = 'A', B.name = 'B',

col.AB = c("red", "blue"), pch.AB = c(16, 17),

main.title = "Most Frequent On-Therapy Adverse Events Sorted by Risk Difference",

main.cex = 1, cex.AB.points = NULL ,

cex.AB.y.scale = 0.6,

position.left = c(0, 0, 0.7 , 1),

position.right = c(0.61 , 0, 0.98 , 1),

key.y = -0.2 , conf.int =0.95)

{

r ←
dotplot(pt ∼ prop + diff ,

groups = data$treat ,

data = data , outer = TRUE ,

lower = data$lower ,

upper = data$upper ,

panel = panel.ae.dotplot ,

scales = list(x = list(relation = "free",

limits = list(range(data$prop),

range(data$lower , data$upper ))),

y = list(cex = cex.AB.y.scale )),

A.name = A.name , B.name = B.name ,

col.AB = col.AB , pch.AB = pch.AB ,

cex.AB.points = cex.AB.points ,

cex.AB.y.scale = cex.AB.y.scale ,

main = list(main.title , cex = main.cex),

xlab = NULL , between = list(x = 1),

key = list(y = key.y , x = 0.15 ,
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points = list(col = col.AB , pch = pch.AB),

text = list(c(A.name , B.name), col = col.AB ,

cex = 0.9),

columns = 2, between = 0.5, space = "bottom"))

r$condlevels [[1]] ← c("Proportion",

paste("Risk Difference with",

conf.int , "CI"))

r

}

ae.dotplot(w, A.name='A (N=216) ', B.name='B (N=431) ')

2.5 Mixing Tables and Graphics
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Figure 2.23: Serious AE frequency display by body system and preferred term. Widths of body sys-
tem rectangles is proportional to the number of subjects having an event in that body system. The
small bars denote the number of subjects who had a particular event. If the between-treatment
difference in proportions of subjects having events is significant (P < 0.05), the corresponding
rectangles/bar charts in both treatment groups are pink/red. Graphic designed and implemented
in R in the rreport package by Svetlana Eden, VU Dept. of Biostatistics.
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Figure 2.24: Clinical chemistry quartiles over time for two treatments (one in black, the other in gray
scale, thicker lines for medians), with half-width confidence intervals (small vertical lines) for the
difference in medians. If the confidence bars do not overlap the two medians, differences are
significant at the 0.05 level.
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Chapter 3

Graphics for One or Two Variables

Example code in this chapter uses the following func-
tions in the Hmisc package. Other functions are built-in
to R.

datadensity, Ecdf, histSpike, mtitle, panel.bpplot, pstamp,

scat1d, show.col, show.pch

For more information see

· http://www.xmarks.com/site/exploringdata.cqu.edu.
au

· http://davidmlane.com/hyperstat/desc_univ.html

58
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· http://www.statsoft.com/Textbook/Graphical-Analytic-Techniques

· http://www.itl.nist.gov/div898/handbook/eda/section1/
eda15.htm

· http://www.math.yorku.ca/SCS/StatResource.html

3.1 One-Dimensional Scatterplot

· Rug plot; useful by itself or on curves or axes

· Shows all raw data values

· For large datasets, draw random thirds of vertical tick
to avoid black blob

· Old-style dot plots are similar to rug plots

· Can use Cleveland’s dot charts to show raw data
rug(x) # b a s i c b u i l t - i n r u g p l o t f u n c t i o n

datadensity(mydataframe) # s h o w 1 -d s c a t t e r p l o t f o r a l l v a r i a b l e s

dotplot(x) # o n e v a r i a b l e

dotplot(∼ x) # s a m e t h i n g
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stripplot(x) # T r e l l i s / L a t t i c e v e r s i o n

stripplot(∼ x) # d i t t o

hist(x)

scat1d(x) # a d d r u g p l o t at t o p of h i s t o g r a m

plot(x, y)

scat1d(x) # r u g p l o t f o r x at t o p

scat1d(y, side =4) # r u g p l o t f o r y at r i g h t s i d e

# s c a t 1 d h a s m a n y o p t i o n s

3.2 Histogram

· Used for estimating the probability density function

f (x) = lim
δ→0

Prob(x− δ < X ≤ x)/δ (3.1)

· Very dependent on how bins formed, and number of
bins

· y-axis can be frequency or proportion

· No statistical estimates can be read directly off a his-
togram or density plot

hist(x, nclass=i) # u s e i b i n s

histogram(x) # T r e l l i s / L a t t i c e v e r s i o n

histogram(∼ x)

histSpike(x) # h i g h - r e s s p i k e h i s t o g r a m

plot(x, y)
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histSpike(x, add=T)

# a d d s p i k e h i s t o g r a m to e x i s t i n g plot , x - a x i s

Note: histSpike is called automatically by scat1d when n
is large (by default, ≥ 2000)

3.3 Density Plot

· Smoothed histogram

· Smooth estimate of f (x) above

· Depends on choice of a smoothing parameter
plot(density(x), type='l')

densityplot(∼ x) # T r e l l i s / L a t t i c e v e r s i o n

hist(x, probability=T, nclass =20); lines(density(x)) # d i t t o

# p r o b a b i l i t y = T s c a l e s y - a x e s so a r e a u n d e r c u r v e is 1 .0

3.4 Empirical Cumulative Distribution Plot

· Population cumulative distribution function is

F (x) = Prob(X ≤ x) (3.2)
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· F (b)− F (a) = Prob(a < X ≤ b) and is the area under
the density function f (x) from a to b

· Estimate of F (x) is the empirical cumulative distribu-
tion function, which is the proportion of data values
≤ x

· Cumulative histogram

·Works fine if histogram has one observation per bin

· ECDF requires no binning and is unique

· Excellent for showing differences in entire distribu-
tions between two or three overlaid groups

· Quantiles can be read directly off ECDF
Ecdf(mydataframe) # s h o w a l l c o n t i n u o u s v a r

Ecdf(x)

