Contents

1 Introduction

1.1 Hypothesis Testing, Estimation, and Prediction 1-1
1.2 Examples of Uses of Predictive Multivariable Modeling 1-3
1.3 Misunderstandings about Prediction vs. Classification 1-5
1.4 Planning for Modeling . 1-10
1.5 Choice of the Model . 1-13
1.6 Model uncertainty / Data-driven Model Specification 1-14

2 General Aspects of Fitting Regression Models

2.1 Notation for Multivariable Regression Models 2-5
2.2 Model Formulations . 2-6
2.3 Interpreting Model Parameters . 2-7
 2.3.1 Nominal Predictors . 2-7
 2.3.2 Interactions . 2-8
 2.3.3 Example: Inference for a Simple Model 2-9
 2.3.4 Review of Composite (Chunk) Tests 2-11
2.4 Relaxing Linearity Assumption for Continuous Predictors 2-13
2.4.1 Avoiding Categorization .. 2-13
2.4.2 Simple Nonlinear Terms .. 2-18
2.4.3 Splines for Estimating Shape of Regression Function and Determining Predictor Transformations .. 2-18
2.4.4 Cubic Spline Functions .. 2-21
2.4.5 Restricted Cubic Splines .. 2-22
2.4.6 Choosing Number and Position of Knots 2-28
2.4.7 Nonparametric Regression 2-30
2.4.8 Advantages of Regression Splines over Other Methods 2-32

2.5 Recursive Partitioning: Tree-Based Models 2-34
2.5.1 New Directions in Predictive Modeling 2-35
2.5.2 Choosing Between Machine Learning and Statistical Modeling . 2-38

2.6 Multiple Degree of Freedom Tests of Association 2-41

2.7 Assessment of Model Fit .. 2-43
2.7.1 Regression Assumptions 2-43
2.7.2 Modeling and Testing Complex Interactions 2-47
2.7.3 Fitting Ordinal Predictors 2-52
2.7.4 Distributional Assumptions 2-53

2.8 Complex Curve Fitting Example 2-54

3 Missing Data ... 3-1
3.1 Types of Missing Data ... 3-1
3.2 Prelude to Modeling .. 3-2
3.3 Missing Values for Different Types of Response Variables 3-3
3.4 Problems With Simple Alternatives to Imputation 3-4
3.5 Strategies for Developing an Imputation Model 3-7
 3.5.1 Interactions ... 3-10
3.6 Single Conditional Mean Imputation 3-11
3.7 Predictive Mean Matching 3-12
3.8 Multiple Imputation .. 3-12
3.9 Diagnostics ... 3-17
3.10 Summary and Rough Guidelines 3-19
 3.10.1 Effective Sample Size 3-20
3.11 Bayesian Methods for Missing Data 3-22

4 Multivariable Modeling Strategies 4-1
4.1 Prespecification of Predictor Complexity Without Later Simplification 4-3
 4.1.1 Learning From a Saturated Model 4-6
 4.1.2 Using Marginal Generalized Rank Correlations 4-7
4.2 Checking Assumptions of Multiple Predictors Simultaneously 4-9
4.3 Variable Selection ... 4-10
 4.3.1 Maxwell’s Demon as an Analogy to Variable Selection 4-17
4.4 Overfitting and Limits on Number of Predictors 4-19
4.5 Shrinkage .. 4-21
4.6 Collinearity .. 4-24
4.7 Data Reduction .. 4-26

4.7.1 Redundancy Analysis ... 4-27

4.7.2 Variable Clustering .. 4-28

4.7.3 Transformation and Scaling Variables Without Using Y 4-29

4.7.4 Simultaneous Transformation and Imputation 4-31

4.7.5 Simple Scoring of Variable Clusters 4-35

4.7.6 Simplifying Cluster Scores ... 4-36

4.7.7 How Much Data Reduction Is Necessary? 4-36

4.8 Other Approaches to Predictive Modeling 4-39

4.9 Overly Influential Observations 4-39

4.10 Comparing Two Models ... 4-42

4.11 Improving the Practice of Multivariable Prediction 4-44

4.12 Summary: Possible Modeling Strategies 4-47

4.12.1 Developing Predictive Models 4-47

4.12.2 Developing Models for Effect Estimation 4-49

4.12.3 Developing Models for Hypothesis Testing 4-50

5 Describing, Resampling, Validating, and Simplifying the Model 5-1

5.1 Describing the Fitted Model .. 5-1

5.1.1 Interpreting Effects .. 5-1

5.1.2 Indexes of Model Performance 5-2

5.2 The Bootstrap .. 5-6
CONTENTS

5.3 Model Validation ... 5-11
 5.3.1 Introduction .. 5-11
 5.3.2 Which Quantities Should Be Used in Validation? 5-14
 5.3.3 Data-Splitting .. 5-16
 5.3.4 Improvements on Data-Splitting: Resampling 5-17
 5.3.5 Validation Using the Bootstrap 5-18

5.4 Bootstrapping Ranks of Predictors 5-23

5.5 Simplifying the Final Model by Approximating It 5-25
 5.5.1 Difficulties Using Full Models 5-25
 5.5.2 Approximating the Full Model 5-25

5.6 How Do We Break Bad Habits? 5-27

6 R Software ... 6-1
 6.1 The R Modeling Language 6-2
 6.2 User-Contributed Functions 6-3
 6.3 The rms Package ... 6-5
 6.4 Other Functions .. 6-12

7 Modeling Longitudinal Responses using Generalized Least Squares 7-1
 7.1 Notation .. 7-1
 7.2 Model Specification for Effects on $E(Y)$ 7-3
 7.2.1 Common Basis Functions 7-3
 7.2.2 Model for Mean Profile 7-3
7.2.3 Model Specification for Treatment Comparisons 7-4
7.3 Modeling Within-Subject Dependence 7-6
7.4 Parameter Estimation Procedure 7-11
7.5 Common Correlation Structures 7-13
7.6 Checking Model Fit 7-15
7.7 R Software 7-16
7.8 Case Study 7-17
 7.8.1 Graphical Exploration of Data 7-17
 7.8.2 Using Generalized Least Squares 7-21
 7.8.3 Bayesian Proportional Odds Random Effects Model 7-30
 7.8.4 Bayesian Markov Semiparametric Model 7-38

8 Binary Logistic Regression 8-1
8.1 Model 8-2
 8.1.1 Model Assumptions and Interpretation of Parameters 8-3
 8.1.2 Odds Ratio, Risk Ratio, and Risk Difference 8-4
 8.1.3 Detailed Example 8-5
 8.1.4 Design Formulations 8-11
8.2 Estimation 8-13
 8.2.1 Maximum Likelihood Estimates 8-13
 8.2.2 Estimation of Odds Ratios and Probabilities 8-13
 8.2.3 Minimum Sample Size Requirement 8-13
8.3 Test Statistics .. 8-16
8.4 Residuals ... 8-17
8.5 Assessment of Model Fit 8-18
8.6 Collinearity ... 8-38
8.7 Overly Influential Observations 8-38
8.8 Quantifying Predictive Ability 8-38
8.9 Validating the Fitted Model 8-40
8.10 Describing the Fitted Model 8-45
8.11 Bayesian Logistic Model Example 8-52

9 Logistic Model Case Study: Survival of Titanic Passengers 9-1
9.1 Descriptive Statistics 9-2
9.2 Exploring Trends with Nonparametric Regression 9-5
9.3 Binary Logistic Model with Casewise Deletion of Missing Values 9-8
9.4 Examining Missing Data Patterns 9-14
9.5 Single Conditional Mean Imputation 9-17
9.6 Multiple Imputation ... 9-21
9.7 Summarizing the Fitted Model 9-25
9.8 Bayesian Analysis ... 9-28

10 Ordinal Logistic Regression 10-1
10.1 Background .. 10-1
10.2 Ordinality Assumption 10-3
Chapter 10

10.3 Proportional Odds Model

10.3.1 Model

10.3.2 Assumptions and Interpretation of Parameters

10.3.3 Estimation

10.3.4 Residuals

10.3.5 Assessment of Model Fit

10.3.6 Quantifying Predictive Ability

10.3.7 Describing the Model

10.3.8 Validating the Fitted Model

10.3.9 R Functions

10.4 Continuation Ratio Model

10.4.1 Model

10.4.2 Assumptions and Interpretation of Parameters

10.4.3 Estimation

10.4.4 Residuals

10.4.5 Assessment of Model Fit

10.4.6 Extended CR Model

10.4.7 Role of Penalization in Extended CR Model

10.4.8 Validating the Fitted Model

10.4.9 R Functions

Chapter 11

11 Regression Models for Continuous Y and Case Study in Ordinal Regression
CONTENTS

11.1 Dataset and Descriptive Statistics .. 11-3
11.2 The Linear Model ... 11-7
 11.2.1 Checking Assumptions of OLS and Other Models 11-7
11.3 Quantile Regression .. 11-11
11.4 Ordinal Regression Models for Continuous Y 11-13
11.5 Ordinal Regression Applied to HbA1c 11-19
 11.5.1 Checking Fit for Various Models Using Age 11-19
 11.5.2 Examination of BMI .. 11-24

12 Case Study in Parametric Survival Modeling and Model Approximation 12-1
 12.1 Descriptive Statistics ... 12-2
 12.2 Checking Adequacy of Log-Normal Accelerated Failure Time Model . 12-7
 12.3 Summarizing the Fitted Model ... 12-14
 12.4 Internal Validation of the Fitted Model Using the Bootstrap 12-18
 12.5 Approximating the Full Model .. 12-20

13 Case Study in Cox Regression .. 13-1
 13.1 Choosing the Number of Parameters and Fitting the Model 13-1
 13.2 Checking Proportional Hazards 13-7
 13.3 Testing Interactions ... 13-9
 13.4 Describing Predictor Effects .. 13-10
 13.5 Validating the Model .. 13-11
 13.6 Presenting the Model ... 13-13
14 Semiparametric Ordinal Longitudinal Models

14.1 Longitudinal Ordinal Models as Unifying Concepts 14-1
 14.1.1 General Outcome Attributes .. 14-1
 14.1.2 What is a Fundamental Outcome Assessment? 14-2
 14.1.3 Examples of Longitudinal Ordinal Outcomes 14-3
 14.1.4 Statistical Model .. 14-4

14.2 Case Studies .. 14-6

14.3 Case Study For 4-Level Ordinal Longitudinal Outcome 14-8
 14.3.1 Descriptives ... 14-11
 14.3.2 Model Fitting ... 14-14
 14.3.3 Covariate Effects ... 14-19
 14.3.4 Correlation Structure ... 14-20
 14.3.5 Computing Derived Quantities .. 14-27
 14.3.6 Bootstrap Confidence Interval for Difference in Mean Time Unwell 14-30
 14.3.7 Notes on Inference ... 14-33

Bibliography ... 15-1

in the right margin indicates a hyperlink to a YouTube video related to the subject.

in the right margin is a hyperlink to an audio file elaborating on the notes. Red letters and numbers in the right margin are cues referred to within the audio recordings.

Rotated boxed blue text in the right margin at the start of a section represents the mnemonic key for linking to archival discussions about that section in vbiostatcourse.slack.com channel #rms.
blog in the right margin is a link to a blog entry that further discusses the topic.
Course Philosophy

- Modeling is the endeavor to transform data into information and information into either prediction or evidence about the data generating mechanism.

- Models are usually the best descriptive statistics
 - adjust for one variable while displaying the association with Y and another variable
 - descriptive statistics do not work in higher dimensions

- Satisfaction of model assumptions improves precision and increases statistical power
 - Be aware of assumptions, especially those mattering the most

- It is more productive to make a model fit step by step (e.g., transformation estimation) than to postulate a simple model and find out what went wrong
 - Model diagnostics are often not actionable
 - Changing the model in reaction to observed patterns ↑ uncertainty but is reflected by an apparent ↓ in uncertainty

- Graphical methods should be married to formal inference

*a*Thanks to Drew Levy for ideas that greatly improved this section.*
• Overfitting occurs frequently, so data reduction and model validation are important

• Software without multiple facilities for assessing and fixing model fit may only seem to be user-friendly

• Carefully fitting an improper model is better than badly fitting (and overfitting) a well-chosen one
 – E.g. small N and overfitting vs. carefully formulated right hand side of model

• Methods which work for all types of regression models are the most valuable.

• In most research projects the cost of data collection far outweighs the cost of data analysis, so it is important to use the most efficient and accurate modeling techniques, to avoid categorizing continuous variables, and to not remove data from the estimation sample just to be able to validate the model.
 – A $100 analysis can make a $1,000,000 study worthless.

• The bootstrap is a breakthrough for statistical modeling and model validation.

• Bayesian modeling is ready for prime time.
 – Can incorporate non-data knowledge
– Provides full exact inferential tools even when penalizing β

– Rational way to account for model uncertainty

– Direct inference: evidence for all possible values of β

– More accurate way of dealing with missing data

• Using the data to guide the data analysis is almost as dangerous as not doing so.

• A good overall strategy is to decide how many degrees of freedom (i.e., number of regression parameters) can be “spent”, where they should be spent, to spend them with no regrets.

See the excellent text *Clinical Prediction Models* by Steyerberg [179].
Chapter 1

Introduction

1.1 Hypothesis Testing, Estimation, and Prediction

Even when only testing H_0 a model based approach has advantages:

- Permutation and rank tests not as useful for estimation
- Cannot readily be extended to cluster sampling or repeated measurements
- Models generalize tests
 - 2-sample t-test, ANOVA \rightarrow multiple linear regression
 - Wilcoxon, Kruskal-Wallis, Spearman \rightarrow proportional odds ordinal logistic model
– log-rank \rightarrow Cox

- Models not only allow for multiplicity adjustment but for shrinkage of estimates
 - Statisticians comfortable with P-value adjustment but fail to recognize that the difference between the most different treatments is badly biased

Statistical estimation is usually model-based

- Relative effect of increasing cholesterol from 200 to 250 mg/dl on hazard of death, holding other risk factors constant

- Adjustment depends on how other risk factors relate to hazard

- Usually interested in adjusted (partial) effects, not unadjusted (marginal or crude) effects
Examples of Uses of Predictive Multivariable Modeling

- Financial performance, consumer purchasing, loan pay-back
- Ecology
- Product life
- Employment discrimination
- Medicine, epidemiology, health services research
- Probability of diagnosis, time course of a disease
- Checking that a previously developed summary index (e.g., BMI) adequately summarizes its component variables
- Developing new summary indexes by how variables predict an outcome
- Comparing non-randomized treatments
- Getting the correct estimate of relative effects in randomized studies requires covariable adjustment if model is nonlinear
 - Crude odds ratios biased towards 1.0 if sample heterogeneous
• Estimating absolute treatment effect (e.g., risk difference)
 – Use e.g. difference in two predicted probabilities

• Cost-effectiveness ratios
 – incremental cost / incremental \textit{ABSOLUTE} benefit
 – most studies use avg. cost difference / avg. benefit, which may apply to no one
CHAPTER 1. INTRODUCTION

1.3

Misunderstandings about Prediction vs. Classification

• Many analysts desire to develop “classifiers” instead of predictions

• Outside of, for example, visual or sound pattern recognition, classification represents a premature decision

• See this blog for details

• Suppose that
 1. response variable is binary
 2. the two levels represent a sharp dichotomy with no gray zone (e.g., complete success vs. total failure with no possibility of a partial success)
 3. one is forced to assign (classify) future observations to only these two choices
 4. the cost of misclassification is the same for every future observation, and the ratio of the cost of a false positive to the cost of a false negative equals the (often hidden) ratio implied by the analyst’s classification rule

• Then classification is still suboptimal for driving the development of a predictive instrument as well as for hypothesis testing and estimation
Classification and its associated classification accuracy measure—the proportion classified “correctly”—are very sensitive to the relative frequencies of the outcome variable. If a classifier is applied to another dataset with a different outcome prevalence, the classifier may no longer apply.

Far better is to use the full information in the data to develop a probability model, then develop classification rules on the basis of estimated probabilities

- ↑ power, ↑ precision, ↑ decision making

Classification is more problematic if response variable is ordinal or continuous or the groups are not truly distinct (e.g., disease or no disease when severity of disease is on a continuum); dichotomizing it up front for the analysis is not appropriate

- minimum loss of information (when dichotomization is at the median) is large

- may require the sample size to increase many-fold to compensate for loss of information [69]

Two-group classification represents artificial forced choice

- best option may be “no choice, get more data”

Unlike prediction (e.g., of absolute risk), classification implicitly uses utility (loss; cost of false positive or false nega-
tive) functions

• Hidden problems:
 – Utility function depends on variables not collected (subjects’ preferences) that are available only at the decision point
 – Assumes every subject has the same utility function
 – Assumes this function coincides with the analyst’s

• Formal decision analysis uses
 – optimum predictions using all available data
 – subject-specific utilities, which are often based on variables not predictive of the outcome

• ROC analysis is misleading except for the special case of mass one-time group decision making with unknowable utilities

See [201, 28, 73, 24, 66, 77].

To make an optimal decision you need to know all relevant data about an individual (used to estimate the probability of an outcome), and the utility (cost, loss function) of making each decision. Sensitivity and specificity do not provide this information. For example, if one estimated that the probability of a disease given age, sex, and symptoms is 0.1 and the “cost” of a false positive equaled the “cost” of a false negative, one would act as if the person does not have the disease. Given other utilities, one would make different decisions. If the utilities are unknown, one gives the best estimate of the probability of the outcome to the decision maker and let her incorporate her own unspoken utilities in making an optimum decision for her.

Besides the fact that cutoffs do not apply to individuals, only to groups, individual decision making does not utilize sensitivity and specificity. For an individual we can compute Prob(Y = 1|X = x); we don’t care about Prob(Y = 1|X > c), and an individual having X = x would be quite puzzled if she were given Prob(X > c|future unknown Y) when she already knows X = x so X is no longer a random variable.

Even when group decision making is needed, sensitivity and specificity can be bypassed. For mass marketing, for example, one can rank order individuals by the estimated probability of buying the product, to create a lift curve. This is then used to target the k most likely buyers where k is chosen to meet total program cost constraints.
Accuracy score used to drive model building should be a continuous score that utilizes all of the information in the data.

In summary:

- Classification is a forced choice — a decision.
- Decisions require knowledge of the cost or utility of making an incorrect decision.
- Predictions are made without knowledge of utilities.
- A prediction can lead to better decisions than classification. For example, suppose that one has an estimate of the risk of an event, \(\hat{P} \). One might make a decision if \(\hat{P} < 0.10 \) or \(\hat{P} > 0.90 \) in some situations, even without knowledge of utilities. If on the other hand \(\hat{P} = 0.6 \) or the confidence interval for \(P \) is wide, one might
 - make no decision and instead opt to collect more data
 - make a tentative decision that is revisited later
 - make a decision using other considerations such as the infusion of new resources that allow targeting a larger number of potential customers in a marketing campaign

The Dichotomizing Motorist

- The speed limit is 60.
• I am going faster than the speed limit.

• Will I be caught?

An answer by a dichotomizer:

• Are you going faster than 70?

An answer from a better dichotomizer:

• If you are among other cars, are you going faster than 73?
• If you are exposed are your going faster than 67?

Better:

• How fast are you going and are you exposed?

Analogy to most medical diagnosis research in which +/- diagnosis is a false dichotomy of an underlying disease severity:

• The speed limit is moderately high.

• I am going fairly fast.

• Will I be caught?
Planning for Modeling

- Chance that predictive model will be used \[159\]
- Response definition, follow-up
- Variable definitions
- Observer variability
- Missing data
- Preference for continuous variables
- Subjects
- Sites

What can keep a sample of data from being appropriate for modeling:

1. Most important predictor or response variables not collected
2. Subjects in the dataset are ill-defined or not representative of the population to which inferences are needed
3. Data collection sites do not represent the population of sites
4. Key variables missing in large numbers of subjects
5. Data not missing at random
6. No operational definitions for key variables and/or measurement errors severe
7. No observer variability studies done

What else can go wrong in modeling?

1. The process generating the data is not stable.
2. The model is misspecified with regard to nonlinearities or interactions, or there are predictors missing.
3. The model is misspecified in terms of the transformation of the response variable or the model’s distributional assumptions.
4. The model contains discontinuities (e.g., by categorizing continuous predictors or fitting regression shapes with sudden changes) that can be gamed by users.
5. Correlations among subjects are not specified, or the correlation structure is misspecified, resulting in inefficient parameter estimates and overconfident inference.
6. The model is overfitted, resulting in predictions that are too extreme or positive associations that are false.
7. The user of the model relies on predictions obtained by extrapolating to combinations of predictor values well outside the range of the dataset used to develop the model.
8. Accurate and discriminating predictions can lead to behavior changes that make future predictions inaccurate.
Iezzoni [102] lists these dimensions to capture, for patient outcome studies:

1. age
2. sex
3. acute clinical stability
4. principal diagnosis
5. severity of principal diagnosis
6. extent and severity of comorbidities
7. physical functional status
8. psychological, cognitive, and psychosocial functioning
9. cultural, ethnic, and socioeconomic attributes and behaviors
10. health status and quality of life
11. patient attitudes and preferences for outcomes

General aspects to capture in the predictors:

1. baseline measurement of response variable
2. current status
3. trajectory as of time zero, or past levels of a key variable
4. variables explaining much of the variation in the response
5. more subtle predictors whose distributions strongly differ between levels of the key variable of interest in an observational study
Choice of the Model

- In biostatistics and epidemiology and most other areas we usually choose model empirically

- Model must use data efficiently

- Should model overall structure (e.g., acute vs. chronic)

- Robust models are better

- Should have correct mathematical structure (e.g., constraints on probabilities)
Model uncertainty / Data-driven Model Specification

- Standard errors, C.L., P-values, R^2 wrong if computed as if the model pre-specified

- Stepwise variable selection is widely used and abused

- Bootstrap can be used to repeat all analysis steps to properly penalize variances, etc.