Ecdf(x, q=c(.2 ,.8)) # r e f l i n e s .2 , .8 q u a n t i l e s

Ecdf(x, datadensity='rug') # a d d r u g p l o t

Ecdf(x, datadensity='hist ') # a d d s p i k e h i s t o g r a m

Ecdf(x, datadensity='density ') # a d d d e n s i t y p l o t

Ecdf(∼ x) # T r e l l i s / L a t t i c e v e r s i o n
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3.5 Box Plot

·Most useful for comparing many groups

· Basically uses 3-number summary: 3 quartiles

· Easy to also show mean

· Can be extended to show other percentiles, espe-
cially farther out in the tails of the distribution

· Usually show lower and upper “adjacent” values (“whiskers”)
and “outside” values; some find these not to be useful

boxplot(x) # b a s i c f u n c t i o n

plot(groups , x) # s t r a t i f i e d , v e r t i c a l b o x e s

boxplot(split(x,groups )) # s a m e

bpplot(split(x,groups )) # b o x - 1 0 1 p e r c e n t i l e p l o t

bwplot(x) # b a s i c h o r i z o n t a l b o x plot , T r e l l i s / L a t t i c e

bwplot(∼ x) # d i t t o

bwplot(x, panel=panel.bpplot) # h o r i z . b o x - p e r c e n t i l e p l o t

3.6 Scatter Plots

· Excellent for showing relationship between a semi-
continuous X and a continuous Y
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· Does not work well for huge n unless relationship is
tight

· Can use transformed axes, or transformed data may
be plotted

· Can show a limited number of classes of points through
the use of different symbols

plot(x, y)

plot(x, y, log='xy') # b o t h a x e s n o n l i n e a r ( l o g )

plot(log(x), log(y)) # l o g plot , l o g a x e s

plot(x, y, main='Main Title ')

plot(x, y, xlab='X label ', ylab='Y label ',

xlim=c(0,1), ylim=c(20 ,100))

xyplot(y ∼ x) # T r e l l i s / L a t t i c e

3.7 Optional Commands to Embellish Non-Trellis Plots

3.7.1 Titles

plot(x, y, main='Main Title ')

plot(x, y)

title('Main Title ')

title(sub='Subtitle ', adj=0)

# a d j =0 , .5 ,1 f o r left , c e n t e r , r i g h t - j u s t i f i c a t i o n

title('First Line\nSecond Line ')

# U s e \ n to j u m p d o w n o n e l i n e on o u t p u t
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par(mfrow=c(2,2),oma=c(0,0,2,0))

# 2 x2 m a t r i x of plots , l e a v e 2 l i n e s f o r

# o v e r a l l t o p t i t l e ( o m a = o u t e r m a r g i n s )

plot( )

hist( )

...

mtitle('Overall Title ')

pstamp () # d a t e - t i m e s t a m p l o w e r r i g h t

3.7.2 Adding Lines, Symbols, Text, and Axes

plot(x, y)

axis (3) # a d d a x i s ( t i c k s & l a b e l s )

axis(4, labels=FALSE) # a x i s on r i g h t ( t i c k s o n l y )

lines (1:3, c(2,4,-1)) # a d d x =1:3 , y =2 , 4 , -1

points(x2, y2)

points(locator ()) # a d d c l i c k e d p o i n t s

text(.2 , 1.3, 'Text ') # a d d t e x t

text(locator (1), 'Mytext ') # a d d t e x t at c l i c k

3.7.3 Reference Lines

abline(a=0, b=1)

# l i n e of i d e n t i t y ( a , b = i n t e r c e p t , s l o p e )

abline(a=0, b=1, lty=2) # d o t t e d l i n e

abline(h=c(1,3)) # h o r i z o n t a l l i n e at y =1 ,3

abline(v=0) # v e r t i c a l l i n e at x =0
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3.8 Choosing Symbols, Colors, and Line Types

show.pch () # d i s p l a y a l l s y m b o l s

points(x, y, pch=i) # u s e s y m b o l i f r o m d i s p l a y

show.col () # s h o w a l l c o l o r s

points(x, y, col=i)

Line types are specified with an lty argument. See AH
Figure 12.4.



Chapter 4

Conditioning and Plotting Three or More
Variables

4.1 Conditioning

· Choose one or two variables of principal interest

– Typically one for histograms, ECDFs, density plots

– Two for scatterplots

– One or two for dot plots

· Can condition on (hold constant) effects of other vari-
ables using a statistical model (not covered in this
course) or by subsetting data

67
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· Subsets usually non-overlapping for categorical con-
ditioning (stratification) variables

·May or may not be overlapping (shingles) intervals
for continuous conditioning variables

· Conditioning may be shown in many ways

– different symbols or colors for different groups on
a scatterplot or dot plot

– different line styles or colors on a lines plot show-
ing multiple curves, or carefully labeled curves which
use the same line styles

– adjacent lines of dots on a dot plot

– different vertical, horizontal (or both) panels

– different pages, including layered transparencies

– dynamically in real time using “brushing” and other
interactive techniques
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· Cleveland’s principal of small multiples

See Section 1.13 of these lecture notes.

4.2 Dot Plots

· Ideal for showing how one or more categorical vari-
ables are related to a single continuous numeric re-
sponse variable

· Continuous conditioning variables must be catego-
rized

· This is usually done by creating intervals containing
equal sample sizes

· Can show error bars and other superpositioning

· Done using Trellis/Lattice dotplot or Hmisc Trellis/Lat-
tice Dotplot function (later) or using basic dotchart2

function in Hmisc

· Created automatically when plotting certain objects
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created by summary.formula

4.3 Thermometer Plots

· Useful in problems that are similar to those handled
by dot plots

· But thermometers may be positioned irregularly

· Ideal for geographical displays

· See example from online help file for symbols

· For depicting contingency tables see the Hmisc sym-

bol.freq function

4.4 Extensions of Scatterplots

4.4.1 Single Plots

· Vary symbols, colors—best for conditioning on cate-
gorical variables
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· Bubble plots: can depict an addition continuous vari-
able which may be a second response variable

· Radius of circles plotted is proportional to the third
variable
x ← 1:10

y ← runif (10)

z ← runif (10)

symbols(x, y, circles=z, inches=.2) # l a r g e s t is . 2 i n

4.4.2 Scatterplot Matrices

· Show all pairwise relationships from among 3 or more
continuous variables
x ← matrix(rnorm (200*5),ncol =5)

pairs(x)

pairs(mydataframe[,c('age','pressure ','weight ','height ')])

· Trellis/Lattice function: splom

4.5 3-D Plots for Almost Smooth Surfaces

· GUI plus several functions
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· Perspective plot: simulated 3-D surface

· Contour plot

· Image plot: 3rd variable categorized into, for exam-
ple, 10 intervals;
Shown using color (e.g., heat spectrum) or grayscale
See main web page for image plot examples

· Basic S functions: persp, contour, image

4.6 Dynamic Graphics

4.6.1 Interactively Identifying Points

· If use plot or points

· Use identify(x, y, labels=rowlabels)

plot(state.x91[,'Income '], state.x91[,'Murder '])

identify(state.x91[,c('Income ','Murder ')],

labels=dimnames(state.x91 )[[1]])

· First argument to identify may be a vector (then 2nd
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argument is y-variable), a 2-column matrix, or a list

4.6.2 Wireframe and Perspective Plots

·Works for smooth data or somewhat tight relation-
ships

· GUI is nice for this

· Can interactively look at 3-D plot from different per-
spectives

· Or can automatically get a matrix of plots from vary-
ing perspectives

4.6.3 Brushing and Spinning

· Useful for examining relationships between multiple
continuous variables when some of the relationships
are somewhat tight (depending on the sample size)

· Brushing: highlight points in one 2-D scatterplot; shows
corresponding points in other 2-D plots
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· Spinning: use motion to simulation 3-D point clouds,
rotating 3rd variable in and out of display
brush(cbind(sbp , dbp , age , cholesterol), hist=T)

brush(x[,c('sbp','dbp','age','cholesterol ')])

brush(x[,Cs(sbp ,dbp ,age ,cholesterol )])

brush(state.x91) # m a t r i x b u i l t - i n to S

brush(prim4) # ' ' ' '

· First argument to brush (a matrix) may not contain NAs

· hist argument: draw marginal histograms

4.6.4 “Live” Graphics on Web Sites

· In R: shiny, SVG graphics, javascript-based options

· Allows drilling down to other pre-programmed results

· Simple to use on web sites

R on Web Servers

· Can build web sites at which users click on options,
R is run, non-pre-programmed graphics are created
on the fly
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· R can be freely used on web servers. Information
about R may be found at www.r-project.org.

· Consider rstudio.org

4.7 Lattice Graphics

Function Purpose Formula Argument
barchart Bar chart y ~ x | g1*g2

bwplot Box and whisker plot y ~ x | g1*g2

densityplot Probability density plot ~ x | g1*g2

dotplot Dot plot y ~ x | g1*g2

Dotplot Hmisc generalization of dotplot y ~ x | g1*g2

Ecdf Hmisc ECDF plot ~ x | g1*g2,

groups=g3

histogram Histogram ~ x | g1*g2

parallel Parallel coordinate plot ~ x | g1*g2

panel.bpplot Hmisc enhanced box plots and
box–%-tile plots with bwplot

panel.plsmo Hmisc panel function for y ~ x | g1*g2,

xyplot groups=g3

splom Multi–panel scatterplot matrices ~ x | g1*g2

stripplot One–dimensional scatter plot y ~ x | g1*g2

xyplot Conditioning plots/scatter plots y ~ x | g1*g2

xYplot Hmisc generalization of xyplot Cbind(y,y2,y3) ~ x | g1*g2,

for multi–column y groups=g3

setTrellis Hmisc trellis setup
trellis.strip.blank Hmisc function to set trellis

to use blank background for panel titles

General form of first argument (statistical formula):
vertical variable ∼ horizontal variable | row.conditioner *

column.conditioner * page.conditioner ,

groups=superposition.variable

· Variables after | are conditioned upon to make panels
(available for all graph types)
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· groups variable makes separate lines or symbols within
a panel (not available for all graph types)

· All Trellis/Lattice functions take data and subset argu-
ments.

4.7.1 Appropriate Paneling/Grouping Variables

· These are assumed discretea

· Numeric continuous variables need to be discretized

Panel Variables

· If panel variable is a discrete numeric and you want
the value to explicitly show in the panel strip, specify
e.g.
dotplot(y ∼ x | factor(g))

· For continuous variable, panels may correspond to
overlapping intervals; to create these use equal.count

or shingle functions after the |
aThe GUI will automatically discretize continuous numeric variables when they are used in paneling.
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· For non-overlapping intervals, cut2 is flexible and pro-
vides nice panel labeling

4.7.2 Classes of Trellis/Lattice Function

Functions Plotting All Data Points

The following functions are often used on raw data. They
are also used to plot summary data computed on raw
data, which will be covered later.

· barchart

· dotplot

· Hmisc version of dotplot: Dotplot

· parallel

· splom

· stripplot
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· xyplot

· Hmisc version of xyplot: xYplot

Functions That Summarize Data and then Plot

· bwplot: computes 3 quartiles, mean, outer values,
etc. on each group of points (panel, vertical box plot
within panel); then draws box plot

· density: computes smooth estimate of density func-
tion, then plots

· Ecdf: computes ECDF for each group or panel (this is
an Hmisc function; there is a simpler builtin R func-
tion ecdf)

· histogram: bins x-variable, computes frequencies for
each panel

· Note: for density, Ecdf, histogram user has no control
over y-axis as these are computed
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· xYplot has an argument method that can do automatic
summarization of raw data; summaries fed immedi-
ately into plots

Built-in vs. Hmisc

· For dotplot, xyplot you must specify panel=panel.superpose

to use superposition, in addition to specifying groups

· Dotplot, xYplot implicitly handle superposition when
groups is given

· Dotplot, xYplot allow for error bars (xYplot also allows
for error bands); these are covered later