- Ye [221]: “generalized degrees of freedom” (GDF) for any “data mining” or model selection procedure based on least squares
 - Example: 20 candidate predictors, $n = 22$, forward step-wise, best 5-variable model: GDF=14.1
 - Example: CART, 10 candidate predictors, $n = 100$, 19 nodes: GDF=76

- See [131] for an approach involving adding noise to Y to improve variable selection

- Another example: t-test to compare two means
 - Basic test assumes equal variance and normal data distribution
– Typically examine the two sample distributions to decide whether to transform Y or switch to a different test

– Examine the two SDs to decide whether to use the standard test or switch to a Welch t-test

– Final confidence interval for mean difference is conditional on the final choices being correct

– Ignores model uncertainty

– Confidence interval will not have the claimed coverage

– Get proper coverage by adding parameters for what you don’t know

 * Bayesian t-test: parameters for variance ratio and for d.f. of a t-distribution for the raw data (allows heavy tails)
Chapter 2

General Aspects of Fitting Regression Models

Regression modeling meets many analytic needs:

- Prediction, capitalizing on efficient estimation methods such as maximum likelihood and the predominant additivity in a variety of problems
 - E.g.: effects of age, smoking, and air quality add to predict lung capacity

- When effects are predominantly additive, or when there aren’t too many interactions and one knows the likely interacting variables in advance, regression can beat machine learning techniques that assume interaction effects are likely to be as strong as main effects

- Separate effects of variables (especially exposure and treatment)
• Hypothesis testing

• Deep understanding of uncertainties associated with all model components
 – Simplest example: confidence interval for the slope of a predictor
 – Confidence intervals for predicted values; simultaneous confidence intervals for a series of predicted values
 * E.g.: confidence band for Y over a series of values of X

Alternative: Stratification

• Cross-classify subjects on the basis of the Xs, estimate a property of Y for each stratum

• Only handles a small number of Xs

• Does not handle continuous X

Alternative: Single Trees (recursive partitioning/CART)

• Interpretable because they are over-simplified and usually wrong

• Cannot separate effects
• Finds spurious interactions

• Require huge sample size

• Do not handle continuous X effectively; results in very heterogeneous nodes because of incomplete conditioning

• Tree structure is unstable so insights are fragile

Alternative: Machine Learning

• E.g. random forests, bagging, boosting, support vector machines, neural networks, deep learning

• Allows for high-order interactions and does not require prespecification of interaction terms

• Almost automatic; can save analyst time and do the analysis in one step (long computing time)

• Uninterpretable black box

• Effects of individual predictors are not separable

• Interaction effects (e.g., differential treatment effect = precision medicine = personalized medicine) not available

• Because of not using prior information about dominance of additivity, can require 200 events per candidate predictor
when Y is binary [195]

- Logistic regression may require 20 events per candidate predictor

- Can create a demand for “big data” where additive statistical models can work on moderate-size data

- See this article in *Harvard Business Review* for more about regression vs. complex methods
2.1 Notation for Multivariable Regression Models

- Weighted sum of a set of independent or predictor variables
- Interpret parameters and state assumptions by linearizing model with respect to regression coefficients
- Analysis of variance setups, interaction effects, nonlinear effects
- Examining the 2 regression assumptions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>response (dependent) variable</td>
</tr>
<tr>
<td>X</td>
<td>X_1, X_2, \ldots, X_p – list of predictors</td>
</tr>
<tr>
<td>β</td>
<td>$\beta_0, \beta_1, \ldots, \beta_p$ – regression coefficients</td>
</tr>
<tr>
<td>β_0</td>
<td>intercept parameter (optional)</td>
</tr>
<tr>
<td>β_1, \ldots, β_p</td>
<td>weights or regression coefficients</td>
</tr>
<tr>
<td>$X\beta$</td>
<td>$\beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p, X_0 = 1$</td>
</tr>
</tbody>
</table>

Model: connection between X and Y

$C(Y|X)$: property of distribution of Y given X, e.g.

$C(Y|X) = E(Y|X)$ or $\text{Prob}\{Y = 1|X\}$.
2.2 Model Formulations

General regression model

\[C(Y|X) = g(X). \]

General linear regression model

\[C(Y|X) = g(X\beta). \]

Examples

\[C(Y|X) = E(Y|X) = X\beta, \]
\[Y|X \sim N(X\beta, \sigma^2) \]
\[C(Y|X) = \text{Prob}\{Y = 1|X\} = (1 + \exp(-X\beta))^{-1} \]

Linearize:

\[h(C(Y|X)) = X\beta, h(u) = g^{-1}(u) \]
Example:

\[C(Y|X) = \text{Prob}\{Y = 1|X\} = (1 + \exp(-X\beta))^{-1} \]
\[h(u) = \text{logit}(u) = \log\left(\frac{u}{1-u}\right) \]
\[h(C(Y|X)) = C''(Y|X) \text{ (link)} \]

General linear regression model:

\[C''(Y|X) = X\beta. \]
2.3 Interpreting Model Parameters

Suppose that X_j is linear and doesn't interact with other X's\(^a\).

$$C''(Y|X) = X\beta = \beta_0 + \beta_1X_1 + \ldots + \beta_pX_p$$

$$\beta_j = C''(Y|X_1, X_2, \ldots, X_j + 1, \ldots, X_p)$$

$$- C''(Y|X_1, X_2, \ldots, X_j, \ldots, X_p)$$

Drop ' from C'' and assume $C(Y|X)$ is property of Y that is linearly related to weighted sum of X's.

2.3.1 Nominal Predictors

Nominal (polytomous) factor with k levels: $k-1$ dummy variables. E.g. $T = J, K, L, M$:

$$C(Y|T = J) = \beta_0$$

$$C(Y|T = K) = \beta_0 + \beta_1$$

$$C(Y|T = L) = \beta_0 + \beta_2$$

$$C(Y|T = M) = \beta_0 + \beta_3.$$

$$C(Y|T) = X\beta = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_3,$$

where

$X_1 = 1$ if $T = K$, 0 otherwise

\(^a\)Note that it is not necessary to “hold constant” all other variables to be able to interpret the effect of one predictor. It is sufficient to hold constant the weighted sum of all the variables other than X_j. And in many cases it is not physically possible to hold other variables constant while varying one, e.g., when a model contains X and X^2 (David Hoaglin, personal communication).
\[X_2 = 1 \text{ if } T = L, \; 0 \text{ otherwise} \]
\[X_3 = 1 \text{ if } T = M, \; 0 \text{ otherwise}. \]

The test for any differences in the property \(C(Y) \) between treatments is \(H_0 : \beta_1 = \beta_2 = \beta_3 = 0 \).

2.3.2 Interactions

\(X_1 \) and \(X_2 \), effect of \(X_1 \) on \(Y \) depends on level of \(X_2 \). One way to describe interaction is to add \(X_3 = X_1X_2 \) to model:
\[
C(Y|X) = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_1X_2.
\]

\[
C(Y|X_1 + 1, X_2) - C(Y|X_1, X_2) = \beta_0 + \beta_1(X_1 + 1) + \beta_2X_2 + \beta_3(X_1 + 1)X_2
- [\beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_1X_2]
= \beta_1 + \beta_3X_2.
\]

One-unit increase in \(X_2 \) on \(C(Y|X) : \beta_2 + \beta_3X_1 \).

Worse interactions:

If \(X_1 \) is binary, the interaction may take the form of a difference in shape (and/or distribution) of \(X_2 \) vs. \(C(Y) \) depending on whether \(X_1 = 0 \) or \(X_1 = 1 \) (e.g. logarithm vs. square root).

This paper describes how interaction effects can be misleading.
Example: Inference for a Simple Model

Postulate the model \(C(Y|age, sex) = \beta_0 + \beta_1 age + \beta_2 (sex = f) + \beta_3 age(\text{sex} = f) \) where \(sex = f \) is a dummy indicator variable for \(sex=\text{female} \), i.e., the reference cell is \(sex=\text{male} \).

Model assumes

1. age is linearly related to \(C(Y) \) for males,
2. age is linearly related to \(C(Y) \) for females, and
3. interaction between age and sex is simple
4. whatever distribution, variance, and independence assumptions are appropriate for the model being considered.

Interpretations of parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0)</td>
<td>(C(Y</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>(C(Y</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>(C(Y</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>(C(Y</td>
</tr>
</tbody>
</table>

\(\beta_3 \) is the difference in slopes (female – male).

When a high-order effect such as an interaction effect is in the model, be sure to interpret low-order effects by finding out what makes the interaction effect ignorable. In our example, the interaction effect is zero when \(age=0 \) or \(sex \) is male.

\(^b\)You can also think of the last part of the model as being \(\beta_3 X_3 \), where \(X_3 = age \times I[sex = f] \).
Hypotheses that are usually inappropriate:

1. $H_0 : \beta_1 = 0$: This tests whether age is associated with Y for males
2. $H_0 : \beta_2 = 0$: This tests whether sex is associated with Y for zero year olds

More useful hypotheses follow. For any hypothesis need to

- Write what is being tested
- Translate to parameters tested
- List the alternative hypothesis
- Not forget what the test is powered to detect
 - Test against nonzero slope has maximum power when linearity holds
 - If true relationship is monotonic, test for non-flatness will have some but not optimal power
 - Test against a quadratic (parabolic) shape will have some power to detect a logarithmic shape but not against a sine wave over many cycles

- Useful to write e.g. “$H_a : \text{age is associated with } C(Y),$ powered to detect a \textit{linear} relationship”
Most Useful Tests for Linear age \times sex Model

<table>
<thead>
<tr>
<th>Null or Alternative Hypothesis</th>
<th>Mathematical Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of age is independent of sex or Effect of sex is independent of age or age and sex are additive age effects are parallel</td>
<td>$H_0 : \beta_3 = 0$</td>
</tr>
<tr>
<td>age interacts with sex age modifies effect of sex sex modifies effect of age sex and age are non-additive (synergistic)</td>
<td>$H_a : \beta_3 \neq 0$</td>
</tr>
</tbody>
</table>
| age is not associated with Y age is associated with Y age is associated with Y for either females or males | $H_0 : \beta_1 = \beta_3 = 0$
$H_a : \beta_1 \neq 0$ or $\beta_3 \neq 0$ |
| sex is not associated with Y sex is associated with Y sex is associated with Y for some value of age | $H_0 : \beta_2 = \beta_3 = 0$
$H_a : \beta_2 \neq 0$ or $\beta_3 \neq 0$ |
| Neither age nor sex is associated with Y Either age or sex is associated with Y | $H_0 : \beta_1 = \beta_2 = \beta_3 = 0$
$H_a : \beta_1 \neq 0$ or $\beta_2 \neq 0$ or $\beta_3 \neq 0$ |

Note: The last test is called the global test of no association. If an interaction effect present, there is both an age and a sex effect. There can also be age or sex effects when the lines are parallel. The global test of association (test of total association) has 3 d.f. instead of 2 (age + sex) because it allows for unequal slopes.

2.3.4 Review of Composite (Chunk) Tests

- **In the model**

\[
y \sim \text{age} + \text{sex} + \text{weight} + \text{waist} + \text{tricep}
\]
we may want to jointly test the association between all body measurements and response, holding age and sex constant.

- This 3 d.f. test may be obtained two ways:
 - Remove the 3 variables and compute the change in SSR or SSE
 - Test $H_0 : \beta_3 = \beta_4 = \beta_5 = 0$ using matrix algebra (e.g., `anova(fit, weight, waist, tricep)` if `fit` is a fit object created by the R `rms` package)
2.4 Relaxing Linearity Assumption for Continuous Predictors

2.4.1 Avoiding Categorization

Natura non facit saltus
(Nature does not make jumps)

- Relationships seldom linear except when predicting one variable from itself measured earlier

- Categorizing continuous predictors into intervals is a disaster; see references

 \[164, 2, 97, 117, 4, 13, 67, 158, 185, 30\]

 \[135, 169, 5, 99, 139, 206, 69, 75, 44, 17\] and Biostatistics for Biomedical Research, Chapter 18.

- Some problems caused by this approach:
1. Estimated values have reduced precision, and associated tests have reduced power

2. Categorization assumes relationship between predictor and response is flat within intervals; far less reasonable than a linearity assumption in most cases

3. To make a continuous predictor be more accurately modeled when categorization is used, multiple intervals are required

4. Because of sample size limitations in the very low and very high range of the variable, the outer intervals (e.g., outer quintiles) will be wide, resulting in significant heterogeneity of subjects within those intervals, and residual confounding

5. Categorization assumes that there is a discontinuity in response as interval boundaries are crossed. Other than the effect of time (e.g., an instant stock price drop after bad news), there are very few examples in which such discontinuities have been shown to exist.

6. Categorization only seems to yield interpretable estimates. E.g. odds ratio for stroke for persons with a systolic blood pressure > 160 mmHg compared to persons with a blood pressure ≤ 160 mmHg \rightarrow interpretation of OR depends on distribution of blood pressures in the sample (the proportion of subjects > 170, > 180, etc.). If blood pressure is modeled as a continuous variable (e.g., using a regression spline, quadratic, or linear effect) one can estimate the ratio of odds for exact settings of the predictor, e.g.,
the odds ratio for 200 mmHg compared to 120 mmHg.

7. Categorization does not condition on full information. When, for example, the risk of stroke is being assessed for a new subject with a known blood pressure (say 162 mmHg), the subject does not report to her physician “my blood pressure exceeds 160” but rather reports 162 mmHg. The risk for this subject will be much lower than that of a subject with a blood pressure of 200 mmHg.

8. If cutpoints are determined in a way that is not blinded to the response variable, calculation of \(P \)-values and confidence intervals requires special simulation techniques; ordinary inferential methods are completely invalid. E.g.: cutpoints chosen by trial and error utilizing \(Y \), even informally \(\rightarrow \) \(P \)-values too small and CLs not accurate\(^c\).

9. Categorization not blinded to \(Y \) \(\rightarrow \) biased effect estimates [4, 169]

10. “Optimal” cutpoints do not replicate over studies. Hollander et al. [99] state that “. . . the optimal cutpoint approach has disadvantages. One of these is that in almost every study where this method is applied, another cutpoint will emerge. This makes comparisons across studies extremely difficult or even impossible. Altman et al. point out this problem for studies of the prognostic relevance of the S-phase fraction in breast cancer published in the literature. They identified 19 different cutpoints used in the literature; some of them were solely used because they emerged as the ’optimal’ cutpoint in a specific data set. In a meta-analysis on the relationship between cathepsin-D content and disease-free survival in node-negative breast cancer patients,

\(^c\)If a cutpoint is chosen that minimizes the \(P \)-value and the resulting \(P \)-value is 0.05, the true type I error can easily be above 0.5 [99].
12 studies were included with 12 different cutpoints. Interestingly, neither cathepsin-D nor the S-phase fraction are recommended to be used as prognostic markers in breast cancer in the recent update of the American Society of Clinical Oncology. Giannoni et al. [75] demonstrated that many claimed “optimal cutpoints” are just the observed median values in the sample, which happens to optimize statistical power for detecting a separation in outcomes.

11. Disagreements in cutpoints (which are bound to happen whenever one searches for things that do not exist) cause severe interpretation problems. One study may provide an odds ratio for comparing body mass index (BMI) > 30 with BMI < 30, another for comparing BMI > 28 with BMI < 28. Neither of these has a good definition and the two estimates are not comparable.

12. Cutpoints are arbitrary and manipulatable; cutpoints can be found that can result in both positive and negative associations [206].

13. If a confounder is adjusted for by categorization, there will be residual confounding that can be explained away by inclusion of the continuous form of the predictor in the model in addition to the categories.

- To summarize: The use of a (single) cutpoint c makes many assumptions, including:

 1. Relationship between X and Y is discontinuous at $X = c$ and only $X = c$
 2. c is correctly found as the cutpoint
 3. X vs. Y is flat to the left of c
4. X vs. Y is flat to the right of c

5. The choice of c does not depend on the values of other predictors

Interactive demonstration of power loss of categorization vs. straight line and quadratic fits in OLS, with varying degree of nonlinearity and noise added to X (must run in RStudio)

```r
require(Hmisc)
getRs('catgNoise.r')
```

Example\(^d\) of misleading results from creating intervals (here, deciles) of a continuous predictor. Final interval is extremely heterogeneous and is greatly influenced by very large glycohemoglobin values, creating the false impression of an inflection point at 5.9.

![Graph showing retinopathy percentage against FPG, 2hPG, and HbA1c levels.](image)

See this for excellent graphical examples of the harm of categorizing predictors, especially when using quantile groups.

\(^d\)From NHANES III; Diabetes Care 32:1327-34; 2009 adapted from Diabetes Care 20:1183-1197; 1997.
2.4.2 Simple Nonlinear Terms

\[C(Y|X_1) = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2. \]

- \(H_0 \): model is linear in \(X_1 \) vs. \(H_a \): model is quadratic in \(X_1 \) \(\equiv H_0 : \beta_2 = 0 \).

- Test of linearity may be powerful if true model is not extremely non-parabolic

- Predictions not accurate in general as many phenomena are non-quadratic

- Can get more flexible fits by adding powers higher than 2

- But polynomials do not adequately fit logarithmic functions or “threshold” effects, and have unwanted peaks and valleys.

2.4.3 Splines for Estimating Shape of Regression Function and Determining Predictor Transformations

Draftsman’s spline: flexible strip of metal or rubber used to trace curves.

Spline Function: piecewise polynomial
Linear Spline Function: piecewise linear function

- Bilinear regression: model is $\beta_0 + \beta_1 X$ if $X \leq a$, $\beta_2 + \beta_3 X$ if $X > a$.

- Problem with this notation: two lines not constrained to join

- To force simple continuity: $\beta_0 + \beta_1 X + \beta_2 (X - a) \times I[X > a] = \beta_0 + \beta_1 X_1 + \beta_2 X_2$, where $X_2 = (X_1 - a) \times I[X_1 > a]$.

- Slope is $\beta_1, X \leq a$, $\beta_1 + \beta_2, X > a$.

- β_2 is the slope increment as you pass a

More generally: X-axis divided into intervals with endpoints a, b, c (knots).

\[
f(X) = \beta_0 + \beta_1 X + \beta_2 (X - a)_+ + \beta_3 (X - b)_+ + \beta_4 (X - c)_+,
\]

where

\[
(u)_+ = u, \ u > 0, \\
0, \ u \leq 0.
\]
\[f(X) = \beta_0 + \beta_1 X, \quad X \leq a \]
\[= \beta_0 + \beta_1 X + \beta_2 (X - a) \quad a < X \leq b \]
\[= \beta_0 + \beta_1 X + \beta_2 (X - a) + \beta_3 (X - b) \quad b < X \leq c \]
\[= \beta_0 + \beta_1 X + \beta_2 (X - a) + \beta_3 (X - b) + \beta_4 (X - c) \quad c < X. \]

Figure 2.1: A linear spline function with knots at \(a = 1, b = 3, c = 5 \).

\[C(Y|X) = f(X) = X\beta, \]

where \(X\beta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 \), and
\[X_1 = X \quad X_2 = (X - a)_+ \]
\[X_3 = (X - b)_+ \quad X_4 = (X - c)_+. \]

Overall linearity in \(X \) can be tested by testing \(H_0 : \beta_2 = \beta_3 = \beta_4 = 0 \).
Cubic Spline Functions

Cubic splines are smooth at knots (function, first and second derivatives agree) — can’t see joins.

\[f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 (X - a)^3_+ + \beta_5 (X - b)^3_+ + \beta_6 (X - c)^3_+ = X \beta \]

\[X_1 = X \quad X_2 = X^2 \]
\[X_3 = X^3 \quad X_4 = (X - a)^3_+ \]
\[X_5 = (X - b)^3_+ \quad X_6 = (X - c)^3_+ . \]

\(k \) knots \(\rightarrow k + 3 \) coefficients excluding intercept.

\(X^2 \) and \(X^3 \) terms must be included to allow nonlinearity when \(X < a \).

stats.stackexchange.com/questions/421964 has some useful descriptions of what happens at the knots, e.g.:

Knots are where different cubic polynomials are joined, and cubic splines force there to be three levels of continuity (the function, its slope, and its acceleration or second derivative (slope of the slope) do not change) at these points. At the knots the jolt (third derivative or rate of change of acceleration) is allowed to change suddenly, meaning the jolt is allowed to be
discontinuous at the knots. Between knots, jolt is constant.

The following graphs show the function and its first three derivatives (all further derivatives are zero) for the function given by

\[f(x) = x + x^2 + 2x^3 + 10(x - 0.25)^3 + 50(x - 0.5)^3 - 100(x - 0.75)^3 \]

for \(x \) going from 0 to 1, where there are three knots, at \(x = 0.25, 0.5, 0.75 \).

\[
x \leftarrow \text{seq}(0, 1, \text{length}=500) \\
x1 \leftarrow \text{pmax}(x - .25, 0) \\
x2 \leftarrow \text{pmax}(x - .50, 0) \\
x3 \leftarrow \text{pmax}(x - .75, 0) \\
b1 \leftarrow 1; \ b2 \leftarrow 1; \ b3 \leftarrow 2; \ b4 \leftarrow 10; \ b5 \leftarrow -50; \ b6 \leftarrow -100 \\
y \leftarrow b1 \ast x + b2 \ast x^2 + b3 \ast x^3 + b4 \ast x_1^3 + b5 \ast x_2^3 + b6 \ast x_3^3 \\
y1 \leftarrow b1 + 2*b2*x + 3*b3*x^2 + 3*b4*x_1^2 + 3*b5*x_2^2 + 3*b6*x_3^2 \\
y2 \leftarrow 2*b2 + 6*b3*x + 6*b4*x_1 + 6*b5*x_2 + 6*b6*x_3 \\
y3 \leftarrow 6*b3 + 6*b4*(x_1>0) + 6*b5*(x_2>0) + 6*b6*(x_3>0) \\
g \leftarrow \text{function()} \ \text{abline(v=(1:3)/4, col=gray(.85))} \\
\text{plot(x, y, type='l', ylab=''); g(); } \\
\text{text(0, 1.5, ' Function ', adj=0)} \\
\text{plot(x, y1, type='l', ylab=''); g(); } \\
\text{text(0, -15, 'First Derivative: Slope \nRate of Change of Function ', adj=0)} \\
\text{plot(x, y2, type='l', ylab=''); g(); } \\
\text{text(0, -125, 'Second Derivative: Acceleration \nRate of Change of Slope', adj=0)} \\
\text{plot(x, y3, type='l', ylab=''); g(); } \\
\text{text(0, -400, 'Third Derivative: Jolt \nRate of Change of Acceleration', adj=0)}

2.4.5 Restricted Cubic Splines

Stone and Koo [184]: cubic splines poorly behaved in tails. Constrain function to be linear in tails.

\(k + 3 \rightarrow k - 1 \) parameters [56].

To force linearity when \(X < a \): \(X^2 \) and \(X^3 \) terms must be omitted.
Figure 2.2: A regular cubic spline function with three levels of continuity that prevent the human eye from detecting the knots. Also shown is the function’s first three derivatives. Knots are located at $x = 0.25, 0.5, 0.75$. For x beyond the outer knots, the function is not restricted to be linear. Linearity would imply an acceleration of zero. Vertical lines are drawn at the knots.
To force linearity when \(X \geq \) last knot: last two \(\beta \)’s are redundant, i.e., are just combinations of the other \(\beta \)’s.

The restricted spline function with \(k \) knots \(t_1, \ldots, t_k \) is given by [56]

\[
f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_{k-1} X_{k-1},
\]

where \(X_1 = X \) and for \(j = 1, \ldots, k - 2 \),

\[
X_{j+1} = (X - t_j)_+^3 - (X - t_{k-1})_+^3(t_k - t_j)/(t_k - t_{k-1})
+ (X - t_k)_+^3(t_{k-1} - t_j)/(t_k - t_{k-1}).
\]

\(X_j \) is linear in \(X \) for \(X \geq t_k \).

For numerical behavior and to put all basis functions for \(X \) on the same scale, \(\mathbb{R} \) \texttt{Hmisc} and \texttt{rms} package functions by default divide the terms above by \(\tau = (t_k - t_1)^2 \).

```r
require(Hmisc)
x ← rcspline.eval(seq(0,1,.01),
                 knots=seq(.05,.95,length=5), inclx=T)

xm ← x
xm[xm > .0106] ← NA
matplot(x[,1], xm, type="l", ylim=c(0,.01),
        xlab=expression(X), ylab='', lty=1)
matplot(x[,1], x, type="l",
        xlab=expression(X), ylab='', lty=1)

x ← seq(0,1,length=300)
for(nk in 3:6) {
  set.seed(nk)
  knots ← seq(.05,.95,length=nk)
  xx ← rcspline.eval(x, knots=knots, inclx=T)

  # Normalize the basis functions
  for(i in 1 : (nk - 1))
    xx[,i] ← (xx[,i] - min(xx[,i])) /
                (max(xx[,i]) - min(xx[,i]))

  for(i in 1 : 20) {
    beta ← 2*runif(nk-1) - 1
    xbeta ← xx %*% beta + 2 * runif(1) - 1
    xbeta ← (xbeta - min(xbeta)) /
              (max(xbeta) - min(xbeta))

    if(i == 1) {
      plot(x, xbeta, type="l", lty=1,
           xlab=expression(X), ylab='', bty="l")
      title(sub=paste(nk," knots"), adj=0, cex=.75)
    }
  }
```
Figure 2.3: Restricted cubic spline component variables for $k = 5$ and knots at $X = 0.05, 0.275, 0.5, 0.725, \text{and } 0.95$. Nonlinear basis functions are scaled by τ. The left panel is a y-magnification of the right panel. Fitted functions such as those in Figure 2.4 will be linear combinations of these basis functions as long as knots are at the same locations used here.

```r
for(j in 1 : nk)
  arrows(knots[j], .04, knots[j], -.03,
         angle=20, length=.07, lwd=1.5)
else lines(x, xbeta, col=i)
```

Interactive demonstration of linear and cubic spline fitting, plus ordinary 4^{th} order polynomial. This can be run with RStudio or in an ordinary R session.

```r
require(Hmisc)
getRs('demoSpline.r')  # if using RStudio
getRs('demoSpline.r', put='source')  # if not
```

Paul Lambert’s excellent self-contained interactive demonstrations of continuity restrictions, cubic polynomial, linear spline, cubic spline, and restricted cubic spline fitting is at pclambert.net/interactivegraphs. Jordan Gauthier has another nice interactive demonstration at drjgauthier.shinyapps.io/spliny.
Figure 2.4: Some typical restricted cubic spline functions for \(k = 3, 4, 5, 6 \). The \(y \)-axis is \(X\beta \). Arrows indicate knots. These curves were derived by randomly choosing values of \(\beta \) subject to standard deviations of fitted functions being normalized.
Once $\beta_0, \ldots, \beta_{k-1}$ are estimated, the restricted cubic spline can be restated in the form

$$f(X) = \beta_0 + \beta_1 X + \beta_2 (X - t_1)^3 + \beta_3 (X - t_2)^3 + \ldots + \beta_{k+1} (X - t_k)^3$$

by dividing $\beta_2, \ldots, \beta_{k-1}$ by τ and computing

$$\beta_k = \frac{[\beta_2 (t_1 - t_k) + \beta_3 (t_2 - t_k) + \ldots + \beta_{k-1} (t_{k-2} - t_k)]}{(t_k - t_{k-1})}$$

$$\beta_{k+1} = \frac{[\beta_2 (t_1 - t_{k-1}) + \beta_3 (t_2 - t_{k-1}) + \ldots + \beta_{k-1} (t_{k-2} - t_{k-1})]}{(t_{k-1} - t_k)}.$$

A test of linearity in X can be obtained by testing

$$H_0 : \beta_2 = \beta_3 = \ldots = \beta_{k-1} = 0.$$

Example: [170]
2.4.6 Choosing Number and Position of Knots

- Knots are specified in advance in regression splines
- Locations not important in most situations [183, 60]
- Place knots where data exist — fixed quantiles of predictor’s marginal distribution
- Fit depends more on choice of k
CHAPTER 2. GENERAL ASPECTS OF FITTING REGRESSION MODELS

<table>
<thead>
<tr>
<th>k</th>
<th>Quantiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.10 .5 .90</td>
</tr>
<tr>
<td>4</td>
<td>.05 .35 .65 .95</td>
</tr>
<tr>
<td>5</td>
<td>.05 .275 .5 .725 .95</td>
</tr>
<tr>
<td>6</td>
<td>.05 .23 .41 .59 .77 .95</td>
</tr>
<tr>
<td>7</td>
<td>.025 .1833 .3417 .5 .6583 .8167 .975</td>
</tr>
</tbody>
</table>

\(n < 100 \) – replace outer quantiles with 5th smallest and 5th largest \(X \) [184].

Choice of \(k \):

- Flexibility of fit vs. \(n \) and variance
- Usually \(k = 3, 4, 5 \). Often \(k = 4 \)
- Large \(n \) (e.g. \(n \geq 100 \)) – \(k = 5 \)
- Small \(n \) (< 30, say) – \(k = 3 \)
- Can use Akaike’s information criterion (AIC) [7, 197] to choose \(k \)
- This chooses \(k \) to maximize model likelihood ratio \(\chi^2 - 2k \).

See [79] for a comparison of restricted cubic splines, fractional polynomials, and penalized splines.
Nonparametric Regression

- Estimate tendency (mean or median) of Y as a function of X
- Few assumptions
- Especially handy when there is a single X
- Plotted trend line may be the final result of the analysis
- Simplest smoother: moving average

$$X: \quad 1 \quad 2 \quad 3 \quad 5 \quad 8$$

$$Y: \quad 2.1 \quad 3.8 \quad 5.7 \quad 11.1 \quad 17.2$$

$$\hat{E}(Y|X = 2) = \frac{2.1 + 3.8 + 5.7}{3}$$

$$\hat{E}(Y|X = \frac{2 + 3 + 5}{3}) = \frac{3.8 + 5.7 + 11.1}{3}$$

- overlap OK
- problem in estimating $E(Y)$ at outer X-values
- estimates very sensitive to bin width

- Moving linear regression far superior to moving avg. (moving flat line)
• Cleveland’s [41] moving linear regression smoother \textit{loess} (locally weighted least squares) is the most popular smoother. To estimate central tendency of Y at $X = x$:

– take all the data having X values within a suitable interval about x (default is $\frac{2}{3}$ of the data)

– fit weighted least squares linear regression within this neighborhood

– points near x given the most weighte

– points near extremes of interval receive almost no weight

– loess works much better at extremes of X than moving avg.

– provides an estimate at each observed X; other estimates obtained by linear interpolation

– outlier rejection algorithm built-in

• \textit{loess} works for binary Y — just turn off outlier detection A

• Other popular smoother: Friedman’s “super smoother”

• For \textit{loess} or \textit{supsmu} amount of smoothing can be controlled by analyst

AWeight here means something different than regression coefficient. It means how much a point is emphasized in developing the regression coefficients.
• Another alternative: smoothing splines\(^f\)

• Smoothers are very useful for estimating trends in residual plots

2.4.8

Advantages of Regression Splines over Other Methods

Regression splines have several advantages [89]:

• Parametric splines can be fitted using any existing regression program

• Regression coefficients estimated using standard techniques (ML or least squares), formal tests of no overall association, linearity, and additivity, confidence limits for the estimated regression function are derived by standard theory.

• The fitted function directly estimates transformation predictor should receive to yield linearity in \(C(Y|X) \).

• Even when a simple transformation is obvious, spline function can be used to represent the predictor in the final model (and the d.f. will be correct). Nonparametric methods do not yield a prediction equation.

• Extension to non-additive models.

\(^f\)These place knots at all the observed data points but penalize coefficient estimates towards smoothness.
burdensome computations.
Breiman, Friedman, Olshen, and Stone [27]: CART (Classification and Regression Trees) — essentially model-free

Method:

- Find predictor so that best possible binary split has maximum value of some statistic for comparing 2 groups

- Within previously formed subsets, find best predictor and split maximizing criterion in the subset

- Proceed in like fashion until $< k$ obs. remain to split

- Summarize Y for the terminal node (e.g., mean, modal category)

- Prune tree backward until it cross-validates as well as its “apparent” accuracy, or use shrinkage
Advantages/disadvantages of recursive partitioning:

• Does not require functional form for predictors
• Does not assume additivity — can identify complex interactions
• Can deal with missing data flexibly
• Interactions detected are frequently spurious
• Does not use continuous predictors effectively
• Penalty for overfitting in 3 directions
• Often tree doesn’t cross-validate optimally unless pruned back very conservatively
• Very useful in messy situations or those in which overfitting is not as problematic (confounder adjustment using propensity scores [45]; missing value imputation)

See [10].

2.5.1

New Directions in Predictive Modeling

The approaches recommended in this course are
• fitting fully pre-specified models without deletion of “insignificant” predictors

• using data reduction methods (masked to Y) to reduce the dimensionality of the predictors and then fitting the number of parameters the data’s information content can support

• use shrinkage (penalized estimation) to fit a large model without worrying about the sample size.

The data reduction approach can yield very interpretable, stable models, but there are many decisions to be made when using a two-stage (reduction/model fitting) approach, Newer approaches are evolving, including the following. These new approach handle continuous predictors well, unlike recursive partitioning.

• lasso (shrinkage using L1 norm favoring zero regression coefficients) [189, 182]

• elastic net (combination of L1 and L2 norms that handles the $p > n$ case better than the lasso) [227]

• adaptive lasso [224, 208]

• more flexible lasso to differentially penalize for variable selection and for regression coefficient estimation [157]

• group lasso to force selection of all or none of a group of
related variables (e.g., dummy variables representing a polytomous predictor)

- group lasso-like procedures that also allow for variables within a group to be removed [209]

- sparse-group lasso using L1 and L2 norms to achieve sparseness on groups and within groups of variables [173]

- adaptive group lasso (Wang & Leng)

- Breiman’s nonnegative garrote [220]

- “preconditioning”, i.e., model simplification after developing a “black box” predictive model [144, 143]

- sparse principal components analysis to achieve parsimony in data reduction [217, 226, 123, 122]

- bagging, boosting, and random forests [94]

One problem prevents most of these methods from being ready for everyday use: they require scaling predictors before fitting the model. When a predictor is represented by nonlinear basis functions, the scaling recommendations in the literature are not sensible. There are also computational issues and difficulties obtaining hypothesis tests and confidence intervals.

When data reduction is not required, generalized additive mod-
els [95, 218] should also be considered.

2.5.2 Choosing Between Machine Learning and Statistical Modeling

- Statistical models allow for complexity (nonlinearity, interaction)
- Easy to allow every predictor to have nonlinear effect
- Easy to handle unlimited numbers of candidate predictors if assume additivity (e.g., using ridge regression, lasso, elastic net)
- Interactions should be pre-specified
- Machine learning is gaining attention but is oversold in some settings
- Researchers are under the mistaken impression that machine learning can be used on small samples

Considerations in Choosing One Approach over Another

A statistical model may be the better choice if

- Uncertainty is inherent and the signal:noise ratio is not large—
even with identical twins, one twin may get colon cancer and the other not; model tendencies instead of doing classification

- One could never have perfect training data, e.g., cannot repeatedly test one subject and have outcomes assessed without error

- One wants to isolate effects of a small number of variables

- Uncertainty in an overall prediction or the effect of a predictor is sought

- Additivity is the dominant way that predictors affect the outcome, or interactions are relatively small in number and can be pre-specified

- The sample size isn’t huge

- One wants to isolate (with a predominantly additive effect) the effects of “special” variables such as treatment or a risk factor

- One wants the entire model to be interpretable

Machine learning may be the better choice if

- The signal:noise ratio is large and the outcome being predicted doesn’t have a strong component of randomness; e.g.,
in visual pattern recognition an object must be an “E” or not an “E”

- The learning algorithm can be trained on an unlimited number of exact replications (e.g., 1000 repetitions of each letter in the alphabet or of a certain word to be translated to German)

- Overall prediction is the goal, without being able to succinctly describe the impact of any one variable (e.g., treatment)

- One is not very interested in estimating uncertainty in forecasts or in effects of select predictors

- Non-additivity is expected to be strong and can’t be isolated to a few pre-specified variables (e.g., in visual pattern recognition the letter “L” must have both a dominating vertical component and a dominating horizontal component)

- The sample size is huge [195]

- One does not need to isolate the effect of a special variable such as treatment

- One does not care that the model is a “black box”
2.6

Multiple Degree of Freedom Tests of Association

\[C(Y|X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2^2, \]

\[H_0 : \beta_2 = \beta_3 = 0 \] with 2 d.f. to assess association between \(X_2 \) and outcome.

In the 5-knot restricted cubic spline model

\[C(Y|X) = \beta_0 + \beta_1 X + \beta_2 X' + \beta_3 X'' + \beta_4 X''', \]

\[H_0 : \beta_1 = \ldots = \beta_4 = 0 \]

- Test of association: 4 d.f.
- Insignificant \(\rightarrow \) dangerous to interpret plot
- What to do if 4 d.f. test insignificant, 3 d.f. test for linearity insig., 1 d.f. test sig. after delete nonlinear terms?

Grambsch and O'Brien [80] elegantly described the hazards of pretesting

- Studied quadratic regression
- Showed 2 d.f. test of association is nearly optimal even when regression is linear if nonlinearity \textit{entertained}
• Considered ordinary regression model
 \[E(Y|X) = \beta_0 + \beta_1 X + \beta_2 X^2 \]

• Two ways to test association between \(X \) and \(Y \)

• Fit quadratic model and test for linearity (\(H_0 : \beta_2 = 0 \))

• \(F \)-test for linearity significant at \(\alpha = 0.05 \) level \(\rightarrow \) report as the final test of association the 2 d.f. \(F \) test of \(H_0 : \beta_1 = \beta_2 = 0 \)

• If the test of linearity insignificant, refit without the quadratic term and final test of association is 1 d.f. test, \(H_0 : \beta_1 = 0 | \beta_2 = 0 \)

• Showed that type I error \(> \alpha \)

• Fairly accurate \(P \)-value obtained by instead testing against \(F \) with 2 d.f. even at second stage

• Cause: are retaining the most significant part of \(F \)

• **BUT** if test against 2 d.f. can only lose power when compared with original \(F \) for testing both \(\beta \)s

• \(SSR \) from quadratic model \(> \) \(SSR \) from linear model
2.7
Assessment of Model Fit

2.7.1
Regression Assumptions

The general linear regression model is

\[C(Y|X) = X\beta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k. \]

Verify linearity and additivity. Special case:

\[C(Y|X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2, \]

where \(X_1 \) is binary and \(X_2 \) is continuous.

![Figure 2.5: Regression assumptions for one binary and one continuous predictor](image)

Methods for checking fit:

1. Fit simple linear additive model and check examine residual plots for patterns
• For OLS: box plots of e stratified by X_1, scatterplots of e vs. X_2 and \hat{Y}, with trend curves (want flat central tendency, constant variability)

• For normality, qqnorm plots of overall and stratified residuals

Advantage: Simplicity

Disadvantages:

• Can only compute standard residuals for uncensored continuous response

• Subjective judgment of non-randomness

• Hard to handle interaction

• Hard to see patterns with large n (trend lines help)

• Seeing patterns does not lead to corrective action

2. Scatterplot of Y vs. X_2 using different symbols according to values of X_1

Advantages: Simplicity, can see interaction

Disadvantages:

• Scatterplots cannot be drawn for binary, categorical, or censored Y

• Patterns difficult to see if relationships are weak or n large

3. Stratify the sample by X_1 and quantile groups (e.g. deciles)
of X_2; estimate $C(Y|X_1, X_2)$ for each stratum

Advantages: Simplicity, can see interactions, handles censored Y (if you are careful)

Disadvantages:

- Requires large n
- Does not use continuous var. effectively (no interpolation)
- Subgroup estimates have low precision
- Dependent on binning method

4. Separately for levels of X_1 fit a nonparametric smoother relating X_2 to Y

Advantages: All regression aspects of the model can be summarized efficiently with minimal assumptions

Disadvantages:

- Does not apply to censored Y
- Hard to deal with multiple predictors

5. Fit flexible nonlinear parametric model

Advantages:

- One framework for examining the model assumptions, fitting the model, drawing formal inference
- d.f. defined and all aspects of statistical inference “work as advertised”
Disadvantages:

- Complexity

- Generally difficult to allow for interactions when assessing patterns of effects

Confidence limits, formal inference can be problematic for methods 1-4.

Restricted cubic spline works well for method 5.

\[
\hat{C}(Y|X) = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_2' + \hat{\beta}_4 X_2''
\]

\[
= \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{f}(X_2),
\]

where

\[
\hat{f}(X_2) = \hat{\beta}_2 X_2 + \hat{\beta}_3 X_2' + \hat{\beta}_4 X_2''
\]

\(\hat{f}(X_2) \) spline-estimated transformation of \(X_2 \).

- Plot \(\hat{f}(X_2) \) vs. \(X_2 \)

- \(n \) large \(\rightarrow \) can fit separate functions by \(X_1 \)

- Test of linearity: \(H_0 : \beta_3 = \beta_4 = 0 \)

- Few good reasons to do the test other than to demonstrate that linearity is not a good default assumption

- Nonlinear \(\rightarrow \) use transformation suggested by spline fit or keep spline terms
• Tentative transformation $g(X_2) \rightarrow$ check adequacy by expanding $g(X_2)$ in spline function and testing linearity

• Can find transformations by plotting $g(X_2)$ vs. $\hat{f}(X_2)$ for variety of g

• Multiple continuous predictors \rightarrow expand each using spline

• Example: assess linearity of X_2, X_3

$$C(Y | X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X'_2 + \beta_4 X''_2 + \beta_5 X_3 + \beta_6 X'_3 + \beta_7 X''_3,$$

Overall test of linearity $H_0 : \beta_3 = \beta_4 = \beta_6 = \beta_7 = 0$, with 4 d.f.

2.7.2 Modeling and Testing Complex Interactions

Note: Interactions will be misleading if main effects are not properly modeled [225].