· Dotplot, xYplot use label attributes of x and y vari-
ables for labeling axes (if not label defined, uses vari-
able names as with built-in Trellis/Lattice functions)

· xYplot sometimes uses different defaults for the type

argument

– User can take control by specifying type=’l’,’p’,’b’

for lines, points, or both
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· Hmisc functions do some automatic key drawing

· xYplot will do some automatic data summarization

· Hmisc has panel functions to be discussed later:

– panel.bpplot: Hmisc function that can be used as a
replacement for panel.bwplot

– panel.plsmo: can use with xyplot to plot lowess trend
lines

4.7.3 Panel Functions

· A strength of Trellis/Lattice is its ability to let the user
specify a panel argument

· This directs Trellis/Lattice in constructing each panel;
panel function does not need to know about other
panels

· Panel function can be a single function or it can call
many panel functions
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· Latter is how you combine graph types (e.g., raw data
+ trend line)
xyplot(y ∼ x,

panel=function(...) {

panel.xyplot(...)

panel.loess(...) })

· You can more easily get raw data + trend line by using
xyplot(y ∼ x, panel=panel.smooth) # or :

xyplot(y ∼ x, panel=panel.plsmo) # p a n e l . p l s m o in H m i s c

Hmisc panel.bpplot

· Extends bwplot to do box-percentile plots

· By default plots mean using solid circle, and shows
0.25, 0.5, 0.75, and 0.9 coverage intervals, and does
not show any raw data

· Has many options

· Examples: ?panel.bpplot:
set.seed (13)

x ← rnorm (1000)

g ← sample (1:6, 1000, replace=T)
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x[g==1][1:20] ← rnorm (20)+3

# c o n t a m i n a t e 20 x ' s f o r g r o u p 1

# d e f a u l t t r e l l i s b o x p l o t

bwplot(g ∼ x)

# b o x - p e r c e n t i l e p l o t w i t h d a t a d e n s i t y ( r u g p l o t )

bwplot(g ∼ x, panel=panel.bpplot ,

probs=seq(.01 ,.49 ,by=.01), datadensity=T)

# a d d , s c a t 1 d . o p t s = l i s t ( t f r a c = 1 ) to m a k e a l l t i c k m a r k s

# t h e s a m e s i z e w h e n a g r o u p h a s > 1 2 5 o b s e r v a t i o n s

# s m a l l d o t f o r means , s h o w o n l y

# .05 , .125 , .25 , .375 , .625 , .75 , .875 , . 9 5 q u a n t i l e s

bwplot(g ∼ x, panel=panel.bpplot , cex=.3)

# s u p p r e s s m e a n s a n d r e f e r e n c e l i n e s f o r

# l o w e r a n d u p p e r q u a r t i l e s

bwplot(g ∼ x, panel=panel.bpplot ,

probs=c(.025 ,.1 ,.25), means=F, qref=F)

# c o n t i n u o u s p l o t up u n t i l q u a r t i l e s (" T o o t s i e R o l l p l o t ")

bwplot(g ∼ x, panel=panel.bpplot ,

probs=seq(.01 ,.25 ,by=.01))

# s t a r t at q u a r t i l e s t h e n m a k e it c o n t i n u o u s

# (" c o f f i n p l o t ")

bwplot(g ∼ x, panel=panel.bpplot ,

probs=seq(.25 ,.49 ,by=.01))

# s a m e as p r e v i o u s b u t a d d a s p i k e to g i v e 0 . 9 5 i n t e r v a l

bwplot(g ∼ x, panel=panel.bpplot ,

probs=c(.025 ,seq(.25 ,.49 ,by=.01)))

# d e c i l e p l o t w i t h r e f e r e n c e l i n e s at o u t e r

# q u i n t i l e s / m e d i a n
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bwplot(g ∼ x, panel=panel.bpplot ,

probs=c(.1 ,.2 ,.3,.4), qref=c(.5 ,.2,.8))

# d e f a u l t p l o t w i t h t i c k m a r k s s h o w i n g a l l

# o b s e r v a t i o n s o u t s i d e t h e o u t e r b o x

# ( . 0 5 a n d . 9 5 q u a n t i l e s ) , w i t h v e r y s m a l l t i c k s

bwplot(g ∼ x, panel=panel.bpplot ,

nout=.05 , scat1d.opts=list(frac=.01))

# s h o w 5 s m a l l e s t a n d 5 l a r g e s t o b s e r v a t i o n s

bwplot(g ∼ x, panel=panel.bpplot , nout =5)

# U s e a s c a t 1 d o p t i o n ( p r e s e r v e = T ) to e n s u r e t h a t t h e

# r i g h t p e a k e x t e n d s to t h e s a m e p o s i t i o n as t h e

# e x t r e m e

bwplot(∼ x , panel=panel.bpplot ,

probs=seq(.00 ,.5,by=.001),

datadensity=T, scat1d.opt=list(preserve=T))

Hmisc panel.plsmo

Lowess nonparametric trend lines (to be discussed later)
with enhancements
xyplot(y ∼ x | year , panel=panel.plsmo , groups=country)

Does automatic labeling of curves
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4.7.4 Layout and Style Specification

Vertical vs. Horizontal Paneling, Panel Order

· Example: Trellis/Lattice graph with 2 panels

· Default layout is 2 columns, 1 row

· To use 2 rows, 1 column specify
trellisfunction(... , layout=c(1 ,2))

· Can also use layout just to specify the number of pan-
els:
trellisfunction(... , layout=c(3 ,3)) # 9 p a n e l s r e s e r v e d

· Default order is lower left to upper right

· Add as.table=T to use LR Top-Bottom ordering

Multiple Trellis/Lattice Plots in One Figure

· Store results of multiple Trellis/Lattice calls in multiple
objects
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· Use the Trellis/Lattice print method to compose the
page
p1 ← trellisfunction1(...)

p2 ← trellisfunction2(...)

p3 ← ...

print(p1 , split=c(column ,row ,maxcolumn ,maxrow), more=T)

print(p2 , split=c(...), more=T)

print(p3 , split=c(...), more=F) # l a s t o n e

4.7.5 Creating Postscript Graphics Files

The Hmisc setps function uses decent defaults for B&W
graphics
setps(plotname , trellis=T, h=...)

trellisfunction( )

dev.off ()

4.7.6 Controlling Trellis/Lattice Graphical Parameters

· setps with trellis=T specifies that strip label panels
have a blank background for easy reading on black
and white graphs

·When making graphs interactively, you can achieve
the same effect easily by specifying trellis.strip.blank()

before creating the graphic. Alternatively, specify an
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argument like to following to the Trellis/Lattice func-
tion:
strip=function(...) strip.default(..., style=1) .
If you have already created a Trellis/Lattice graph you
may have to issue dev.off() or close the graph sheet
window for this to take effect.