Suppose X_1 binary or linear, X_2 continuous:

$$C(Y | X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X'_2 + \beta_4 X''_2 + \beta_5 X_1 X_2 + \beta_6 X_1 X'_2 + \beta_7 X_1 X''_2,$$

Simultaneous test of linearity and additivity: $H_0 : \beta_3 = \ldots = \beta_7 = 0$.
• 2 continuous variables: could transform separately and form simple product

• **But** transformations depend on whether interaction terms adjusted for, so it is usually not possible to estimate transformations and interaction effects other than simultaneously

• **Compromise:** Fit interactions of the form \(X_1 f(X_2) \) and \(X_2 g(X_1) \):

\[
C(Y|X) = \beta_0 + \beta_1 X_1 + \beta_2 X_1' + \beta_3 X_1'' + \beta_4 X_2 + \beta_5 X_2' + \beta_6 X_2'' + \beta_7 X_1 X_2 + \beta_8 X_1 X_2' + \beta_9 X_1 X_2'' + \beta_{10} X_2 X_1' + \beta_{11} X_2 X_1''
\]

• **Test of additivity** is \(H_0 : \beta_7 = \beta_8 = \ldots = \beta_{11} = 0 \) with 5 d.f.

• **Test of lack of fit** for the simple product interaction with \(X_2 \) is \(H_0 : \beta_8 = \beta_9 = 0 \)

• **Test of lack of fit** for the simple product interaction with \(X_1 \) is \(H_0 : \beta_{10} = \beta_{11} = 0 \)

General spline surface:

• Cover \(X_1 \times X_2 \) plane with grid and fit patch-wise cubic
polynomial in two variables

- Restrict to be of form $aX_1 + bX_2 + cX_1X_2$ in corners

- Uses all $(k - 1)^2$ cross-products of restricted cubic spline terms

- See Gray [81, 82, Section 3.2] for penalized splines allowing control of effective degrees of freedom. See Berhane et al. [18] for a good discussion of tensor splines.

Figure 2.6: Logistic regression estimate of probability of a hemorrhagic stroke for patients in the GUSTO-I trial given t-PA, using a tensor spline of two restricted cubic splines and penalization (shrinkage). Dark (cold color) regions are low risk, and bright (hot) regions are higher risk.

Figure 2.6 is particularly interesting because the literature had suggested (based on
approximately 24 strokes) that pulse pressure was the main cause of hemorrhagic stroke whereas this flexible modeling approach (based on approximately 230 strokes) suggests that mean arterial blood pressure (roughly a 45° line) is what is most important over a broad range of blood pressures. At the far right one can see that pulse pressure (axis perpendicular to 45° line) may have an impact although a non-monotonic one.

Other issues:

- Y non-censored (especially continuous) \rightarrow multi-dimensional scatterplot smoother [35]
- Interactions of order ≥ 2: more trouble
- 2-way interactions among p predictors: pooled tests
- p tests each with $p - 1$ d.f.

Some types of interactions to pre-specify in clinical studies:

- Treatment \times severity of disease being treated
- Age \times risk factors
- Age \times type of disease
- Measurement \times state of a subject during measurement
- Race \times disease
- Calendar time \times treatment
• Quality \times quantity of a symptom

• Measurement \times amount of deterioration of the measurement

The section between the two horizontal blue lines was inserted after the audio narration was recorded.

The last example is worth expanding as an example in model formulation. Consider the following study.

• A sample of patients seen over several years have a blood sample taken at time of hospitalization

• Blood samples are frozen

• Long after the last patient was sampled, the blood samples are thawed all in the same week and a blood analysis is done

• It is known that the quality of the blood analysis deteriorates roughly logarithmically by the age of the sample; blood measurements made on old samples are assumed to be less predictive of outcome

• This is reflected in an interaction between a function of sample age and the blood measurement B^g

• Patients were followed for an event, and the outcome variable of interest is the time from hospitalization to that event

\[1\] For continuous Y one might need to model the residual variance of Y as increasing with sample age, in addition to modeling the mean function.
• To not assume a perfect logarithmic relationship for sample age on the effect of the blood measurement, a restricted cubic spline model with 3 default knots will be fitted for log sample age

• Sample age is assumed to not modify the effects of non-blood predictors patient age and sex

• Model may be specified the following way using the R \texttt{rms} package to fit a Cox proportional hazards model

\begin{verbatim}
f ← cph(Surv(etime, event) ~ rcs(log(sampleAge), 3) * rcs(B, 4) + rcs(age, 5) * sex, data=mydata)
\end{verbatim}

The $B \times \text{sampleAge}$ interaction effects have 6 d.f. and tests whether the sample deterioration affects the effect of B. By not assuming that B has the same effect for old samples as for young samples, the investigator will be able to estimate the effect of B on outcome when the blood analysis is ideal by inserting $\text{sampleAge} = 1$ day when requesting predicted values as a function of B.

\subsection*{Fitting Ordinal Predictors}

• Small no. categories (3-4) \rightarrow polytomous factor, dummy variables
• Design matrix for easy test of adequacy of initial codes → \(k \) original codes + \(k - 2 \) dummies

• More categories → score using data-driven trend. Later tests use \(k - 1 \) d.f. instead of 1 d.f.

• E.g., compute logit(mortality) vs. category

• Much better: used penalized maximum likelihood estimation (R \textit{ordSmooth} package) or Bayesian shrinkage (R \textit{brms} package).

2.7.4

Distributional Assumptions

• Some models (e.g., logistic): all assumptions in \(C(Y|X) = X\beta \) (implicitly assuming no omitted variables!)

• Linear regression: \(Y \sim X\beta + \epsilon, \epsilon \sim n(0, \sigma^2) \)

• Examine distribution of residuals

• Some models (Weibull, Cox [49]):
 \[
 C(Y|X) = C(Y = y|X) = d(y) + X\beta
 \]
 \(C' = \log \) hazard

• Check form of \(d(y) \)

• Show \(d(y) \) does not interact with \(X \)
2.8 Complex Curve Fitting Example

- Restricted cubic spline
- Discontinuity (interrupted time series analysis)
- Cyclic trend (seasonality)

- Data from academic.oup.com/ije/article/46/1/348/2622842 by Bernal, Cummins, Gasparrini [19]

- Rates of hospital admissions for acute coronary events in Sicily before and after a smoking ban on 2005-01

- Poisson regression on case counts, adjusted for population size as an offset variable (analyzes event rate) (see stats.stackexchange.com/questions/11182)

- Classic interrupted time series puts a discontinuity at the intervention point and assesses statistical evidence for a nonzero jump height

- We will do that and also fit a continuous cubic spline but with multiple knots near the intervention point

- All in context of long-term and seasonal trends

- Uses the `rms` package `gTrans` function documented at hbiostat.org/R/rms/gtrans.html
• Can do this without `gTrans` but harder to plot predicted values, get contrasts, and get chunk tests

• Time variable is months after 2001-12-01

```r
require(rms)  # engages rms which also engages Hmisc which provides getHdata
options(prType='latex')  # applies to printing model fits
getHdata(sicily)  # fetch dataset from hbiostat.org/data
d <- sicily
dd <- datadist(d); options(datadist='dd')
```

Start with a standard restricted cubic spline fit, 6 knots at default quantile locations. From the fitted Poisson model we estimate the number of cases per a constant population size of 100,000.

```r
g <- function(x) exp(x) * 100000
off <- list(stdpop=mean(d$stdpop))  # offset for prediction (383464.4)
w <- geom_point(aes(x=time, y=rate), data=d)
v <- geom_vline(aes(xintercept=37, col=I('red')))
yl <- ylab('Acute Coronary Cases Per 100,000')
f <- Glm(aces ~ offset(log(stdpop)) + rcs(time, 6), data=d, family=poisson)
f$aic
```

```
[1] 721.5237
```

```r
ggplot(Predict(f, fun=g, offset=off)) + w + v + yl
```
• To add seasonality to the model can add sine and/or cosine terms

• See pmean.com/07/CyclicalTrends.html by Steve Simon

• If you knew the month at which incidence is a minimum, could just add a sine term to the model

• Adding both sine and cosine terms effectively allows for a model parameter that estimates the time origin

• Assume the period (cycle length) is 12m

```r
# Save knot locations
k ← attr(rcs(d$time, 6), 'parms')
k

[1] 5.00 14.34 24.78 35.22 45.66 55.00

kn ← k
# rcspline.eval is the rcs workhorse
h ← function(x) cbind(rcspline.eval(x, kn),
                          sin=sin(2*pi*x/12), cos=cos(2*pi*x/12))
f ← Glm(aces ~ offset(log(stdpop)) + gTrans(time, h),
       data=d, family=poisson)
f$aic

[1] 674.112

ggplot(Predict(f, fun=g, offset=off)) + w + v + yl
```
Next add more knots near intervention to allow for sudden change

```r
kn <- sort(c(k, c(36, 37, 38)))
f <- glm(aces ~ offset(log(stdpop)) + gTrans(time, h),
       data=d, family=poisson)
f$aic
```

```
[1] 661.7904
```

```r
ggplot(Predict(f, fun=g, offset=off)) + w + v + yl
```

Now make the slow trend simpler (6 knots) but add a discontinuity at the intervention. More finely control times at which
predictions are requested, to handle discontinuity.

\[
h \leftarrow \text{function}(x) \ cbind(\text{rcspline.eval}(x, k), \sin = \sin(2\pi x/12), \cos = \cos(2\pi x/12), \text{jump} = x \geq 37)
\]

\[
f \leftarrow \text{Glm}(\text{aces} \sim \text{offset}(\log(\text{stdpop})) + \text{gTrans}(\text{time}, h), \text{data} = \text{d}, \text{family} = \text{poisson})
\]

\[
f$aic
\]

\[
[1] 659.6044
\]

\[
times \leftarrow \text{sort}(\text{c(seq}(0, 60, \text{length}=200), 36.999, 37, 37.001))
\]

\[
\text{ggplot}(\text{Predict}(f, \text{time}=\text{times}, \text{fun}=g, \text{offset}=\text{off})) + \text{w} + \text{v} + \text{yl}
\]

Look at fit statistics especially evidence for the jump

\[
f
\]

General Linear Model

\[
\text{Glm}(\text{formula} = \text{aces} \sim \text{offset}(\log(\text{stdpop})) + \text{gTrans}(\text{time}, h), \text{family} = \text{poisson}, \text{data} = \text{d})
\]

<table>
<thead>
<tr>
<th></th>
<th>Model Likelihood Ratio Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>59</td>
</tr>
<tr>
<td>Residual d.f.</td>
<td>51</td>
</tr>
<tr>
<td>(g)</td>
<td>0.07973896</td>
</tr>
<tr>
<td>LR (\chi^2)</td>
<td>169.64</td>
</tr>
<tr>
<td>d.f.</td>
<td>7</td>
</tr>
<tr>
<td>(Pr(>\chi^2))</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
\[\hat{\beta} \quad \text{S.E.} \quad \text{Wald} \ Z \quad \text{Pr}> |Z| \]

| | \(\hat{\beta} \) | S.E. | Wald Z | Pr\(>|Z|\) |
|--------|---------------------|------|--------|------------|
| Intercept | -6.2118 | 0.0095 | -656.01 | <0.0001 |
| time | 0.0635 | 0.0113 | 5.63 | <0.0001 |
| time' | -0.1912 | 0.0433 | -4.41 | <0.0001 |
| time'' | 0.2653 | 0.0760 | 3.49 | 0.0005 |
| time''' | -0.2409 | 0.0925 | -2.61 | 0.0092 |
| sin | 0.0343 | 0.0067 | 5.11 | <0.0001 |
| cos | 0.0380 | 0.0065 | 5.86 | <0.0001 |
| jump | -0.1268 | 0.0313 | -4.06 | <0.0001 |

- Evidence for an intervention effect (jump)
- Evidence for seasonality
- Could have analyzed rates using a semiparametric model
Chapter 3

Missing Data

3.1 Types of Missing Data

- Missing completely at random (MCAR)
- Missing at random (MAR)a
- Informative missing
 (non-ignorable non-response)

See [33, 168, 58, 87, 1, 214, 31] for an introduction to missing data and imputation concepts.

a“Although missing at random (MAR) is a non-testable assumption, it has been pointed out in the literature that we can get very close to MAR if we include enough variables in the imputation models” [87].
3.2 Prelude to Modeling

- Quantify extent of missing data
- Characterize types of subjects with missing data
- Find sets of variables missing on same subjects
3.3 Missing Values for Different Types of Response Variables

- Serial data with subjects dropping out (not covered in this course)\(^b\)

- \(Y\) = time to event, follow-up curtailed: covered under survival analysis\(^c\)

- Often discard observations with completely missing \(Y\) but sometimes wasteful\(^d\)

- Characterize missings in \(Y\) before dropping obs.

\(^{b}\) Twist et al. [191] found instability in using multiple imputation of longitudinal data, and advantages of using instead full likelihood models.

\(^{c}\) White and Royston [213] provide a method for multiply imputing missing covariate values using censored survival time data.

\(^{d}\) \(Y\) is so valuable that if one is only missing a \(Y\) value, imputation is not worthwhile, and imputation of \(Y\) is not advised if MCAR or MAR.
Problems With Simple Alternatives to Imputation

Deletion of records—

- Badly biases parameter estimates when the probability of a case being incomplete is related to Y and not just X \cite{128}.

- Deletion because of a subset of X being missing always results in inefficient estimates

- Deletion of records with missing Y can result in biases \cite{50} but is the preferred approach under MCARe

- However von Hippel \cite{204} found advantages to a “use all variables to impute all variables then drop observations with missing Y” approach (but see \cite{186})

- Lee and Carlin \cite{121} suggest that observations missing on both Y and on a predictor of major interest are not helpful

- Only discard obs. when
 - MCAR can be justified
 - Rarely missing predictor of overriding importance that can’t be imputed from other data

eMultiple imputation of Y in that case does not improve the analysis and assumes the imputation model is correct.
– Fraction of obs. with missings small and \(n \) is large

• No advantage of deletion except savings of analyst time

• Making up missing data better than throwing away real data

• See [110]

Adding extra categories of categorical predictors—

• Including missing data but adding a category ‘missing’ causes serious biases [1, 104, 192]

• Problem acute when values missing because subject too sick

• Difficult to interpret

• Fails even under MCAR [104, 1, 58, 194, 110]

• May be OK if values are “missing” because of “not applicable”

Likewise, serious problems are caused by setting missing continuous predictors to a constant (e.g., zero) and adding an indicator variable to try to estimate the effect of missing values.

Two examples from Donder et al.[58] using binary logistic regression, \(N = 500 \).

\[^1\text{E.g. you have a measure of marital happiness, dichotomized as high or low, but your sample contains some unmarried people. OK to have a 3-category variable with values high, low, and unmarried—Paul Allison, IMPUTE list, 4Jul09.}\]
Results of 1000 Simulations With $\beta_1 = 1.0$ with MAR and Two Types of Imputation

<table>
<thead>
<tr>
<th>Imputation Method</th>
<th>$\hat{\beta}_1$</th>
<th>S.E.</th>
<th>Coverage of 0.90 C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>0.989</td>
<td>0.09</td>
<td>0.64</td>
</tr>
<tr>
<td>Multiple</td>
<td>0.989</td>
<td>0.14</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Now consider a simulation with $\beta_1 = 1, \beta_2 = 0$, X_2 correlated with $X_1 (r = 0.75)$ but redundant in predicting Y, use missingness indicator when X_1 is MCAR in 0.4 of 500 subjects. This is also compared with grand mean fill-in imputation.

Results of 1000 Simulations Adding a Third Predictor Indicating Missing for X_1

<table>
<thead>
<tr>
<th>Imputation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
</tr>
<tr>
<td>Overall mean</td>
</tr>
</tbody>
</table>

In the incomplete observations the constant X_1 is uncorrelated with X_2.
3.5 Strategies for Developing an Imputation Model

The goal of imputation is to preserve the information and meaning of the non-missing data.

There is a full Bayesian modeling alternative to all the methods presented below. The Bayesian approach requires more effort but has several advantages [65].

Exactly how are missing values estimated?

- Could ignore all other information — random or grand mean fill-in
- Can use external info not used in response model (e.g., zip code for income)
- Need to utilize reason for non-response if possible
- Use statistical model with sometimes-missing X as response variable
- Model to estimate the missing values should include all variables that are either
 1. related to the missing data mechanism;
 2. have distributions that differ between subjects that have the target variable missing and those that have it mea-
sured;
3. associated with the sometimes-missing variable when it is not missing; or
4. included in the final response model [12, 87]

• Ignoring imputation results in biased $\hat{V}(\hat{\beta})$

• transcan function in Hmisc library: “optimal” transformations of all variables to make residuals more stable and to allow non-monotonic transformations

• aregImpute function in Hmisc: good approximation to full Bayesian multiple imputation procedure using the bootstrap

• transcan and aregImpute use the following for fitting imputation models:
 1. initialize NAs to median (mode for categoricals)
 2. expand all categorical predictors using dummy variables
 3. expand all continuous predictors using restricted cubic splines
 4. optionally optimally transform the variable being predicted by expanding it with restricted cubic splines and using the first canonical variate (multivariate regression) as the optimum transformation (maximizing R^2)
 5. one-dimensional scoring of categorical variables being predicted using canonical variates on dummy variables representing the categories (Fisher’s optimum scoring algo-
rithm); when imputing categories, solve for which category yields a score that is closest to the predicted score

- aregImpute and transcan work with fit.mult.impute to make final analysis of response variable relatively easy

- Predictive mean matching [128]: replace missing value with observed value of subject having closest predicted value to the predicted value of the subject with the NA. Key considerations are how to
 1. model the target when it is not NA
 2. match donors on predicted values
 3. avoid overuse of “good” donors to disallow excessive ties in imputed data
 4. account for all uncertainties

- Predictive model for each target uses any outcomes, all predictors in the final model other than the target, plus auxiliary variables not in the outcome model

- No distributional assumptions; nicely handles target variables with strange distributions [202]

- Predicted values need only be monotonically related to real predictive values

 – PMM can result in some donor observations being used repeatedly
– Causes lumpy distribution of imputed values

– Address by sampling from multinomial distribution, probabilities = scaled distance of all predicted values to predicted value (y^*) of observation needing imputing

– Tukey’s tricube function is a good weighting function (used in loess):
 \[w_i = (1 - \min\left(\frac{d_i}{s}, 1\right))^3 \]
 \[d_i = |\hat{y}_i - y^*| \]
 \[s = 0.2 \times \text{mean}|\hat{y}_i - y^*| \]
 is a good default scale factor scale so that \(\sum w_i = 1 \)

• Recursive partitioning with surrogate splits — handles case where a predictor of a variable needing imputation is missing itself. But there are problems [151] even with completely random missingness.

• [214] discusses an alternative method based on choosing a donor observation at random from the \(q \) closest matches (\(q = 3 \), for example)

3.5.1 Interactions

• When interactions are in the outcome model, oddly enough it may be better to treat interaction terms as “just another variable” and do unconstrained imputation of them [108]
3.6

Single Conditional Mean Imputation

- Can fill-in using unconditional mean or median if number of missings low and X is unrelated to other Xs

- Otherwise, first approximation to good imputation uses other Xs to predict a missing X

- This is a single “best guess” conditional mean

- $\hat{X}_j = Z\hat{\theta}, Z = X_j$ plus possibly auxiliary variables that precede X_j in the causal chain that are not intended to be in the outcome model.

 Cannot include Y in Z without adding random errors to imputed values as done with multiple imputation (would steal info from Y)

- Recursive partitioning can sometimes be helpful for nonparametrically estimating conditional means
3.7 Predictive Mean Matching

3.8 Multiple Imputation

- Single imputation could use a random draw from the conditional distribution for an individual
 \[\hat{X}_j = Z\hat{\theta} + \hat{\epsilon}, \ Z = [\bar{X}_j, Y] \] plus auxiliary variables
 \[\hat{\epsilon} = n(0, \hat{\sigma}) \] or a random draw from the calculated residuals

 - bootstrap

 - approximate Bayesian bootstrap [165, 87]: sample with replacement from sample with replacement of residuals

- Multiple imputations (\(M\)) with random draws
 - Draw sample of \(M\) residuals for each missing value to be imputed

 - Average \(M\) \(\hat{\beta}\)

 - In general can provide least biased estimates of \(\beta\)

 - Simple formula for imputation-corrected \(\text{var}(\hat{\beta})\)
 Function of average “apparent” variances and between-imputation variances of \(\hat{\beta}\)
– Even when the χ^2 distribution is a good approximation when data have no missing values, the t or F distributions are needed to have accurate P-values and confidence limits when there are missings [127, 160]

– **BUT** full multiple imputation needs to account for uncertainty in the imputation models by refitting these models for each of the M draws

– *transcan* does not do that; *aregImpute* does

• Note that multiple imputation can and should use the response variable for imputing predictors [138]

• *aregImpute* algorithm [138]
 – Takes all aspects of uncertainty into account using the bootstrap
 – Different bootstrap resamples used for each imputation by fitting a flexible additive model on a sample with replacement from the original data
 – This model is used to predict all of the original missing and non-missing values for the target variable for the current imputation
 – Uses flexible parametric additive regression models to impute
– There is an option to allow target variables to be optimally transformed, even non-monotonically (but this can overfit)

– By default uses predictive mean matching for imputation; no residuals required (can also do more parametric regression imputation)

– By default uses weighted PMM; many other matching options

– Uses by default van Buuren’s “Type 1” matching [31, Section 3.4.2] to capture the right amount of uncertainty by computing predicted values for missing values using a regression fit on the bootstrap sample, and finding donor observations by matching those predictions to predictions from potential donors using the regression fit from the original sample of complete observations

– When a predictor of the target variable is missing, it is first imputed from its last imputation when it was a target variable

– First 3 iterations of process are ignored (“burn-in”)

– Compares favorably to R MICE approach

– Example:

```r
a ← aregImpute(~ age + sex + bp + death + heart.attack.before.death, data=mydata, n.impute=5)
```
See Barzi and Woodward [12] for a nice review of multiple imputation with detailed comparison of results (point estimates and confidence limits for the effect of the sometimes-missing predictor) for various imputation methods. Barnes et al. [11] have a good overview of imputation methods and a comparison of bias and confidence interval coverage for the methods when applied to longitudinal data with a small number of subjects. Horton and Kleinman [100] have a good review of several software packages for dealing with missing data, and a comparison of them with aregImpute. Harel and Zhou [87] provide a nice overview of multiple imputation and discuss some of the available software. White and Carlin [212] studied bias of multiple imputation vs. complete-case analysis. White et al. [214] provide much practical guidance.