· The best way to set up for black and white R Lattice
graphics with transparent strips is to put the following
commands at the top of the script:
library(lattice)

ltheme ← canonical.theme(color = FALSE)

ltheme$strip.background$col ← "transparent"

lattice.options(default.theme = ltheme)

· To see a list of arguments that can be specified to the
high-level Trellis/Lattice functions type ?trellis.args.
You will see arguments for specifying nonlinear axis
scales, panel label strip format, layout, customized
keys, axis limits, aspect ratio and banking to 45◦, etc.

· To use a √ scale, you can specify scales as in the
following
x ← 1:10

y ← x∧2

ys ← seq(0,100,by=10)
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xyplot(sqrt(y) ∼ x, type='l', ylab='y',

ylim=sqrt(c(0,100)),

scales=list(y=list(at=sqrt(ys), labels=format(ys))))

· To see many of the current Trellis/Lattice settings,
type show.settings()

· Type ?trellis.par.get to learn how to retrieve the
current value of any Trellis/Lattice graphical parame-
ter (e.g., line styles, point symbols, dot symbols, strip
background, etc.)

· To change a parameter, use trellis.par.set

dev.off ()

# T r e l l i s / L a t t i c e n e e d s to h a v e t h e d e v i c e i n a c t i v e to

# do t h i s

tpl ← trellis.par.get('plot.line ')

tpl$lwd ← 3 # c h a n g e l i n e w i d t h to 3

trellis.par.set('plot.line ', tpl)

This will affect all subsequent Trellis/Lattice graphs.
These three commands will for example cause the
line thickness of error bars drawn by the Dotplot func-
tion to be 3 instead of the default of 1.
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4.7.7 Summarizing Data for Input to Trellis/Lattice Functions

·Most frequently, summarizations for Trellis/Lattice use
simultaneous cross-classification, unlike
summary(..., method=’response’)

· Hmisc summarize function is made for this

· Produces a ready-to-use data frame that will appear
to a Trellis/Lattice function to be raw data
set.seed (111)

dfr ← expand.grid(month =1:12 , year=c(1997 ,1998) ,

reps =1:100)

attach(dfr)

y ← abs(month-6.5) + 2*runif(length(month)) + year - 1997

s ← summarize(y, llist(month ,year), mean , na.rm=T)

s

xYplot(y ∼ month , groups=year , type='b', data=s)

· To compute proportions, take means of binary vari-
ables
s ← summarize(y > 6, llist(month ,year), mean ,

stat.name='ygt6 ', na.rm=T)

s

xYplot(ygt6 ∼ month | factor(year), type='b', data=s)

· FUN (3rd) argument to summarize may specify a function
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that computes multiple statistics

· This is used to make error bars and bands
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4.7.8 Error Bars and Bands

· Used for

– Measures of precision: ± S.E., ±2× S.E., (possi-
bly asymmetric confidence limits for a population
mean)

– Measures of variability of raw data: ±2× S.D., quan-
tiles

· Think of upper and lower values as 2nd and 3rd re-
sponse variables

· Trellis/Lattice allows only a univariate response vari-
able

· Hmisc tricks Trellis/Lattice by using the Hmisc Cbind

function to “hide” the upper and lower values (and
possibly more) in an attribute ’other’ to a single re-
sponse variable

· Hmisc xYplot and Dotplot functions allow for such mul-
tiple response variables
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· Functions such as smean.cl.normal, smedian.hilow, smean.sdl
(Hmisc) are set up to create the central value (e.g.,
mean) and variables named Lower and Upper

· FUN argument of summarize can use these functions
nicely with xYplot and Dotplot

xYplot

· If you have already computed the lower and upper
values (or the S.E.) you can give these directly to xY-

plot:
xYplot(Cbind(y,lower ,upper) ∼ month)

xYplot(Cbind(y,2*se) ∼ month)

In the latter example, y-2*se and y+2*se are automati-
cally computed (because there are only 2 arguments
to Cbind).

· Note: In standard R Lattice package you can add
error bars to plots with xyplot by passing an auxiliary
variable and using the subscripts of the data being
plotted in the current panelb:

xyplot(y ∼ x, data , sd = data$sd,

panel = function(x, y, subscripts , sd, ...) {

larrows(x, y - 2 * sd[subscripts],

bExample provided by Deepayan Sarkar on r-help, 6Sep04.
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x, y + 2 * sd[subscripts],

angle = 90, code = 3, ...)

panel.xyplot(x, y, ...)

})

·More often we compute summaries to plot, e.g.:
# T h e f o l l o w i n g e x a m p l e u s e s t h e s u m m a r i z e f u n c t i o n

# in H m i s c to c o m p u t e t h e m e d i a n a n d o u t e r q u a r t i l e s .

# T h e o u t e r q u a r t i l e s a r e d i s p l a y e d u s i n g " e r r o r b a r s "

set.seed (111)

dfr ← expand.grid(month =1:12 , year=c(1997 ,1998) ,

reps =1:100)

attach(dfr)

y ← abs(month-6.5) + 2*runif(length(month)) + year-1997

s ← summarize(y, llist(month ,year),

smedian.hilow , conf.int=.5)

xYplot(Cbind(y,Lower ,Upper) ∼ month , groups=year , data=s,

keys='lines ', method='alt') # F i g u r e 4.1

# C a n a l s o do :

s ← summarize(y, llist(month ,year), quantile ,

probs=c(.5 ,.25 ,.75),

stat.name=c('y','Q1','Q3'))

xYplot(Cbind(y, Q1, Q3) ∼ month , groups=year ,

data=s, keys='lines ')

· To display means and bootstrapped nonparametric
confidence intervals:
s ← summarize(y, llist(month ,year), smean.cl.boot)

s

month year y Lower Upper

1 1997 6.55 6.44 6.67
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Figure 4.1: Alternating error bars showing quartiles of raw data.
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1 1998 7.51 7.40 7.62

2 1997 5.58 5.47 5.69

2 1998 6.44 6.33 6.55

. . . . . .