Caution: Methods can generate imputations having very reasonable distributions but still not having the property that final response model regression coefficients have nominal confidence interval coverage. It is worth checking that imputations generate the correct collinearities among covariates.

- **With MICE and aregImpute** we are using the chained equation approach [214]

- **Chained equations handles a wide variety of target variables to be imputed and allows for multiple variables to be missing on the same subject**

- **Iterative process cycles through all target variables to impute all missing values** [196]

\[f \leftarrow \text{fit.mult.impute}(\text{death} \sim \text{rcs}(\text{age}, 3) + \text{sex} + \text{rcs}(\text{bp}, 5), \text{lrm}, \text{a}, \text{data=mydata}) \]
• Does not attempt to use the full Bayesian multivariate model for all target variables, making it more flexible and easy to use

• Possible to create improper imputations, e.g., imputing conflicting values for different target variables

• However, simulation studies [196] demonstrate very good performance of imputation based on chained equations
Diagnostics

- MCAR can be partially assessed by comparing distribution of non-missing Y for those subjects with complete X vs. those subjects having incomplete X [128]

- Yucel and Zaslavsky [223] (see also [96])

- Interested in reasonableness of imputed values for a sometimes-missing predictor X_j

- Duplicate entire dataset

- In the duplicated observations set all non-missing values of X_j to missing; let w denote this set of observations set to missing

- Develop imputed values for the missing values of X_j

- In the observations in w compare the distribution of imputed X_j to the original values of X_j

- Bondarenko and Raghunathan [22] present a variety of useful diagnostics on the reasonableness of imputed values.
CHAPTER 3. MISSING DATA

duplicate

originally missing

impute

all missing
3.10
Summary and Rough Guidelines

Table 3.1: Summary of Methods for Dealing with Missing Values

<table>
<thead>
<tr>
<th>Method</th>
<th>Deletion</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allows non-random missing</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Reduces sample size</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Apparent S.E. of $\hat{\beta}$ too low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increases real S.E. of $\hat{\beta}$</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}$ biased</td>
<td></td>
<td></td>
<td>if not MCAR x</td>
</tr>
</tbody>
</table>

The following contains crude guidelines. Simulation studies are needed to refine the recommendations. Here f refers to the proportion of observations having any variables missing.

$f < 0.03$: It doesn’t matter very much how you impute missings or whether you adjust variance of regression coefficient estimates for having imputed data in this case. For continuous variables imputing missings with the median non-missing value is adequate; for categorical predictors the most frequent category can be used. Complete case analysis is also an option here. Multiple imputation may be needed to check that the simple approach “worked.”

$f \geq 0.03$: Use multiple imputation with number of imputations equal to $\max(5, 100f)$. Fewer imputations may be possible with very large sample sizes. See statisticalhorizons.com/how-many-imputations. Type 1 predictive mean matching is usually preferred, with weighted selection of donors. Account

\[\text{White et al. [214] recommend choosing } M \text{ so that the key inferential statistics are very reproducible should the imputation analysis be repeated. They suggest the use of 100} f \text{ imputations. See also [31, Section 2.7]. von Hippel [205] finds that the number of imputations should be quadratically increasing with the fraction of missing information.} \]
for imputation in estimating the covariance matrix for final parameter estimates. Use the \(t \) distribution instead of the Gaussian distribution for tests and confidence intervals, if possible, using the estimated d.f. for the parameter estimates.

Multiple predictors frequently missing: More imputations may be required. Perform a “sensitivity to order” analysis by creating multiple imputations using different orderings of sometimes missing variables. It may be beneficial to initially sort variables so that the one with the most \texttt{NAs} will be imputed first.

Reason for missings more important than number of missing values.

Extreme amount of missing data does not prevent one from using multiple imputation, because alternatives are worse [103, 132].

Effective Sample Size

It is useful to look at examples of effective sample sizes in the presence of missing data. If a sample of 1000 subjects contains various amounts and patterns of missings what size \(n_c \) of a complete sample would have equivalent information for the intended purpose of the analysis?
1. A new marker was collected on a random sample of 200 of the subjects and one wants to estimate the added predictive value due to the marker: $n_c = 200$

2. Height is missing on 100 subjects but we want to study association between BMI and outcome. Weight, sex, and waist circumference are available on all subjects: $n_c = 980$

3. Each of 10 predictors is randomly missing on $\frac{1}{10}$ of subjects, and the predictors are uncorrelated with each other and are each weakly related to the outcome: $n_c = 500$

4. Same as previous but the predictors can somewhat be predicted from non-missing predictors: $n_c = 750$

5. The outcome variable was not assessed on a random $\frac{1}{5}$ of subjects: $n_c = 800$

6. The outcome represents sensitive information, is missing on $\frac{1}{2}$ of subjects, and we don’t know what made subjects respond to the question: $n_c = 0$ (serious selection bias)

7. One of the baseline variables was collected prospectively $\frac{1}{2}$ of the time and for the other subjects it was retrospectively estimated only for subjects ultimately suffering a stroke and we don’t know which subjects had a stroke: $n_c = 0$ (study not worth doing)

8. The outcome variable was assessed by emailing the 1000 subjects, for which 800 responded, and we don’t know what made subjects respond: $n_c = 0$ (model will possibly be very biased—at least the intercept)
3.11 Bayesian Methods for Missing Data

- Multiple imputation developed as an approximation to a full Bayesian model.

- Full Bayesian model treats missings as unknown parameters and provides exact inference and correct measures of uncertainty.

- See this case study for an example.

- The case study also shows how to do “posterior stacking” if you want to avoid having to specify a full model for missings, and instead use usual multiple imputations as described in this chapter:
 - Run a multiple imputation algorithm.
 - For each completed dataset run the Bayesian analysis and draw thousands of samples from the posterior distribution of the parameters.
 - Pool all these posterior draws over all the multiple imputations and do posterior inference as usual with no special correction required.
 - Made easy by the Hmisc package aregImpute function and the rms stackMI function as demonstrated in the Titanic.
case study later in the notes.
Chapter 4

Multivariable Modeling Strategies

- “Spending d.f.”: examining or fitting parameters in models, or examining tables or graphs that utilize Y to tell you how to model variables

- If wish to preserve statistical properties, can’t retrieve d.f. once they are “spent” (see Grambsch & O’Brien)

- If a scatterplot suggests linearity and you fit a linear model, how many d.f. did you actually spend (i.e., the d.f. that when put into a formula results in accurate confidence limits or P-values)?

- Decide number of d.f. that can be spent

- Decide where to spend them

- Spend them

- General references: [142, 181, 92, 76]
There are many choices to be made when deciding upon a global modeling strategy, including choice between

- parametric and nonparametric procedures
- parsimony and complexity
- parsimony and good discrimination ability
- interpretable models and black boxes.
Prespecification of Predictor Complexity Without Later Simplification

- Rarely expect linearity
- Can’t always use graphs or other devices to choose transformation
- If select from among many transformations, results biased
- Need to allow flexible nonlinearity to potentially strong predictors not known to predict linearly
- Once decide a predictor is “in” can choose no. of parameters to devote to it using a general association index with Y
- Need a measure of “potential predictive punch”
- Measure needs to mask analyst to true form of regression to preserve statistical properties

Motivating examples:

```r
# Oversfitting a flat relationship
require(rms)

set.seed(1)
x <- runif(1000)
y <- runif(1000, -0.5, 0.5)
dd <- datadist(x, y); options(datadist='dd')
par(mfrow=c(2,2), mar=c(2, 2, 3, 0.5))
pp <- function(actual) {
  yhat <- predict(f, data.frame(x=x))
}
```
```r
yreal ← actual(xs)
plot(0, 0, xlim=c(0,1),
     ylim=range(c(quantile(y, c(0.1, 0.9)), yhat, yreal)),
     type='n', axes=FALSE)
axis(1, labels=FALSE); axis(2, labels=FALSE)
lines(xs, yreal)
lines(xs, yhat, col='blue')
}
f ← ols(y ~ rcs(x, 5))
x ← seq(0, 1, length=150)
pp(function(x) 0*x)
title('Mild Error:
Overfitting a Flat Relationship',
      cex=0.5)
y ← x + runif(1000, -0.5, 0.5)
f ← ols(y ~ rcs(x, 5))
pp(function(x) x)
title('Mild Error:
Overfitting a Linear Relationship',
      cex=0.5)
y ← x^4 + runif(1000, -1, 1)
f ← ols(y ~ x)
pp(function(x) x^4)
title('Serious Error:
Underfitting a Steep Relationship',
      cex=0.5)
y ← -(x - 0.5)^2 + runif(1000, -0.2, 0.2)
f ← ols(y ~ x)
pp(function(x) -(x - 0.5)^2)
title('Tragic Error:
Monotonic Fit to
Non-Monotonic Relationship',
      cex=0.5)
```
CHAPTER 4. MULTIVARIABLE MODELING STRATEGIES

Mild Error:
Overfitting a Flat Relationship

Mild Error:
Overfitting a Linear Relationship

Serious Error:
Underfitting a Steep Relationship

Tragic Error:
Monotonic Fit to Non-Monotonic Relationship

Table 4.1: Examples of Reducing the Number of Parameters

<table>
<thead>
<tr>
<th>Categorical predictor with k levels</th>
<th>Collapse less frequent categories into “other”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous predictor represented as k-knot r.c. spline</td>
<td>Reduce k to a number as low as 3, or 0 (linear)</td>
</tr>
</tbody>
</table>
4.1.1 Learning From a Saturated Model

When the effective sample size available is sufficiently large so that a saturated main effects model may be fitted, a good approach to gauging predictive potential is the following.

- Let all continuous predictors be represented as restricted cubic splines with k knots, where k is the maximum number of knots the analyst entertains for the current problem.

- Let all categorical predictors retain their original categories except for pooling of very low prevalence categories (e.g., ones containing < 6 observations).

- Fit this general main effects model.

- Compute the partial χ^2 statistic for testing the association of each predictor with the response, adjusted for all other predictors. In the case of ordinary regression convert partial F statistics to χ^2 statistics or partial R^2 values.

- Make corrections for chance associations to “level the playing field” for predictors having greatly varying d.f., e.g., subtract the d.f. from the partial χ^2 (the expected value of χ^2_p is p under H_0).

- Make certain that tests of nonlinearity are not revealed as
this would bias the analyst.

- Sort the partial association statistics in descending order.

Commands in the \texttt{rms} package can be used to plot only what is needed. Here is an example for a logistic model.

```r
f ← lrm(y ∼ sex + race + rcs(age,5) + rcs(weight,5) +
         rcs(height,5) + rcs(blood.pressure,5))
plot(anova(f))
```

4.1.2 Using Marginal Generalized Rank Correlations

When collinearities or confounding are not problematic, a quicker approach based on pairwise measures of association can be useful. This approach will not have numerical problems (e.g., singular covariance matrix) and is based on:

- 2 d.f. generalization of Spearman ρ—R^2 based on $\text{rank}(X)$ and $\text{rank}(X)^2$ vs. $\text{rank}(Y)$

- ρ^2 can detect U-shaped relationships

- For categorical X, ρ^2 is R^2 from dummy variables regressed against $\text{rank}(Y)$; this is tightly related to the Wilcoxon–Mann–Whitney–Kruskal–Wallis rank test for group differences\footnote{This test statistic does not inform the analyst of which groups are different from one another.}

- Sort variables by descending order of ρ^2
• Specify number of knots for continuous X, combine infrequent categories of categorical X based on ρ^2

Allocating d.f. based on partial tests of association or sorting ρ^2 is a fair procedure because

• We already decided to keep variable in model no matter what ρ^2 or χ^2 values are seen

• ρ^2 and χ^2 do not reveal degree of nonlinearity; high value may be due solely to strong linear effect

• Low ρ^2 or χ^2 for a categorical variable might lead to collapsing the most disparate categories

Initial simulations show the procedure to be conservative. Note that one can move from simpler to more complex models but not the other way round
4.2 Checking Assumptions of Multiple Predictors Simultaneously

- Sometimes failure to adjust for other variables gives wrong transformation of an X, or wrong significance of interactions

- Sometimes unwieldy to deal simultaneously with all predictors at each stage \rightarrow assess regression assumptions separately for each predictor
4.3 Variable Selection

- Series of potential predictors with no prior knowledge
- ↑ exploration → ↑ shrinkage (overfitting)
- Summary of problem: \(E(\hat{\beta}|\hat{\beta} \text{ “significant”}) \neq \beta \) \[37\]
- Biased \(R^2, \hat{\beta}, \) standard errors, \(P \)-values too small
- \(F \) and \(\chi^2 \) statistics do not have the claimed distribution\[80\]
- Will result in residual confounding if use variable selection to find confounders \[84\]
- Derksen and Keselman \[55\] found that in stepwise analyses the final model represented noise 0.20-0.74 of time, final model usually contained \(< \frac{1}{2} \) actual number of authentic predictors. Also:
 1. “The degree of correlation between the predictor variables affected the frequency with which authentic predictor variables found their way into the final model.
 2. The number of candidate predictor variables affected the number of noise variables that gained entry to the model.

\[1\]Lockhart et al. \[130\] provide an example with \(n = 100 \) and 10 orthogonal predictors where all true \(\beta \)s are zero. The test statistic for the first variable to enter has type I error of 0.39 when the nominal \(\alpha \) is set to 0.05.
3. The size of the sample was of little practical importance in determining the number of authentic variables contained in the final model.

4. The population multiple coefficient of determination could be faithfully estimated by adopting a statistic that is adjusted by the total number of candidate predictor variables rather than the number of variables in the final model”.

- Global test with \(p \) d.f. insignificant \(\rightarrow \) stop

Simulation experiment, true \(\sigma^2 = 6.25 \), 8 candidate variables, 4 of them related to \(Y \) in the population. Select best model using all possible subsets regression to maximize \(R_{adj}^2 \) (not usually recommended but gives variable selection more of a chance to work in this context).

Note: The audio was made using stepAIC with collinearities in predictors. The code below allows for several options. Here we use all possible subsets of predictors and force predictors to be uncorrelated, which is the easiest case for variable selection.

```r
require(MASS)
require(leaps)
sim <- function(n, sigma=2.5, method=c('stepaic', 'leaps'),
                 pr=FALSE, prcor=FALSE, dataonly=FALSE) {
  method <- match.arg(method)
  if(uncorrelated) {
    x1 <- rnorm(n)
    x2 <- rnorm(n)
    x3 <- rnorm(n)
    x4 <- rnorm(n)
    x5 <- rnorm(n)
    x6 <- rnorm(n)
    x7 <- rnorm(n)
  }
  # Code for other methods...
}```
x8 ← rnorm(n)
else {
    x1 ← rnorm(n)
    x2 ← x1 + 2.0 * rnorm(n)  # was + 0.5 * rnorm(n)
    x3 ← rnorm(n)
    x4 ← x3 + 1.5 * rnorm(n)
    x5 ← x1 + rnorm(n)/1.3
    x6 ← x2 + 2.25 * rnorm(n)  # was rnorm(n)/1.3
    x7 ← x3 + x4 + 2.5 * rnorm(n)  # was + rnorm(n)
    x8 ← x7 + 4.0 * rnorm(n)  # was + 0.5 * rnorm(n)
}

z ← cbind(x1, x2, x3, x4, x5, x6, x7, x8)
if(prcor) return(round(cor(z), 2))
lp ← x1 + x2 + .5*x3 + .4*x7
y ← lp + sigma*rnorm(n)
if(dataonly) return(list(x=z, y=y))
if(method == 'leaps') {
    s ← summary(regsubsets(z, y))
    best ← which.max(s$adjr2)
    xvars ← s$which[best, -1]  # remove intercept
    ssr ← s$rss[best]
    p ← sum(xvars)
    xs ← if(p == 0) 'none' else paste((1:8)[xvars], collapse='')
    if(pr) print(xs)
    ssesw ← (n - 1) * var(y) - ssr
    s2s ← ssesw / (n - p - 1)
    yhat ← if(p == 0) mean(y) else fitted(lm(y ∼ z[, xvars]))
}

f ← lm(y ∼ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8)
if(method == 'stepaic') {
    g ← stepAIC(f, trace=0)
    p ← g$rank - 1
    xs ← if(p == 0) 'none' else
gsub('[ \\c+ x]', '', as.character(formula(g))[3])
    if(pr) print(formula(g), showEnv=FALSE)
    ssesw ← sum(resid(g)^2)
    s2s ← ssesw/g$df.residual
    yhat ← fitted(g)
}

# Set $SS_{ew}$ / (n - gdf - 1) = true $\sigma^2$

rmse.full ← sqrt(mean((fitted(f) - lp)^2))
rmse.step ← sqrt(mean((yhat - lp)^2))
list(stats=c(n=n, vratio=s2s/(sigma^2)),
gdf=gdf, apparentdf=p, rmse.full=rmse.full, rmse.step=rmse.step),
    xselected=xs)
}

rsim ← function(B, n, method=c('stepaic', 'leaps')) {
    method ← match.arg(method)
    xs ← character(B)
    r ← matrix(NA, nrow=B, ncol=6)
    for(i in 1:B) {
        w ← sim(n, method=method)
        r[i,] ← w$stats
Show the correlation matrix being assumed for the $X$s:

```r
uncorrelated ← TRUE
sim(50000, prcor=TRUE)
```

Simulate to find the distribution of the number of variables selected, the proportion of simulations in which the true model $M(X_1, X_2, X_3, X_7)$ was found, the median value of $\hat{\sigma}^2/\sigma^2$, the median effective d.f., and the mean number of apparent d.f., for varying sample sizes.