12 1998 7.47 7.37 7.58

xYplot(Cbind(y, Lower , Upper) ∼ month | factor(year),

type='l', data=s)

# F i g u r e 4.2

# f a c t o r ( y e a r ) c a u s e s y e a r to be w r i t t e n in p a n e l l a b e l s

# C a n a l s o u s e Y ← c b i n d ( y , Lower , U p p e r )

# x Y p l o t ( C b i n d ( Y ) ∼ . . . )

# Or :

xYplot(y ∼ month | year , nx=F, method=smean.cl.boot)

# s e e l a t e r

xYplot(Cbind(y, Lower , Upper) ∼ month | factor(year),

method='filled bands ', type='l', data=s)

# F i g u r e 4.3

# U s e m e t h o d = ' bands ' f o r o r d i n a r y u n f i l l e d b a n d s

· Here is an example using double bands, to depict
the following quantiles: .1 .25 .5 .75 .9. The 0.25 and
0.75 quantiles are drawn with line thickness 2, and
the central line with a thickness of 4. Note that sum-
marize produces a matrix for y when type=’matrix’ is
specified, and Cbind(y) trusts the first column to be
the point estimate (here the median)
s ← summarize(y, llist(month ,year), quantile ,

probs=c(.5 ,.1 ,.25 ,.75 ,.9),

type='matrix ')
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Figure 4.2: Mean and nonparametric bootstrap 0.95 confidence intervals
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Figure 4.3: Nonparametric bootstrap confidence limits for each month, but depicted with filled bands
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xYplot(Cbind(y) ∼ month | factor(year), data=s,

type='l', method='bands ', lwd.bands=c(1,2,2,1),

lwd=4)

# F i g u r e 4.4
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y

Figure 4.4: Central line depicts the median, and bands depict the 0.1, 0.25, 0.75, 0.9 quantiles of the
raw data

xYplot with method=’quantile’ or method=functionname

· method=’quantile’: xYplot automatically groups the x

variable into intervals containing a target of nx obser-
vations
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· Default value of nx is the lesser of 40 and 1
4× stratum

size (specify nx=0 to do no grouping; useful when x

variable is discrete such as month)

· Quantiles given by the probs argument; default is
probs=c(.5,.25,.75)

·Within each x group computes three quantiles of y

and plots these as three lines

·Mean x within each x group is taken as the x-coordinate

· Useful empirical display for large datasets in which
scatterdiagrams are too busy to see patterns of cen-
tral tendency and variability; good for residual plots
for showing symmetry and lack of trend in central ten-
dency and variabilityc

· Can also specify a general function of a data vec-
tor that returns a matrix of statistics for method; the
statistic in the first column should be the measure of
central tendency

cSpecify method=smean.sdl to instead plot mean and ±2× S.D.
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· Arguments can be passed to that function a list metho-
dArgs

· Example: Group x into intervals containing 40 obser-
vations, plot the 0.5, 0.25, 0.75 quantiles of y against
mean x in interval
set.seed (1)

age ← rnorm (1000 , 30, 10)

sbp ← 0.3*(age-30) + rnorm (1000, 120, 15)

xYplot(sbp ∼ age , method='quantile ', # F i g u r e 4.5

xlim=c(5,60), ylim=c(100 ,140))

· Instead of quantiles of raw data, show parametric
confidence bands, and require 60 observations in a
group
xYplot(sbp ∼ age , method=smean.cl.normal , # F i g u r e 4.6

xlim=c(5,60), ylim=c(100 ,140) , nx=60)

Dotplot

· “Multivariate response” packaged by Cbind appears
as the x-variable after the ∼

· Does not work well with superposition of groups
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Figure 4.5: 0.25, 0.5, 0.75 quantiles of sbp vs. intervals of age containing 40 observations
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Figure 4.6: Mean and parametric 0.95 confidence limits for means, for intervals of age containing 60
observations
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· Example: Display proportions and approximate 0.95
confidence limits from already-tabulated data
d ← expand.grid(continent=c('USA','Europe '),

year =1999:2001)

d$proportion ← c(.2, .18 , .19 , .22 , .23 , .20)

d$SE ← c(.02 , .01 , .02 , .015 , .021 , .025)

d

continent year proportion SE

1 USA 1999 0.20 0.020

2 Europe 1999 0.18 0.010

3 USA 2000 0.19 0.020

4 Europe 2000 0.22 0.015

5 USA 2001 0.23 0.021

6 Europe 2001 0.20 0.025

Dotplot(year ∼ Cbind(proportion , proportion-1.96*SE ,

proportion +1.96*SE) |

continent , data=d, ylab='Year ') # F i g u r e 4.7

· To re-arrange the order of the vertical groups, use the
reorder.factor function

· First just reverse the order of years on the y-axis
yr ← factor(d$year , 2001:1999)

Dotplot(yr ∼ Cbind(proportion , proportion-1.96*SE ,

proportion +1.96*SE) |

continent , data=d, ylab='Year ')

· Next, reorder years by the average proportion over
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Figure 4.7: Dot plot showing proportions and approximate 0.95 confidence limits for population
probabilities
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the two continents
yr ← factor(d$year) # r e o r d e r . f a c t o r o n l y a c c e p t s f a c t o r s

yr ← reorder.factor(yr , d$proportion , mean)

levels(yr)

[1] "1999" "2000" "2001"

This happens to be in the original order so the dot
plot will be the same as Figure 4.7

· To use more accurate Wilson confidence intervals on
raw data:
set.seed (3)

d ← expand.grid(continent=c('USA','Europe '),

year =1999:2001 , reps =1:100)

# G e n e r a t e b i n a r y e v e n t s f r o m a p o p u l a t i o n p r o b a b i l i t y of

# 0 .2 of t h e event , s a m e f o r a l l y e a r s a n d c o n t i n e n t s

d$y ← ifelse(runif (6*100) ≤ .2 , 1, 0)

rm(y) # r e m o v e o l d y ; don ' t c o n f u s e t h e f o l l o w i n g

attach(d)

s ← summarize(y, llist(continent ,year),

function(y) {

n ← sum(!is.na(y))

s ← sum(y, na.rm=T)

binconf(s, n)

}, type='matrix ')

Dotplot(year ∼ Cbind(y) | continent ,

data=s, ylab='Year ')

# S a m e f o r m a t of o u t p u t as F i g u r e 4.7

· Example: dfr data frame and associated raw response
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variable y from above

· Display a 5-number (5-quantile) summary (2 inter-
vals, dot=median)
s ← summarize(y, llist(month ,year), quantile ,

probs=c(.5 ,.05 ,.25 ,.75 ,.95), type='matrix ')

Dotplot(month ∼ Cbind(y) | factor(year),

data=s, ylab='Month ') # F i g u r e 4.8

dev.off ()
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Figure 4.8: Multi-tiered dot plot showing .05, .25, .5, .75, .95 quantiles of raw data
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4.7.9 Summary of Functions for Aggregating Data for Plotting

tapply

· Stratifies a single variable by one or a list of strati-
fication variables

·When stratify by > 1 variable, result is a matrix
which difficult to plot directly

· Hmisc reShape function can be used to re–shape
the result into a data frame for plotting

·When stratify by a single variable, tapply creates a
vector of summary statistics suitable for making a
simple dot or bar plot without conditioning

aggregate

· Input = vector or a data frame and a by list of one
or more stratification variables

· Handy to enclose the by variables in the llist func-
tion

· Can summarize many variables at once but only a
single number such as the mean is computed for
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each one

· aggregate does not preserve numeric stratification
variables — it transforms them into factors which
are not suitable for certain graphics

· Result is data frame

summary.formula

· Can compute separate summaries for each of the
stratification variables

· Can also do × classifications when method=’cross’

· Can summarize response variable using multiple
statistics (e.g., mean and median)

· If specify a fun function that can deal specially with
matrices, you can summarize multiple–column re-
sponse variables

· Creates special objects and has special methods
for presenting them
– print method for printing a table in ASCII text
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format

– plot method for plotting the result (not available
for method=’cross’

– LATEX method for typesetting the table, allowing
the use of multiple fonts, character sizes, sub-
scripts, superscripts, bold, etc.

· Don’t plot the results of summary.formula using one
of the Trellis/Lattice functions.

summarize

· Similar purpose as aggregate but with some differ-
ences

·Will summarize only a single response variable but
the FUN function can summarize it with many statis-
tics

· Can compute multiple quantiles or upper and lower
limits for error bars

·Will not convert numeric stratifiers to factors, so
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output is suitable for summarizing data for xyplot

or xYplot when the stratification variable needs to
be on the x–axis

· Only does cross–classification

· Creates an ordinary data frame suitable for any
use in S, especially for passing as a data argument
to Trellis/Lattice graphics functions

· Can also easily use the GUI to graph this data
frame

method=function with xYplot: Automatically aggregates
data to be plotted when central tendency and upper
and lower bands are of interest.
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Nonparametric Trend Lines

· Continuous X, continuous or binary Y

· Nonparametric smoother only assumes that the shape
of the relationship between X and Y is smooth

· A smoother is like a moving average but better

– Moving average is a moving flat line approximation

– Moving averages have problems in the left and right
tails

· Best all-purpose smoother: loess

110
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· Is called a scatterplot smoother or moving weighted
linear regression

· By having moving slope and intercept, with overlap-
ping windows, the smooth curve is more accurate
and has no problems in left and right tails

· loess can handle binary response variable if you turn
off outlier rejection (i.e., tell the algorithm to do no
extra iterations)

· Basic R function for loess smoothing is lowess:
plot(age , sysbp)

lines(lowess(age , sysbp ))

· To use more than two variables use the function called
loess which uses the statistical formula language

· Hmisc plsmo function plots loess or “super smoother”
(supsmu) estimates with several options including au-
tomatic stratification on a discrete variable
plsmo(age , sysbp , group=sex , datadensity=T)

# 2 c u r v e s w i t h r u g p l o t s
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· Example using titanic3 dataset from Web site
attach(titanic3)

plsmo(age , survived , group=interaction(pclass ,sex),

datadensity=T) # F i g u r e 5.1

dev.off ()

age

su
rv

iv
ed

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

1st.female

2nd.female

3rd.female

1st.male2nd.male

3rd.male

Figure 5.1: loess smoothed estimates of the probability of surviving the Titanic as a function of
passenger age, sex, and ticket class

interaction(a,b) creates a new factor variable con-
taining the cross-classifications of the two constituent
variables

· plsmo automatically turns outlier rejection off if the y

variables has only two unique values

· plsmo automatically labels curves by levels of the group
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variablea

· You can use plsmo as a panel function to xyplot:
xyplot(sysbp ∼ age | race , groups=sex , panel=panel.plsmo)

· Other ways to get trend lines using Trellis/Lattice are
given in Section 4.7.3

aNote that group is not plural, which is inconsistent with the Trellis/Lattice groups variable used for superposition.
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A Newer Graphical Model in R: ggplot2

The ggplot2 package by Hadley Wickham, RStudio, was developed
several years after the lattice package in R. It is based on Wilkin-
son’s Grammar of Graphics. Dr Wickham provided the following
ggplot2 examples and text.

6.1 Basics

This example shows some of the basic features of ggplot2, focusing
particularly on the scatterplot, one of the most important statistical
graphics.