```r
set.seed(11)
m ← 'leaps' # all possible regressions stopping on R2adj
rsim(100, 20, method=m) # actual model found twice out of 100
```

```
<table>
<thead>
<tr>
<th>n</th>
<th>vratio</th>
<th>gdf</th>
<th>apparentdf</th>
<th>rmse.full</th>
<th>rmse.step</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.00</td>
<td>0.94</td>
<td>5.32</td>
<td>4.10</td>
<td>1.62</td>
<td>1.58</td>
</tr>
</tbody>
</table>
```

```
P
1 2 3 4 5 6 7 8
3 14 18 22 27 11 4 1
Prob[correct model]= 0.02
```

```r
rsim(100, 40, method=m)
```

```
<table>
<thead>
<tr>
<th>n</th>
<th>vratio</th>
<th>gdf</th>
<th>apparentdf</th>
<th>rmse.full</th>
<th>rmse.step</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.00</td>
<td>0.61</td>
<td>17.89</td>
<td>4.38</td>
<td>1.21</td>
<td>1.24</td>
</tr>
</tbody>
</table>
```

```
P
2 3 4 5 6 7
```
As \( n \uparrow \) the mean number of variables selected increased. The proportion of simulations in which the correct model was found increased from 0 to 0.53. \( \sigma^2 \) is underestimated when \( n = 300 \) by a factor of 0.42, resulting in the d.f. needed to de-bias \( \hat{\sigma}^2 \) being greater than \( n \) when the apparent d.f. was only 5.16 on the average. Variable selection slightly increased closeness to the true \( X\beta \).

If the simulations are re-run allowing for collinearities (uncorrelated=False) one can expect variable selection to be even more problematic.

Variable selection methods [88]:

\begin{verbatim}
rsim(100, 150, method=m)
\end{verbatim}

<table>
<thead>
<tr>
<th>n</th>
<th>vratio</th>
<th>gdf</th>
<th>apparentdf</th>
<th>rmse.full</th>
<th>rmse.step</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.00</td>
<td>0.44</td>
<td>85.99</td>
<td>5.01</td>
<td>0.59</td>
<td>0.57</td>
</tr>
</tbody>
</table>

\begin{verbatim}
r simul(100, 300, method=m)
\end{verbatim}

<table>
<thead>
<tr>
<th>n</th>
<th>vratio</th>
<th>gdf</th>
<th>apparentdf</th>
<th>rmse.full</th>
<th>rmse.step</th>
</tr>
</thead>
<tbody>
<tr>
<td>300.00</td>
<td>0.42</td>
<td>177.01</td>
<td>5.16</td>
<td>0.43</td>
<td>0.40</td>
</tr>
</tbody>
</table>

\begin{verbatim}
r sim(100, 2000)
\end{verbatim}

<table>
<thead>
<tr>
<th>n</th>
<th>vratio</th>
<th>gdf</th>
<th>apparentdf</th>
<th>rmse.full</th>
<th>rmse.step</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000.00</td>
<td>1.00</td>
<td>6.43</td>
<td>4.58</td>
<td>0.17</td>
<td>0.15</td>
</tr>
</tbody>
</table>
• Forward selection, backward elimination

• Stopping rule: “residual $\chi^2$” with d.f. = no. candidates remaining at current step

• Test for significance or use Akaike’s information criterion (AIC [7]), here $\chi^2 - 2 \times d.f.$

• Better to use subject matter knowledge!

• No currently available stopping rule was developed for step-wise, only for comparing a limited number of pre-specified models [26, Section 1.3]

• Roecker [163] studied forward selection (FS), all possible subsets selection (APS), full fits

• APS more likely to select smaller, less accurate models than FS

• Neither as accurate as full model fit unless more than half of candidate variables redundant or unnecessary

• Step-down is usually better than forward [133] and can be used efficiently with maximum likelihood estimation [118]

• Fruitless to try different stepwise methods to look for agreement [216]
• Bootstrap can help decide between full and reduced model

• Full model fits gives meaningful confidence intervals with standard formulas, C.I. after stepwise does not [3, 101, 26]

• Data reduction (grouping variables) can help

• Using the bootstrap to select important variables for inclusion in the final model [167] is problematic [8]

• It is not logical that a population regression coefficient would be exactly zero just because its estimate was “insignificant”

See also these articles:

• Step away from stepwise by Gary Smith

• Five myths about variable selection by Georg Heinze and Daniela Dunkler

• Variable selection - A review and recommendations for the practicing statistician by Georg Heinze, Christine Wallisch, Daniela Dunkler

• Stopping stepwise by Peter Flom
4.3.1 Maxwell’s Demon as an Analogy to Variable Selection

Some of the information in the data is spent on variable selection instead of using all information for estimation.

Model specification is preferred to model selection.

Information content of the data usually insufficient for reliable variable selection.

Maxwell imagines one container divided into two parts, A and B. Both parts are filled with the same gas at equal temperatures and placed next to each other. Observing the molecules on both sides, an imaginary demon guards a trapdoor between the two parts. When a faster-than-average molecule from A flies towards the trapdoor, the demon opens it, and the molecule will fly from A to B. Likewise, when a slower-than-average molecule from B flies towards the trapdoor, the demon will let it pass from B to A. The average speed of the molecules in B will have increased while in A they will have slowed down on average. Since average molecular speed corresponds to temperature, the temperature decreases in A and increases in B, contrary to the second law of thermodynamics.

Szilárd pointed out that a real-life Maxwell’s demon would need to have some means of measuring molecular speed, and that the act of acquiring information would require an
expenditure of energy. Since the demon and the gas are interacting, we must consider the total entropy of the gas and the demon combined. The expenditure of energy by the demon will cause an increase in the entropy of the demon, which will be larger than the lowering of the entropy of the gas.

Source: commons.wikimedia.org/wiki/File:YoungJamesClerkMaxwell.jpg
en.wikipedia.org/wiki/Maxwell’s_demon

Peter Ellis’ blog article contains excellent examples of issues discussed here but applied to time series modeling.
4.4 Overfitting and Limits on Number of Predictors

- Concerned with avoiding overfitting

- Assume typical problem in medicine, epidemiology, and the social sciences in which the signal:noise ratio is small (higher ratios allow for more aggressive modeling)

- \( p \) should be \( < \frac{m}{15} \) [90, 91, 175, 146, 145, 203, 195]

- \( p = \) number of parameters in full model or number of candidate parameters in a stepwise analysis

- Derived from simulations to find minimum sample size so that apparent discrimination = validated discrimination

- Applies to typical signal:noise ratios found outside of tightly controlled experiments

- If true \( R^2 \) is high, many parameters can be estimated from smaller samples

- Ignores sample size needed just to estimate the intercept or, in semiparametric models, the underlying distribution function\(^c\)

\(^c\) The sample size needed for these is model-dependent
• Riley et al. [161, 162] have refined sample size estimation for continuous, binary, and time-to-event models to account for all of these issues

• To just estimate $\sigma$ in a linear model with a multiplicative margin of error of 1.2 with 0.95 confidence requires $n = 70$

<table>
<thead>
<tr>
<th>Type of Response Variable</th>
<th>Limiting Sample Size $m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>$n$ (total sample size)</td>
</tr>
<tr>
<td>Binary</td>
<td>$\min(n_1, n_2)$</td>
</tr>
<tr>
<td>Ordinal ($k$ categories)</td>
<td>$n - \frac{1}{n^2} \sum_{i=1}^{k} n_i^3$</td>
</tr>
<tr>
<td>Failure (survival) time</td>
<td>number of failures</td>
</tr>
</tbody>
</table>

$^{a}$If one considers the power of a two-sample binomial test compared with a Wilcoxon test if the response could be made continuous and the proportional odds assumption holds, the effective sample size for a binary response is $3n_1n_2/n \approx 3\min(n_1, n_2)$ if $\frac{n_1}{n_2}$ is near 0 or 1 [215, Eq. 10, 15]. Here $n_1$ and $n_2$ are the marginal frequencies of the two response levels [145].

$b$Based on the power of a proportional odds model two-sample test when the marginal cell sizes for the response are $n_1, \ldots, n_k$, compared with all cell sizes equal to unity (response is continuous) [215, Eq. 3]. If all cell sizes are equal, the relative efficiency of having $k$ response categories compared to a continuous response is $1 - \frac{1}{k}$ [215, Eq. 14], e.g., a 5-level response is almost as efficient as a continuous one if proportional odds holds across category cutoffs.

$c$This is approximate, as the effective sample size may sometimes be boosted somewhat by censored observations, especially for non-proportional hazards methods such as Wilcoxon-type tests [14].

• Narrowly distributed predictor $\rightarrow$ even higher $n$

• $p$ includes all variables screened for association with response, including interactions

• Univariable screening (graphs, crosstabs, etc.) in no way reduces multiple comparison problems of model building [187]
4.5 Shrinkage

- Slope of calibration plot; regression to the mean
- Statistical estimation procedure — “pre-shrunken” models
- Aren’t regression coefficients OK because they’re unbiased?
- Problem is in how we use coefficient estimates
- Consider 20 samples of size $n = 50$ from $U(0, 1)$
- Compute group means and plot in ascending order
- Equivalent to fitting an intercept and 19 dummies using least squares
- Result generalizes to general problems in plotting $Y$ vs. $X\hat{\beta}$

```r
set.seed(123)
n <- 50
y <- runif(20*n)
group <- rep(1:20, each=n)
ybar <- tapply(y, group, mean)
ybar <- sort(ybar)
plot(1:20, ybar, type='n', axes=FALSE, ylim=c(.3,.7),
 xlab='Group', ylab='Group Mean')
lines(1:20, ybar)
points(1:20, ybar, pch=20, cex=.5)
axis(2)
axis(1, at=1:20, labels=FALSE)
for(j in 1:20) axis(1, at=j, labels=names(ybar)[j])
abline(h=.5, col=gray(.85))
```

- Prevent shrinkage by using pre-shrinkage
Figure 4.1: Sorted means from 20 samples of size 50 from a uniform [0, 1] distribution. The reference line at 0.5 depicts the true population value of all of the means.

- Spiegelhalter [178]: var. selection arbitrary, better prediction usually results from fitting all candidate variables and using shrinkage

- Shrinkage closer to that expected from full model fit than based on number of significant variables [48]

- Ridge regression [119, 197]

- Penalized MLE [200, 81, 93]

- Heuristic shrinkage parameter of van Houwelingen and le Cessie [197, Eq. 77]

\[
\hat{\gamma} = \frac{\text{model } \chi^2 - p}{\text{model } \chi^2},
\]
• OLS\textsuperscript{d}: \( \hat{\gamma} = \frac{n-p-1}{n-1} \frac{R_{adj}^2}{R^2} \)
  \( R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1} \)

• \( p \) close to no. candidate variables

• Copas [48, Eq. 8.5] adds 2 to numerator

\textsuperscript{4} An excellent discussion about such indexes may be found here.
4.6 Collinearity

- When at least 1 predictor can be predicted well from others
- Can be a blessing (data reduction, transformations)
  - \( \uparrow \) s.e. of \( \hat{\beta} \), \( \downarrow \) power
- This is appropriate \( \rightarrow \) asking too much of the data [38, Chap. 9]
- Variables compete in variable selection, chosen one arbitrary
- Does not affect joint influence of a set of highly correlated variables (use multiple d.f. tests)
- Does not at all affect predictions on model construction sample
- Does not affect predictions on new data [140, pp. 379-381] if
  1. Extreme extrapolation not attempted
  2. New data have same type of collinearities as original data
- Example: LDL and total cholesterol – problem only if more inconsistent in new data
- Example: age and \( \text{age}^2 \) – no problem
• One way to quantify for each predictor: variance inflation factors (VIF)

• General approach (maximum likelihood) — transform information matrix to correlation form, VIF=diagonal of inverse [53, 210]

• See Belsley [15, pp. 28-30] for problems with VIF

• Easy approach: SAS VARCLUS procedure [166], R varclus z function, other clustering techniques: group highly correlated variables

• Can score each group (e.g., first principal component, $PC_1$ [52]); summary scores not collinear
4.7

Data Reduction

- Unless \( n >> p \), model unlikely to validate

- Data reduction: \( \downarrow p \)

- Use the literature to eliminate unimportant variables.

- Eliminate variables whose distributions are too narrow.

- Eliminate candidate predictors that are missing in a large number of subjects, especially if those same predictors are likely to be missing for future applications of the model.

- Use a statistical data reduction method such as incomplete principal components regression, nonlinear generalizations of principal components such as principal surfaces, sliced inverse regression, variable clustering, or ordinary cluster analysis on a measure of similarity between variables.

- Data reduction is completely masked to \( Y \), which is precisely why it does not distort estimates, standard errors, \( P \)-values, or confidence limits

- Data reduction = unsupervised learning

- Example: dataset with 40 events and 60 candidate predictors
– Use variable clustering to group variables by correlation structure

– Use clinical knowledge to refine the clusters

– Keep age and severity of disease as separate predictors because of their strength

– For others create clusters: socioeconomic, risk factors/history, and physiologic function

– Summarize each cluster with its first principal component $PC_1$, i.e., the linear combination of characteristics that maximizes variance of the score across subjects subject to an overall constraint on the coefficients

– Fit outcome model with 5 predictors

### Redundancy Analysis

- Remove variables that have poor distributions
  - E.g., categorical variables with fewer than 2 categories having at least 20 observations

- Use flexible additive parametric additive models to determine how well each variable can be predicted from the remaining variables
• Variables dropped in stepwise fashion, removing the most predictable variable at each step

• Remaining variables used to predict

• Process continues until no variable still in the list of predictors can be predicted with an $R^2$ or adjusted $R^2$ greater than a specified threshold or until dropping the variable with the highest $R^2$ (adjusted or ordinary) would cause a variable that was dropped earlier to no longer be predicted at the threshold from the now smaller list of predictors

• R function `redund` in Hmisc package

• Related to principal variables [136] but faster

### 4.7.2 Variable Clustering

• Goal: Separate variables into groups
  – variables within group correlated with each other
  – variables not correlated with non-group members

• Score each dimension, stop trying to separate effects of factors measuring same phenomenon

• Variable clustering [166, 52] (oblique-rotation PC analysis)
→ separate variables so that first PC is representative of group

- Can also do hierarchical cluster analysis on similarity matrix based on squared Spearman or Pearson correlations, or more generally, Hoeffding’s $D$ [98].

- See [85] for a method related to variable clustering and sparse principal components.

- [39] implement many more variable clustering methods

Example: Figure 11.6

### 4.7.3 Transformation and Scaling Variables Without Using $Y$

- Reduce $p$ by estimating transformations using associations with other predictors

- Purely categorical predictors – correspondence analysis [120, 51, 40, 83, 137]

- Mixture of qualitative and continuous variables: qualitative principal components

- Maximum total variance (MTV) of Young, Takane, de Leeuw [222, 137]
1. Compute $PC_1$ of variables using correlation matrix
2. Use regression (with splines, dummies, etc.) to predict $PC_1$ from each $X$ — expand each $X_j$ and regress it separately on $PC_1$ to get working transformations
3. Recompute $PC_1$ on transformed $X$'s
4. Repeat 3-4 times until variation explained by $PC_1$ plateaus and transformations stabilize

- Maximum generalized variance (MGV) method of Sarle [115, pp. 1267-1268]
  1. Predict each variable from (current transformations of) all other variables
  2. For each variable, expand it into linear and nonlinear terms or dummies, compute first canonical variate
  3. For example, if there are only two variables $X_1$ and $X_2$ represented as quadratic polynomials, solve for $a, b, c, d$ such that $aX_1^2 + bX_1 + cX_2 + dX_2^2$ has maximum correlation with $cX_2 + dX_2^2$.
  4. Goal is to transform each var. so that it is most similar to predictions from other transformed variables
  5. Does not rely on PCs or variable clustering

- MTV (PC-based instead of canonical var.) and MGV implemented in SAS PROC PRINQUAL [115]
  1. Allows flexible transformations including monotonic splines
  2. Does not allow restricted cubic splines, so may be unstable unless monotonicity assumed
3. Allows simultaneous imputation but often yields wild estimates

### 4.7.4 Simultaneous Transformation and Imputation

**R transcan** Function for Data Reduction & Imputation

- Initialize missings to medians (or most frequent category)
- Initialize transformations to original variables
- Take each variable in turn as $Y$
- Exclude obs. missing on $Y$
- Expand $Y$ (spline or dummy variables)
- Score (transform $Y$) using first canonical variate
- Missing $Y \rightarrow$ predict canonical variate from $X$s
- The imputed values can optionally be shrunk to avoid overfitting for small $n$ or large $p$
- Constrain imputed values to be in range of non-imputed ones
- Imputations on original scale
1. Continuous $\rightarrow$ back-solve with linear interpolation
2. Categorical $\rightarrow$ classification tree (most freq. cat.) or match to category whose canonical score is closest to one predicted

• Multiple imputation — bootstrap or approx. Bayesian boot.
  1. Sample residuals multiple times (default $M = 5$)
  2. Are on “optimally” transformed scale
  3. Back-transform
  4. \texttt{fit.mult.impute} works with \texttt{aregImpute} and \texttt{transcan} output to easily get imputation-corrected variances and avg. $\hat{\beta}$

• Option to insert constants as imputed values (ignored during transformation estimation); helpful when a lab value may be missing because the patient returned to normal

• Imputations and transformed values may be easily obtained for new data

• An R function \texttt{Function} will create a series of R functions that transform each predictor

• Example: $n = 415$ acutely ill patients
  1. Relate heart rate to mean arterial blood pressure
  2. Two blood pressures missing
  3. Heart rate not monotonically related to blood pressure
4. See Figures 4.2 and 4.3

```r
require(Hmisc)
getHdata(support) # Get data frame from web site
heart.rate ← support$hrt
blood.pressure ← support$meanbp
blood.pressure[400:401]

Mean Arterial Blood Pressure Day 3
[1] 151 136

blood.pressure[400:401] ← NA # Create two missings
d ← data.frame(heart.rate, blood.pressure)
par(pch=46) # Figure 4.2
w ← transcan(~ heart.rate + blood.pressure, transformed=TRUE,
 imputed=TRUE, show.na=TRUE, data=d)

Convergence criterion:2.901 0.035

0.007
Convergence in 4 iterations
R^2 achieved in predicting each variable:

 heart.rate blood.pressure
 0.259 0.259

Adjusted R^2:

 heart.rate blood.pressure
 0.254 0.253

w$imputed$blood.pressure

400 401
132.4057 109.7741

t ← w$transformed
spe ← round(c(spearman(heart.rate, blood.pressure),
 spearman(t[, 'heart.rate'],
 t[, 'blood.pressure'])), 2)

plot(heart.rate, blood.pressure) # Figure 4.3
plot(t[, 'heart.rate'], t[, 'blood.pressure'],
 xlab='Transformed hr', ylab='Transformed bp')

ACE (Alternating Conditional Expectation) of Breiman and Friedman [25]

1. Uses nonparametric “super smoother” [72]
2. Allows monotonicity constraints, categorical vars.
Figure 4.2: Transformations fitted using transcan. Tick marks indicate the two imputed values for blood pressure.

Figure 4.3: The lower left plot contains raw data (Spearman $\rho = -0.02$); the lower right is a scatterplot of the corresponding transformed values ($\rho = -0.13$). Data courtesy of the SUPPORT study [109].
3. Does not handle missing data

- These methods find *marginal* transformations

- Check adequacy of transformations using Y
 1. Graphical
 2. Nonparametric smoothers (X vs. Y)
 3. Expand original variable using spline, test additional predictive information over original transformation

Simple Scoring of Variable Clusters

- Try to score groups of transformed variables with PC_1

- Reduces d.f. by pre-transforming var. and by combining multiple var.

- Later may want to break group apart, but delete all variables in groups whose summary scores do not add significant information

- Sometimes simplify cluster score by finding a subset of its constituent variables which predict it with high R^2.

Series of dichotomous variables:

- Construct $X_1 = 0-1$ according to whether any variables pos-
construct \(X_2 = \text{number of positives} \)

- Test whether original variables add to \(X_1 \) or \(X_2 \)

4.7.6 Simplifying Cluster Scores

4.7.7 How Much Data Reduction Is Necessary?

Using Expected Shrinkage to Guide Data Reduction

- Fit full model with all candidates, \(p \) d.f., LR likelihood ratio \(\chi^2 \)
- Compute \(\hat{\gamma} \)
- If \(\hat{\gamma} < 0.9 \), consider shrunken estimator from whole model, or data reduction (again not using \(Y \))
- \(q \) regression d.f. for reduced model
- Assume best case: discarded dimensions had no association with \(Y \)
- Expected loss in LR is \(p - q \)
• New shrinkage \[\frac{\text{LR} - (p - q) - q}{\text{LR} - (p - q)} \]

• Solve for \(q \rightarrow q \leq (\text{LR} - p)/9 \)

• Under these assumptions, no hope unless original LR > \(p + 9 \)

• No \(\chi^2 \) lost by dimension reduction \(\rightarrow q \leq \text{LR}/10 \)

Example:

• Binary logistic model, 45 events on 150 subjects

• 10:1 rule \(\rightarrow \) analyze 4.5 d.f. total

• Analyst wishes to include age, sex, 10 others

• Not known if age linear or if age and sex additive

• 4 knots \(\rightarrow 3 + 1 + 1 \) d.f. for age and sex if restrict interaction to be linear

• Full model with 15 d.f. has LR=50

• Expected shrinkage factor \(\frac{50 - 15}{50} = 0.7 \)

• LR > 15 + 9 = 24 \(\rightarrow \) reduction may help

• Reduction to \(q = \frac{50 - 15}{9} \approx 4 \) d.f. necessary

• Have to assume age linear, reduce other 10 to 1 d.f.
• Separate hypothesis tests intended → use full model, adjust for multiple comparisons

Summary of Some Data Reduction Methods

<table>
<thead>
<tr>
<th>Goals</th>
<th>Reasons</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group predictors so that each group represents a single dimension that can be summarized with a single score</td>
<td>• ↓ d.f. arising from multiple predictors</td>
<td>Variable clustering</td>
</tr>
<tr>
<td></td>
<td>• Make PC_1 more reasonable summary</td>
<td>• Subject matter knowledge</td>
</tr>
<tr>
<td></td>
<td>• ↓ d.f. due to nonlinear and dummy variable components</td>
<td>• Group predictors to maximize proportion of variance explained by PC_1 of each group</td>
</tr>
<tr>
<td>Transform predictors</td>
<td>• Allows predictors to be optimally combined</td>
<td>• Hierarchical clustering using a matrix of similarity measures between predictors</td>
</tr>
<tr>
<td></td>
<td>• Make PC_1 more reasonable summary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use in customized model for imputing missing values on each predictor</td>
<td></td>
</tr>
<tr>
<td>Score a group of predictors</td>
<td>✅ ↓ d.f. for group to unity</td>
<td>• Maximum total variance on a group of related predictors</td>
</tr>
<tr>
<td>Multiple dimensional scoring of all predictors</td>
<td>✅ ↓ d.f. for all predictors combined</td>
<td>• Canonical variates on the total set of predictors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PC_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Simple point scores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principal components $1, 2, \ldots, k, k < p$ computed from all transformed predictors</td>
</tr>
</tbody>
</table>
4.8 Other Approaches to Predictive Modeling

4.9 Overly Influential Observations

- Every observation should influence fit
- Major results should not rest on 1 or 2 obs.
- Overly infl. obs. \rightarrow \uparrow variance of predictions
- Also affects variable selection

Reasons for influence:

- Too few observations for complexity of model (see Sections 4.7, 4.3)
- Data transcription or entry errors
- Extreme values of a predictor
 1. Sometimes subject so atypical should remove from dataset
 2. Sometimes truncate measurements where data density ends
 3. Example: $n = 4000$, 2000 deaths, white blood count range 500-100,000, .05,.95 quantiles=2755, 26700
4. Linear spline function fit
5. Sensitive to WBC > 60000 (n = 16)
6. Predictions stable if truncate WBC to 40000 (n = 46 above 40000)

- Disagreements between predictors and response. Ignore unless extreme values or another explanation

- Example: n = 8000, one extreme predictor value not on straight line relationship with other \((X, Y) \rightarrow \chi^2 = 36\) for \(H_0 : \text{linearity}\)

Statistical Measures:

- Leverage: capacity to be influential (not necessarily infl.) Diagonals of “hat matrix” \(H = X(X'X)^{-1}X'\) — measures how an obs. predicts its own response \([14]\)

\[h_{ii} > \frac{2(p + 1)}{n}\] may signal a high leverage point \([14]\)

- DFBETAS: change in \(\hat{\beta}\) upon deletion of each obs, scaled by s.e.