There are two ways of specifying ggplot2 graphics: a concise way
that uses some “magic” to figure out what you want, and a more
verbose, but explicit form. These examples use the more explicit

114
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form (so it’s easier to see what’s happening), but for everyday use
you can use qplot, which mimics the base plot function, and can
save a lot of typing.

require(ggplot2)

require(plyr)

mpg ← subset(mpg , cyl != 5)

To create a ggplot2 graphic you start off with the ggplot2 function.
This function specifies the default dataset and default mapping
from the data to things that you can see on the plot, the aesthetics.

The following call uses the mpg dataset (a set of economy related
variables for 235 cars, measured in 1999 and 2008). The aesthetic
mapping says we want to map the x-position to displacement and
the y-position to mpg in the city. We then add a layer of points with
geom_point(). The geom, short for geometric object, determines the
basic type of plot. With points we get a scatterplot.

Note: Like lattice, ggplot2 plotting commands must be enclosed in print() to
render the graphic unless running R interactively. Here Sweave is used so print()

is required.
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print(ggplot(mpg , aes(x = displ , y = cty)) +

geom_point ())
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Because almost every plot uses both x and y positions, they are
the first two arguments to aes, and we can omit their names. We’ll
do that from here on.
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print(ggplot(mpg , aes(displ , cty)) +

geom_point ())

displ
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We can also map variables to other aesthetics like colour, size and
shape. ggplot2 will automatically pick a sensible scale (here a con-
tinuous colour gradient) and draw a legend for us.
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print(ggplot(mpg , aes(displ , cty , colour = cyl)) +

geom_point ())

displ
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If we use a categorical variable we get a different type of scale. We
can also map the same variable to multiple aesthetics, and ggplot2

knows what to do. Notice how both colour and shape vary in the
the legend.
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print(ggplot(mpg , aes(displ , cty , colour = factor(cyl),

shape = factor(cyl))) +

geom_point ())
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Another powerful technique for visualisation is facetting (also known
as conditioning or trellising). This makes a separate panel for each
subset of the data:
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print(ggplot(mpg , aes(displ , cty)) +

geom_point () +

facet_wrap(∼ cyl))
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There are plenty of other geoms we could use with this data. For
example, we could use the jitter geom, which jitters each point by
a small amount:
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print(ggplot(mpg , aes(displ , cty)) +

geom_jitter ())
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Or we could add a smooth curve
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print(ggplot(mpg , aes(displ , cty)) +

geom_point () +

geom_smooth ())
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Because we are specifying what we want in the graphic, instead of
constructing it piece-by-piece, ggplot2 knows what to do if we add
colour or facetting to a plot with a smooth line on it:
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print(ggplot(mpg , aes(displ , cty)) +

geom_point () +

geom_smooth () +

facet_wrap(∼ cyl))
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print(ggplot(mpg , aes(displ , cty , colour = factor(cyl ))) +

geom_point () +

geom_smooth ())
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print(ggplot(mpg , aes(displ , cty , colour = factor(cyl),

fill = factor(cyl ))) +

geom_smooth(colour = "grey50") +

geom_point ())
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Note how the legend does its best to capture what’s on the plot.

Each call to geom_xxx adds a new layer to the plot. Different layers
can use different aesthetic mappings or even different datasets,
making it possible to create rich, sophisticated graphics. In the
following simple example we move the colour specification out of
the defaults (which apply to all layers), into the point layer. Notice
how we just get one smooth line.
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print(ggplot(mpg , aes(displ , cty)) +

geom_point(aes(colour = factor(cyl ))) +

geom_smooth ())
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This quick introduction has only scratched the surface of ggplot2.
To learn more, see http://had.co.nz/ggplot2.

6.2 Time Series Examples

This is a graphical exploration of time series of monthly housing
sales in three interesting cities in Texas from 2000-2009. Houston
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is big, Austin medium sized, and College Station small, with a high
proportion (55,000 / 80,000) of college students.

load('houseSales.rda ')

tx ← subset(houseSales ,

city %in% c("Austin", "Houston", "Bryan-College Station"))

print(ggplot(tx , aes(date , avgprice )) + geom_line ())
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No good - need to specify which variable splits the data up into
lines.
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print(ggplot(tx , aes(date , avgprice , group = city)) + geom_line ())
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Alternatively we can specify an aesthetic and get a legend which
tells us which line is which.
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print(ggplot(tx , aes(date , avgprice , colour = city)) + geom_line ())
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Is there a hint of a seasonal effect? Let’s investigate further by
drawing a time series plot with month on the x-axis and a line for
each year. We’ll also use facetting to divide up the cities.



CHAPTER 6. A NEWER GRAPHICAL MODEL IN R: GGPLOT2 130

print(ggplot(tx , aes(month , avgprice , group = year)) +

geom_line () +

facet_wrap(∼ city))
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We can also add to the previous plot. Here we add a thick red
line showing the mean price for each month. We need to use a
different grouping because otherwise we’d taking the mean of a
single observation
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print(last_plot () +

stat_summary(aes(group = 1), fun.y="mean", geom="line",

colour ="red", size =2))
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Alternatively, we could draw a boxplot for each month.



CHAPTER 6. A NEWER GRAPHICAL MODEL IN R: GGPLOT2 132

print(ggplot(tx , aes(month , avgprice , group = month )) +

geom_boxplot () +

facet_wrap(∼ city))
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Houston seems to have some seasonal differences, but it’s hard to
see any different in Austin or College Station. We’d probably want
to check this with more formal inferential procedures

There’s a much strong seasonal effect on sales:
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print(ggplot(tx , aes(month , sales , group = year)) +

geom_line () +

facet_wrap(∼ city))
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But it’s hard to compare the different cities because of large dif-
ference in total sales. With free scales each panel has it’s own y

scale, and you can see the seasonal pattern is a bit different in
College Station. Maybe it’s because it’s a college town.
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print(ggplot(tx , aes(month , sales , group = year)) +

geom_line () +

facet_wrap(∼ city , scales = "free_y"))
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