- DFFIT: change in \(X\hat{\beta}\) upon deletion of each obs

- DFFITS: DFFIT standardized by s.e. of \(\hat{\beta}\)

Some classify obs as overly influential when \(|\text{DFFITS}| > \frac{2\sqrt{(p + 1)}/(n - p - 1)}{14}\)
• Others examine entire distribution for “outliers”

• No substitute for careful examination of data [36, 177]

• Maximum likelihood estimation requires 1-step approximations
4.10 Comparing Two Models

- Level playing field (independent datasets, same no. candidate d.f., careful bootstrapping)

- Criteria:
 1. calibration
 2. discrimination
 3. face validity
 4. measurement errors in required predictors
 5. use of continuous predictors (which are usually better defined than categorical ones)
 6. omission of “insignificant” variables that nonetheless make sense as risk factors
 7. simplicity (though this is less important with the availability of computers)
 8. lack of fit for specific types of subjects

- Goal is to rank-order: ignore calibration

- Otherwise, dismiss a model having poor calibration

- Good calibration \rightarrow compare discrimination (e.g., R^2 [141], model χ^2, Somers’ D_{xy}, Spearman’s ρ, area under ROC curve)
• Worthwhile to compare models on a measure not used to optimize either model, e.g., mean absolute error, median absolute error if using OLS

• Rank measures may not give enough credit to extreme predictions → model χ^2, R^2, examine extremes of distribution of \hat{Y}

• Examine differences in predicted values from the two models

• See [147, 150, 149, 148] for discussions and examples of low power for testing differences in ROC areas, and for other approaches.
4.11

Improving the Practice of Multivariable Prediction

See also Section 5.6.

Greenland [84] discusses many important points:

- Stepwise variable selection on confounders leaves important confounders uncontrolled

- Shrinkage is far superior to variable selection

- Variable selection does more damage to confidence interval widths than to point estimates

- Claims about unbiasedness of ordinary MLEs are misleading because they assume the model is correct and is the only model entertained

- “models need to be complex to capture uncertainty about the relations... an honest uncertainty assessment requires parameters for all effects that we know may be present. This advice is implicit in an antiparsimony principle often attributed to L. J. Savage ‘All models should be as big as an elephant’ (see Draper, 1995)”

Greenland’s example of inadequate adjustment for confounders
as a result of using a bad modeling strategy:

- Case-control study of diet, food constituents, breast cancer
- 140 cases, 222 controls
- 35 food constituent intakes and 5 confounders
- Food intakes are correlated
- Traditional stepwise analysis not adjusting simultaneously for all foods consumed → 11 foods had $P < 0.05$
- Full model with all 35 foods competing → 2 had $P < 0.05$
- Rigorous simultaneous analysis (hierarchical random slopes model) penalizing estimates for the number of associations examined → no foods associated with breast cancer

Global Strategies

- Use a method known not to work well (e.g., stepwise variable selection without penalization; recursive partitioning), document how poorly the model performs (e.g. using the bootstrap), and use the model anyway

- Develop a black box model that performs poorly and is difficult to interpret (e.g., does not incorporate penalization)
• Develop a black box model that performs well and is difficult to interpret

• Develop interpretable approximations to the black box

• Develop an interpretable model (e.g. give priority to additive effects) that performs well and is likely to perform equally well on future data from the same stream

Preferred Strategy in a Nutshell

• Decide how many d.f. can be spent

• Decide where to spend them

• Spend them

• Don’t reconsider, especially if inference needed
4.12

Summary: Possible Modeling Strategies

4.12.1

Developing Predictive Models

1. Assemble accurate, pertinent data and lots of it, with wide distributions for X.

2. Formulate good hypotheses — specify relevant candidate predictors and possible interactions. Don’t use Y to decide which X’s to include.

3. Characterize subjects with missing Y. Delete such subjects in rare circumstances [50]. For certain models it is effective to multiply impute Y.

4. Characterize and impute missing X. In most cases use multiple imputation based on X and Y.

5. For each predictor specify complexity or degree of nonlinearity that should be allowed (more for important predictors or for large n) (Section 4.1).

6. Do data reduction if needed (pre-transformations, combinations), or use penalized estimation [93].

7. Use the entire sample in model development.

8. Can do highly structured testing to simplify “initial” model

 (a) Test entire group of predictors with a single P-value
(b) Make each continuous predictor have same number of knots, and select the number that optimizes AIC
(c) Test the combined effects of all nonlinear terms with a single \(P \)-value

9. Make tests of linearity of effects in the model only to demonstrate to others that such effects are often statistically significant. Don’t remove individual insignificant effects from the model.

10. Check additivity assumptions by testing pre-specified interaction terms. Use a global test and either keep all or delete all interactions.

11. Check to see if there are overly-influential observations.

12. Check distributional assumptions and choose a different model if needed.

13. Do limited backwards step-down variable selection if parsimony is more important that accuracy [178]. But confidence limits, etc., must account for variable selection (e.g., bootstrap).

14. This is the “final” model.

15. Interpret the model graphically and by computing predicted values and appropriate test statistics. Compute pooled tests of association for collinear predictors.

16. Validate this model for calibration and discrimination ability, preferably using bootstrapping.
17. Shrink parameter estimates if there is overfitting but no further data reduction is desired (unless shrinkage built-in to estimation)

18. When missing values were imputed, adjust final variance-covariance matrix for imputation. Do this as early as possible because it will affect other findings.

19. When all steps of the modeling strategy can be automated, consider using Faraway’s method [68] to penalize for the randomness inherent in the multiple steps.

20. Develop simplifications to the final model as needed.

4.12.2

Developing Models for Effect Estimation

1. Less need for parsimony; even less need to remove insignificant variables from model (otherwise CLs too narrow)

2. Careful consideration of interactions; inclusion forces estimates to be conditional and raises variances

3. If variable of interest is mostly the one that is missing, multiple imputation less valuable

4. Complexity of main variable specified by prior beliefs, compromise between variance and bias

5. Don’t penalize terms for variable of interest

6. Model validation less necessary
Developing Models for Hypothesis Testing

1. Virtually same as previous strategy

2. Interactions require tests of effect by varying values of another variable, or “main effect + interaction” joint tests (e.g., is treatment effective for either sex, allowing effects to be different)

3. Validation may help quantify overadjustment
Chapter 5

Describing, Resampling, Validating, and Simplifying the Model

5.1 Describing the Fitted Model

5.1.1 Interpreting Effects

- Regression coefficients if 1 d.f. per factor, no interaction

- **Not** standardized regression coefficients

- Many programs print meaningless estimates such as effect of increasing age^2 by one unit, holding age constant

- Need to account for nonlinearity, interaction, and use meaningful ranges

- For monotonic relationships, estimate $X\hat{\beta}$ at quartiles of continuous variables, separately for various levels of inter-
acting factors

- Subtract estimates, anti-log, e.g., to get inter-quartile-range odds or hazards ratios. Base C.L. on s.e. of difference. See Figure 12.10.

- Partial effect plot: Plot effect of each predictor on $X\beta$ or some transformation. See Figure 12.8. See also [106].

- Nomogram. See Figure 12.12.

- Use regression tree to approximate the full model

5.1.2 Indexes of Model Performance

Error Measures

- Central tendency of prediction errors
 - Mean absolute prediction error: mean $|Y - \hat{Y}|$
 - Mean squared prediction error
 - Binary Y: Brier score (quadratic proper scoring rule)
 - Logarithmic proper scoring rule (avg. log-likelihood)

- Discrimination measures
– Pure discrimination: rank correlation of \((\hat{Y}, Y)\)
 * Spearman \(\rho\), Kendall \(\tau\), Somers’ \(D_{xy}\)

* \(Y\) binary \(\rightarrow D_{xy} = 2 \times (C - \frac{1}{2})\)
 \(C = \) concordance probability = area under receiver operating characteristic curve \(\propto\) Wilcoxon-Mann-Whitney statistic

– Mostly discrimination: \(R^2\)
 * \(R^2_{adj}\) — overfitting corrected if model pre-specified

– Brier score can be decomposed into discrimination and calibration components

– Discrimination measures based on variation in \(\hat{Y}\)
 * regression sum of squares
 * \(g\)–index

• Calibration measures

 – calibration–in–the–large: average \(\hat{Y}\) vs. average \(Y\)

 – high-resolution calibration curve (calibration–in–the–small). See Figure 9.7.

 – calibration slope and intercept

 – maximum absolute calibration error
– mean absolute calibration error
– 0.9 quantile of calibration error

See Van Calster et al. [193] for a nice discussion of different levels of calibration stringency and their relationship to likelihood of errors in decision making.

\(g \)-Index

- Based on Gini’s mean difference
 - mean over all possible \(i \neq j \) of \(|Z_i - Z_j|\)
 - interpretable, robust, highly efficient measure of variation

- \(g = \) Gini’s mean difference of \(X_i\hat{\beta} = \hat{Y} \)

- Example: \(Y = \) systolic blood pressure; \(g = 11\) mmHg is typical difference in \(\hat{Y} \)

- Independent of censoring etc.

- For models in which anti-log of difference in \(\hat{Y} \) represent meaningful ratios (odds ratios, hazard ratios, ratio of medians):
 \(g_r = \exp(g) \)

- For models in which \(\hat{Y} \) can be turned into a probability
estimate (e.g., logistic regression):
\[g_p = \text{Gini’s mean difference of } \hat{P} \]

- These \(g \)-indexes represent e.g. “typical” odds ratios, “typical” risk differences

- Can define partial \(g \)
5.2 The Bootstrap

- If know population model, use simulation or analytic derivations to study behavior of statistical estimator

- Suppose Y has a cumulative dist. fctn. $F(y) = \text{Prob}\{Y \leq y\}$

- We have sample of size n from $F(y)$, Y_1, Y_2, \ldots, Y_n

- Steps:
 1. Repeatedly simulate sample of size n from F
 2. Compute statistic of interest
 3. Study behavior over B repetitions

- Example: 1000 samples, 1000 sample medians, compute their sample variance

- F unknown \rightarrow estimate by empirical dist. fctn.

$$F_n(y) = \frac{1}{n} \sum_{i=1}^{n} [Y_i \leq y].$$

- Example: sample of size $n = 30$ from a normal distribution with mean 100 and SD 10

```r
set.seed(6)
x <- rnorm(30, 100, 20)
xs <- seq(50, 150, length=150)
```
\begin{itemize}
 \item F_n corresponds to density function placing probability $\frac{1}{n}$ at each observed data point ($\frac{k}{n}$ if point duplicated k times)

 \item Pretend that $F \equiv F_n$

 \item Sampling from $F_n \equiv$ sampling with replacement from observed data Y_1, \ldots, Y_n

 \item Large $n \rightarrow$ selects $1 - e^{-1} \approx 0.632$ of original data points in each bootstrap sample at least once

 \item Some observations not selected, others selected more than once
\end{itemize}
• Efron’s bootstrap → general-purpose technique for estimating properties of estimators without assuming or knowing distribution of data F

• Take B samples of size n with replacement, choose B so that summary measure of individual statistics \approx summary if $B = \infty$

• Bootstrap based on distribution of observed differences between a resampled parameter estimate and the original estimate telling us about the distribution of unobservable differences between the original estimate and the unknown parameter

Example: Data $(1, 5, 6, 7, 8, 9)$, obtain 0.80 confidence interval for population median, and estimate of population expected value of sample median (only to estimate the bias in the original estimate of the median).

```r
options(digits=3)
y <- c(2,5,6,7,8,9,10,11,12,13,14,19,20,21)
y <- c(1,5,6,7,8,9)
set.seed(17)
n <- length(y)
n2 <- n/2
n21 <- n2+1
B <- 400
M <- double(B)
plot(0, 0, xlim=c(0, B), ylim=c(3, 9), xlab="Bootstrap Samples Used", ylab="Mean and 0.1, 0.9 Quantiles", type="n")
for (i in 1:B) {
s <- sample(1:n, n, replace=T)
x <- sort(y[s])
m <- .5*(x[n2]+x[n21])
M[i] <- m
if(i <= 20) {
  w <- as.character(x)
cat(w, " & ", sprintf("%.1f",m),
      if(i < 20) "\\\n" else "\\\\ hline\\n",
```
```
file='~/doc/rms/validate/tab.tex', append=i > 1)
}
points(i, mean(M[1:i]), pch=46)
if(i ≥ 10) {
  q ← quantile(M[1:i], c(.1,.9))
  points(i, q[1], pch=46, col='blue')
  points(i, q[2], pch=46, col='blue')
}
table(M)

table(M)

M
1 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
2 7 6 2 1 30 45 59 72 70 45 48 8 5

hist(M, nclass=length(unique(M)), xlab='', main='')

Figure 5.2: Estimating properties of sample median using the bootstrap

First 20 samples:
<table>
<thead>
<tr>
<th>Bootstrap Sample</th>
<th>Sample Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5 5 7 8 9</td>
<td>6.0</td>
</tr>
<tr>
<td>1 1 5 7 9 9</td>
<td>6.0</td>
</tr>
<tr>
<td>6 7 7 8 9 9</td>
<td>7.5</td>
</tr>
<tr>
<td>1 1 5 6 8 9</td>
<td>5.5</td>
</tr>
<tr>
<td>1 6 7 7 8 8</td>
<td>7.0</td>
</tr>
<tr>
<td>1 5 6 8 8 9</td>
<td>7.0</td>
</tr>
<tr>
<td>1 6 8 8 9 9</td>
<td>8.0</td>
</tr>
<tr>
<td>5 5 6 7 8 9</td>
<td>6.5</td>
</tr>
<tr>
<td>1 5 6 7 7 8</td>
<td>6.5</td>
</tr>
<tr>
<td>1 5 6 8 9 9</td>
<td>7.0</td>
</tr>
<tr>
<td>1 5 7 7 8 9</td>
<td>7.0</td>
</tr>
<tr>
<td>1 5 6 6 7 8</td>
<td>6.0</td>
</tr>
<tr>
<td>1 6 6 7 8 9</td>
<td>6.5</td>
</tr>
<tr>
<td>5 6 7 7 8 9</td>
<td>7.0</td>
</tr>
<tr>
<td>1 5 6 8 8 8</td>
<td>7.0</td>
</tr>
<tr>
<td>1 1 6 6 7 8</td>
<td>6.0</td>
</tr>
<tr>
<td>5 5 5 8 8 9</td>
<td>6.5</td>
</tr>
<tr>
<td>5 6 6 6 7 7</td>
<td>6.0</td>
</tr>
<tr>
<td>1 5 7 9 9 9</td>
<td>8.0</td>
</tr>
<tr>
<td>1 1 5 5 5 7</td>
<td>5.0</td>
</tr>
</tbody>
</table>

- Histogram tells us whether we can assume normality for the bootstrap medians or need to use quantiles of medians to construct C.L.

- Need high $B$ for quantiles, low for variance (but see [23])

- See [62] for useful information about bootstrap confidence intervals and the latest R functions
5.3 Model Validation

5.3.1 Introduction

- External validation (best: another country at another time); also validates sampling, measurements\(^a\)

- Internal
  - apparent (evaluate fit on same data used to create fit)
  - data splitting
  - cross-validation
  - bootstrap: get overfitting-corrected accuracy index

- Best way to make model fit data well is to discard much of the data

- Predictions on another dataset will be inaccurate

- Need unbiased assessment of predictive accuracy

**Working definition of external validation:** Validation of a prediction tool on a sample that was not available at publi-\(^a\)But in many cases it is better to combine data and include country or calendar time as a predictor.
cation time. **Alternate**: Validation of a prediction tool by an independent research team.

One suggested hierarchy of the quality of various validation methods is as follows, ordered from worst to best.

1. Attempting several validations (internal or external) and reporting only the one that “worked”
2. Reporting apparent performance on the training dataset (no validation)
3. Reporting predictive accuracy on an undersized independent test sample
4. Internal validation using data splitting where at least one of the training and test samples is not huge and the investigator is not aware of the arbitrariness of variable selection done on a single sample
5. Strong internal validation using 100 repeats of 10-fold cross-validation or several hundred bootstrap resamples, repeating all analysis steps involving $Y$ afresh at each re-sample and the arbitrariness of selected “important variables” is reported (if variable selection is used)
6. External validation on a large test sample, done by the original research team
7. Re-analysis by an independent research team using strong internal validation of the original dataset
8. External validation using new test data, done by an independent research team

9. External validation using new test data generated using different instruments/technology, done by an independent research team

Some points to consider:

- Unless both sample sizes are huge, external validation can be low precision

- External validation can be costly and slow and may result in disappointment that would have been revealed earlier with rigorous internal validation

- External validation is sometimes *gamed*; researchers disappointed in the validation sometimes ask for a “do over”; resampling validation is harder to game as long as all analytical steps using $Y$ are repeated each time.

- Instead of external validation to determine model applicability at a different time or place, and being disappointed if the model does not work in that setting, consider building a unified model containing time and place as predictors

- When the model was fully pre-specified, external validation tests *the model*
• But when the model was fitted using machine learning, feature screening, variable selection, or model selection, the model developed using training data is usually only an example of a model, and the test sample validation could be called an example validation.

• When resampling is used to repeat all modeling steps for each resample, rigorous internal validation tests the process used to develop the model and happens to also provide a high-precision estimate of the likely future performance of the “final” model developed using that process, properly penalizing for model uncertainty.

• Resampling also reveals the volatility of the model selection process

→ See BBR 10.11

Collins et al. [43] estimate that a typical sample size needed for externally validating a time-to-event model is 200 events.

---

### 5.3.2 Which Quantities Should Be Used in Validation?

• OLS: $R^2$ is one good measure for quantifying drop-off in predictive ability

• Example: $n = 10, p = 9$, apparent $R^2 = 1$ but $R^2$ will be close to zero on new subjects
• Example: \( n = 20, p = 10 \), apparent \( R^2 = .9 \), \( R^2 \) on new data 0.7, \( R^2_{adj} = 0.79 \)

• Adjusted \( R^2 \) solves much of the bias problem assuming \( p \) in its formula is the largest number of parameters ever examined against \( Y \)

• Few other adjusted indexes exist

• Also need to validate models with phantom d.f.

• Cross-validation or bootstrap can provide unbiased estimate of any index; bootstrap has higher precision

• Two main types of quantities to validate
  1. Calibration or reliability: ability to make unbiased estimates of response (\( \hat{Y} \) vs. \( Y \))
  2. Discrimination: ability to separate responses
     OLS: \( R^2 \); \( g \)-index; binary logistic model: ROC area, equivalent to rank correlation between predicted probability of event and 0/1 event

• Unbiased validation nearly always necessary, to detect over-fitting
5.3.3 Data-Splitting

- Split data into *training* and *test* sets
- Interesting to compare index of accuracy in training and test
- Freeze parameters from training
- Make sure you allow $R^2 = 1 - \frac{SSE}{SST}$ for test sample to be $< 0$
- Don’t compute ordinary $R^2$ on $X\hat{\beta}$ vs. $Y$; this allows for linear recalibration $aX\hat{\beta} + b$ vs. $Y$
- Test sample must be large enough to obtain very accurate assessment of accuracy
- Training sample is what’s left
- Example: overall sample $n = 300$, training sample $n = 200$, develop model, freeze $\hat{\beta}$, predict on test sample ($n = 100$), $R^2 = 1 - \frac{\sum(Y_i - X_i\hat{\beta})^2}{\sum(Y_i - \bar{Y})^2}$.
- Disadvantages of data splitting:
  1. Costly in ↓ $n$ [163, 26]
  2. Requires *decision* to split at beginning of analysis
  3. Requires larger sample held out than cross-validation
4. Results vary if split again
5. Does not validate the final model (from recombined data)
6. Not helpful in getting CL corrected for var. selection
7. Nice summary of disadvantages:[180]

5.3.4

Improvements on Data-Splitting: Resampling

• No sacrifice in sample size

• Work when modeling process automated

• Bootstrap excellent for studying arbitrariness of variable selection [167]. See P. 8-43.

• Cross-validation solves many problems of data splitting [197, 172, 219, 61]

• Example of \( \times \)-validation:
  1. Split data at random into 10 tenths
  2. Leave out \( \frac{1}{10} \) of data at a time
  3. Develop model on \( \frac{9}{10} \), including any variable selection, pre-testing, etc.
  4. Freeze coefficients, evaluate on \( \frac{1}{10} \)
  5. Average \( R^2 \) over 10 reps

• Drawbacks:
CHAPTER 5. DESCRIBING, RESAMPLING, VALIDATING, AND SIMPLIFYING THE MODEL

1. Choice of number of groups and repetitions
2. Doesn’t show full variability of var. selection
3. Does not validate full model
4. Lower precision than bootstrap
5. Need to do 50 repeats of 10-fold cross-validation to ensure adequate precision

- Randomization method
  1. Randomly permute \( Y \)
  2. Optimism = performance of fitted model compared to what expect by chance

5.3.5 Validation Using the Bootstrap

- Estimate optimism of final whole sample fit without holding out data
- From original \( X \) and \( Y \) select sample of size \( n \) with replacement
- Derive model from bootstrap sample
- Apply to original sample
- Simple bootstrap uses average of indexes computed on original sample
• Estimated optimism = difference in indexes

• Repeat about $B = 100$ times, get average expected optimism

• Subtract average optimism from apparent index in final model

• Example: $n = 1000$, have developed a final model that is hopefully ready to publish. Call estimates from this final model $\hat{\beta}$.

  – final model has apparent $R^2 (R_{app}^2) = 0.4$

  – how inflated is $R_{app}^2$?

  – get resamples of size 1000 with replacement from original 1000

  – for each resample compute $R_{boot}^2 = \text{apparent } R^2$ in bootstrap sample

  – freeze these coefficients (call them $\hat{\beta}_{boot}$), apply to original (whole) sample $(X_{orig}, Y_{orig})$ to get $R_{orig}^2 = R^2(X_{orig}\hat{\beta}_{boot}, Y_{orig})$

  – optimism = $R_{boot}^2 - R_{orig}^2$

  – average over $B = 100$ optimisms to get $\overline{\text{optimism}}$

  – $R_{overfitting corrected}^2 = R_{app}^2 - \overline{\text{optimism}}$
• Example: See P. 8-41

• Is estimating unconditional (not conditional on $X$) distribution of $R^2$, etc. [68, p. 217]

• Conditional estimates would require assuming the model one is trying to validate

• Efron’s “.632” method may perform better (reduce bias further) for small $n$ [61], [63, p. 253], [64]

Bootstrap useful for assessing calibration in addition to discrimination:

• Fit $C(Y|X) = X\beta$ on bootstrap sample

• Re-fit $C(Y|X) = \gamma_0 + \gamma_1 X\beta$ on same data

• $\hat{\gamma}_0 = 0, \hat{\gamma}_1 = 1$

• Test data (original dataset): re-estimate $\gamma_0, \gamma_1$

• $\hat{\gamma}_1 < 1$ if overfit, $\hat{\gamma}_0 > 0$ to compensate

• $\hat{\gamma}_1$ quantifies overfitting and useful for improving calibration [178]

• Use Efron’s method to estimate optimism in $(0, 1)$, estimate $(\gamma_0, \gamma_1)$ by subtracting optimism from $(0, 1)$
See also Copas [47] and van Houwelingen and le Cessie [197, p. 1318].

See [71] for warnings about the bootstrap, and [61] for variations on the bootstrap to reduce bias.

Use bootstrap to choose between full and reduced models:

- Bootstrap estimate of accuracy for full model
- Repeat, using chosen stopping rule for each re-sample
- Full fit usually outperforms reduced model [178]
- Stepwise modeling often reduces optimism but this is not offset by loss of information from deleting marginal var.

<table>
<thead>
<tr>
<th>Method</th>
<th>Apparent Rank Correlation of Predicted vs. Observed</th>
<th>Over-Optimism</th>
<th>Bias-Corrected Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Model</td>
<td>0.50</td>
<td>0.06</td>
<td>0.44</td>
</tr>
<tr>
<td>Stepwise Model</td>
<td>0.47</td>
<td>0.05</td>
<td>0.42</td>
</tr>
</tbody>
</table>

In this example, stepwise modeling lost a possible $0.50 - 0.47 = 0.03$ predictive discrimination. The full model fit will especially be an improvement when

1. The stepwise selection deleted several variables which were almost significant.
2. These marginal variables have some real predictive value, even if it’s slight.
3. There is no small set of extremely dominant variables that would be easily found by stepwise selection.

Other issues:

- See [197] for many interesting ideas

- Faraway [68] shows how bootstrap is used to penalize for choosing transformations for $Y$, outlier and influence checking, variable selection, etc. simultaneously

- Brownstone [29, p. 74] feels that “theoretical statisticians have been unable to analyze the sampling properties of [usual multi-step modeling strategies] under realistic conditions” and concludes that the modeling strategy must be completely specified and then bootstrapped to get consistent estimates of variances and other sampling properties

- See Blettner and Sauerbrei [21] and Chatfield [37] for more interesting examples of problems resulting from data-driven analyses.
5.4 Bootstrapping Ranks of Predictors

- Order of importance of predictors not pre-specified
- Researcher interested in determining “winners” and “losers”
- Bootstrap useful in documenting the difficulty of this task
- Get confidence limits of the rank of each predictor in the scale of partial $\chi^2$ - d.f.

- Example using OLS

```r
Use the plot method for anova, with pl=FALSE to suppress actual # plotting of chi-square - d.f. for each bootstrap repetition.
Rank the negative of the adjusted chi-squares so that a rank of
1 is assigned to the highest. It is important to tell
plot.anova.rms not to sort the results, or every bootstrap
replication would have ranks of 1,2,3,... for the stats.
require(rms)

n ← 300
set.seed(1)
d ← data.frame(x1=runif(n), x2=runif(n), x3=runif(n), x4=runif(n),
 x5=runif(n), x6=runif(n), x7=runif(n), x8=runif(n),
 x9=runif(n), x10=runif(n), x11=runif(n), x12=runif(n))
d$y ← with(d, 1*x1 + 2*x2 + 3*x3 + 4*x4 + 5*x5 + 6*x6 + 7*x7 +
 8*x8 + 9*x9 + 10*x10 + 11*x11 + 12*x12 + 9*runif(n))

f ← ols(y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12, data=d)
B ← 1000
ranks ← matrix(NA, nrow=B, ncol=12)
rankvars ← function(fit)
 rank(-plot(anova(fit), sort='none', pl=FALSE))
Rank ← rankvars(f)
for(i in 1:B) {
 j ← sample(1:n, n, TRUE)
 bootfit ← update(f, data=d, subset=j)
 ranks[i,] ← rankvars(bootfit)
}
lim ← t(apply(ranks, 2, quantile, probs=c(.025,.975)))
predictor ← factor(names(Rank), names(Rank))
w ← data.frame(predictor, Rank, lower=lim[,1], upper=lim[,2])
require(ggplot2)
```

```
Figure 5.3: Bootstrap percentile 0.95 confidence limits for ranks of predictors in an OLS model. Ranking is on the basis of partial χ^2 minus d.f. Point estimates are original ranks.
Simplifying the Final Model by Approximating It

5.5.1 Difficulties Using Full Models

- Predictions are conditional on all variables, standard errors \uparrow when predict for a low-frequency category
- Collinearity
- Can average predictions over categories to marginalize, \downarrow s.e.

5.5.2 Approximating the Full Model

- Full model is gold standard
- Approximate it to any desired degree of accuracy
- If approx. with a tree, best c-v tree will have 1 obs./node
- Can use least squares to approx. model by predicting $\hat{Y} = X \hat{\beta}$
- When original model also fit using least squares, coef. of
approx. model against $\hat{Y} \equiv$ coef. of subset of variables fitted against Y (as in stepwise)

- Model approximation still has some advantages
 1. Uses unbiased estimate of σ from full fit
 2. Stopping rule less arbitrary
 3. Inheritance of shrinkage

- If estimates from full model are $\hat{\beta}$ and approx. model is based on a subset T of predictors X, coef. of approx. model are $W\hat{\beta}$, where

 $$W = (T'T)^{-1}T'X$$

- Variance matrix of reduced coef.: WVW'
5.6
How Do We Break Bad Habits?

- Insist on validation of predictive models and discoveries

- Show collaborators that split-sample validation is not appropriate unless the number of subjects is huge
 - Split more than once and see volatile results
 - Calculate a confidence interval for the predictive accuracy in the test dataset and show that it is very wide

- Run simulation study with no real associations and show that associations are easy to find

- Analyze the collaborator’s data after randomly permuting the Y vector and show some positive findings

- Show that alternative explanations are easy to posit
 - Importance of a risk factor may disappear if 5 “unimportant” risk factors are added back to the model
 - Omitted main effects can explain apparent interactions
 - *Uniqueness analysis*: attempt to predict the predicted values from a model derived by data torture from all of the features not used in the model
Chapter 6

R Software

R allows interaction spline functions, wide variety of predictor parameterizations, wide variety of models, unifying model formula language, model validation by resampling.

R is comprehensive:

- Easy to write R functions for new models → wide variety of modern regression models implemented (trees, nonparametric, ACE, AVAS, survival models for multiple events)
- Designs can be generated for any model → all handle “class” var, interactions, nonlinear expansions
- Single R objects (e.g., fit object) can be self-documenting → automatic hypothesis tests, predictions for new data
- Superior graphics
- Classes and generic functions
6.1

The R Modeling Language

R statistical modeling language:

```r
response ~ terms

y ~ age + sex  # age + sex main effects
y ~ age + sex + age:sex  # add second-order interaction
y ~ age*sex  # second-order interaction +
          # all main effects
y ~ (age + sex + pressure)^2
          # age+sex+pressure+age:sex+age:pressure...
y ~ (age + sex + pressure)^2 - sex:pressure
          # all main effects and all 2nd order
          # interactions except sex:pressure
y ~ (age + race)*sex
          # age+race+sex+age:sex+race:sex
y ~ treatment*(age*race + age*sex)  # no interact. with race, sex
sqrt(y) ~ sex*sqrt(age) + race
# functions, with dummy variables generated if
# race is an R factor (classification) variable
y ~ sex + poly(age,2)  # poly generates orthogonal polynomials
race.sex ← interaction(race,sex)
y ~ age + race.sex  # for when you want dummy variables for
          # all combinations of the factors
```

The formula for a regression model is given to a modeling function, e.g.

```r
lrm(y ~ rcs(x,4))
```

is read “use a logistic regression model to model y as a function of x, representing x by a restricted cubic spline with 4 default knots”.

update function: re-fit model with changes in terms or data:

```r
f ← lrm(y ~ rcs(x,4) + x2 + x3)
f2 ← update(f, subset=sex=="male")
f3 ← update(f, .~.-x2)  # remove x2 from model
f4 ← update(f, .~. + rcs(x5,5))# add rcs(x5,5) to model
f5 ← update(f, y2 ~ .)  # same terms, new response var.
```

lrm and rcs are in the rms package.
6.2 User-Contributed Functions

- R is high-level object-oriented language.
- R (UNIX, Linux, Mac, Windows)
- Multitude of user-contributed functions freely available
- International community of users

Some R functions:

- See Venables and Ripley
- Hierarchical clustering: hclust
- Principal components: princomp, prcomp
- Canonical correlation: cancor
- Nonparametric transform-both-sides additive models: ace, avas
- Parametric transform-both-sides additive models: areg, areg.boot (Hmisc package in R)
- Rank correlation methods: rcorr, hoeffd, spearman2 (Hmisc)
• Variable clustering: `varclus(Hmisc)`

• Single imputation: `transcan(Hmisc)`

• Multiple imputation: `aregImpute(Hmisc)`

• Restricted cubic splines:
 `rc spline.eval(Hmisc)`

• Re-state restricted spline in simpler form:
 `rc spline.restate(Hmisc)`
6.3 The rms Package

- datadist function to compute predictor distribution summaries

\[y \sim \text{sex} + \text{lsp(age,c(20,30,40,50,60)))} + \text{sex %ia% lsp(age,c(20,30,40,50,60))} \]

E.g. restrict age \(\times \) cholesterol interaction to be of form \(AF(B) + BG(A) \):

\[y \sim \text{lsp(age,30)} + \text{rcs(cholesterol,4)} + \text{lsp(age,30) %ia% rcs(cholesterol,4)} \]

Special fitting functions by Harrell to simplify procedures described in these notes:

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
<th>Related R Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ols</td>
<td>Ordinary least squares linear model</td>
<td>lm</td>
</tr>
<tr>
<td>lrm</td>
<td>Binary and ordinal logistic regression model</td>
<td>glm</td>
</tr>
<tr>
<td>orm</td>
<td>Ordinal semi-parametric regression model for continuous (Y) and several link functions</td>
<td>polr, lrm</td>
</tr>
<tr>
<td>psm</td>
<td>Accelerated failure time parametric survival models</td>
<td>survreg</td>
</tr>
<tr>
<td>cph</td>
<td>Cox proportional hazards regression</td>
<td>coxph</td>
</tr>
<tr>
<td>bj</td>
<td>Buckley-James censored least squares model</td>
<td>survreg, lm</td>
</tr>
<tr>
<td>Glm</td>
<td>rms version of glm</td>
<td>glm</td>
</tr>
<tr>
<td>Gls</td>
<td>rms version of gls</td>
<td>gls (nlme package)</td>
</tr>
<tr>
<td>Rq</td>
<td>rms version of rq</td>
<td>rq (quantreg package)</td>
</tr>
</tbody>
</table>

Below notice that there are three graphic models implemented
for depicting the effects of predictors in the fitted model: lattice graphics, a ggplot method using the ggplot2 package (which has an option to convert the result to plotly), and a direct plotly method. plotly is used to create somewhat interactive graphics with drill-down capability, and the rms package takes advantage of this capability. plotly graphics are best used with RStudio Rmarkdown html output.

Table 6.2: rms Transformation Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
<th>Related R Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>asis</td>
<td>No post-transformation (seldom used explicitly)</td>
<td>I</td>
</tr>
<tr>
<td>rcs</td>
<td>Restricted cubic splines</td>
<td>ns</td>
</tr>
<tr>
<td>pol</td>
<td>Polynomial using standard notation</td>
<td>poly</td>
</tr>
<tr>
<td>lsp</td>
<td>Linear spline</td>
<td></td>
</tr>
<tr>
<td>catg</td>
<td>Categorical predictor (seldom)</td>
<td>factor</td>
</tr>
<tr>
<td>scored</td>
<td>Ordinal categorical variables</td>
<td>ordered</td>
</tr>
<tr>
<td>matrix</td>
<td>Keep variables as group for anova and fastbw</td>
<td>matrix</td>
</tr>
<tr>
<td>strat</td>
<td>Non-modeled stratification factors</td>
<td>strata</td>
</tr>
<tr>
<td></td>
<td>(used for cph only)</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Purpose</td>
<td>Related Functions</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>print</td>
<td>Print parameters and statistics of fit</td>
<td></td>
</tr>
<tr>
<td>coef</td>
<td>Fitted regression coefficients</td>
<td></td>
</tr>
<tr>
<td>formula</td>
<td>Formula used in the fit</td>
<td></td>
</tr>
<tr>
<td>specs</td>
<td>Detailed specifications of fit</td>
<td></td>
</tr>
<tr>
<td>vcov</td>
<td>Fetch covariance matrix</td>
<td></td>
</tr>
<tr>
<td>logLik</td>
<td>Fetch maximized log-likelihood</td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>Fetch AIC with option to put on chi-square basis</td>
<td></td>
</tr>
<tr>
<td>lrtest</td>
<td>Likelihood ratio test for two nested models</td>
<td></td>
</tr>
<tr>
<td>univarLR</td>
<td>Compute all univariable LR χ^2</td>
<td></td>
</tr>
<tr>
<td>robcov</td>
<td>Robust covariance matrix estimates</td>
<td></td>
</tr>
<tr>
<td>bootcov</td>
<td>Bootstrap covariance matrix estimates and bootstrap distributions of estimates</td>
<td></td>
</tr>
<tr>
<td>pentrace</td>
<td>Find optimum penalty factors by tracing effective AIC for a grid of penalties</td>
<td></td>
</tr>
<tr>
<td>effective.df</td>
<td>Print effective d.f. for each type of variable in model, for penalized fit or pentrace result</td>
<td></td>
</tr>
<tr>
<td>summary</td>
<td>Summary of effects of predictors</td>
<td></td>
</tr>
<tr>
<td>plot.summary</td>
<td>Plot continuously shaded confidence bars for results of summary</td>
<td></td>
</tr>
<tr>
<td>anova</td>
<td>Wald tests of most meaningful hypotheses</td>
<td></td>
</tr>
<tr>
<td>plot.anova</td>
<td>Graphical depiction of anova</td>
<td></td>
</tr>
<tr>
<td>contrast</td>
<td>General contrasts, C.L., tests</td>
<td></td>
</tr>
<tr>
<td>gendata</td>
<td>Easily generate predictor combinations</td>
<td></td>
</tr>
<tr>
<td>predict</td>
<td>Obtain predicted values or design matrix</td>
<td></td>
</tr>
<tr>
<td>Predict</td>
<td>Obtain predicted values and confidence limits easily varying a subset of predictors and others set at default values</td>
<td></td>
</tr>
<tr>
<td>plot.Predict</td>
<td>Plot the result of Predict using lattice</td>
<td></td>
</tr>
<tr>
<td>ggplot.Predict</td>
<td>Plot the result of Predict using ggplot2</td>
<td></td>
</tr>
<tr>
<td>plotp.Predict</td>
<td>Plot the result of Predict using plotly</td>
<td></td>
</tr>
<tr>
<td>fastbw</td>
<td>Fast backward step-down variable selection</td>
<td></td>
</tr>
<tr>
<td>residuals</td>
<td>(or resid) Residuals, influence stats from fit</td>
<td></td>
</tr>
<tr>
<td>sensuc</td>
<td>Sensitivity analysis for unmeasured confounder</td>
<td></td>
</tr>
<tr>
<td>which.influence</td>
<td>Which observations are overly influential</td>
<td>residuals</td>
</tr>
<tr>
<td>latex</td>
<td>\LaTeX representation of fitted model</td>
<td></td>
</tr>
</tbody>
</table>
Function | Purpose | Related Functions
--- | --- | ---
Function | R function analytic representation of $X\beta$ from a fitted regression model | latex
Hazard | R function analytic representation of a fitted hazard function (for psm) |
Survival | R function analytic representation of fitted survival function (for psm, cph) |
Quantile | R function analytic representation of fitted function for quantiles of survival time (for psm, cph) |
Mean | R function analytic representation of fitted function for mean survival time or for ordinal logistic nomogram | latex, plot
survest | Estimate survival probabilities (psm, cph) | survfit
survplot | Plot survival curves (psm, cph) | plot.survfit
survplotp | Plot survival curves with plotly features | survplot
validate | Validate indexes of model fit using resampling |
val.prob | External validation of a probability model | lrm
val.surv | External validation of a survival model | calibrate
vif | Variance inflation factors for fitted model |
naresid | Bring elements corresponding to missing data back into predictions and residuals |
naprint | Print summary of missing values |
impute | Impute missing values | aregImpute

rmsb: Bayesian regression modeling strategies package, focusing on semiparametric univariate and longitudinal models.

Function	Purpose
blrm | Bayesian binary and ordinal logistic model |
stackMI | Bayesian posterior stacking for multiple imputation |
stanDx | Stan diagnostics on fit |
stanDxplot | Trace plots to check posterior sampling convergence |
PostF | Creates R function for computing posterior probabilities |
plot.rmsb | Plot posterior densities, intervals, point summaries |
compareBmods | Compare two models using LOO-cv |
HPDint | Compute highest posterior density interval |
distSym | Compute measure of symmetry of posterior distribution |

An extensive overview of Bayesian capabilities of the rmsb package may be found at hbiostat.org/R/rmsb/blrm.html.

Global options prType and grType control printed and some graphical output, respectively as shown in example code below. The default is plain output and static graphics. If using plotly interactive graphics through ggplot or plotp or with anova or
summary functions it is best to do so with RStudio html output or html notebooks. If using html output you must be producing an html document or notebook. When setting grType to use \LaTeX{} or html it is highly recommended that you use the knitr package.

Example:

- **treat**: categorical variable with levels "a","b","c"
- **num.diseases**: ordinal variable, 0-4
- **age**: continuous
 Restricted cubic spline
- **cholesterol**: continuous
 (3 missings; use median)
 \(\log(\text{cholesterol}+10)\)
- Allow treat \(\times\) cholesterol interaction
- Program to fit logistic model, test all effects in design, estimate effects (e.g. inter-quartile range odds ratios), plot estimated transformations

```r
require(rms) # make new functions available
options(prType='latex') # print, summary, anova \LaTeX{} output
options(grType='plotly') # plotly graphics for ggplot, anova, summary
# default is 'base' for static graphics
ddist ← datadist(cholesterol, treat, num.diseases, age)
# Could have used ddist ← datadist(data.frame.name)
options(datadist="ddist") # defines data dist. to rms
cholesterol ← impute(cholesterol)
fit ← lrm(y ~ treat + scored(num.diseases) + rcs(age) +
```
\[\log(\text{cholesterol} + 10) + \text{treat}:\log(\text{cholesterol} + 10) \]

\texttt{fit} # outputs plain, \LaTeX, or html markup
\texttt{describe(y \sim \text{treat} + \text{scored(num.diseases)} + \text{rcs(age)})}

or use \texttt{describe(formula(fit))} for all variables used in \texttt{fit}

describe function (in \texttt{Hmisc}) gets simple statistics on variables
\texttt{fit \leftarrow \text{robcov(fit)}} # Would make all statistics that follow
use a robust covariance matrix
would need x=T, y=T in \texttt{lrm()}

\texttt{specs(fit)}
\texttt{anova(fit)} # Describe the design characteristics
\texttt{anova(fit, treat, \text{cholesterol})} # Test these 2 by themselves
\texttt{plot(anova(fit))} # Summarize anova graphically
\texttt{summary(fit)} # Estimate effects using default ranges
prints plain, \LaTeX, or html
\texttt{plot(summary(fit))}
\texttt{summary(fit, treat=\text{"b"}, age=60)} # Estimate effect of increasing age from 50 to 70
\texttt{summary(fit, age=c(50,70))} # Increase age from 50 to 70, adjust to 60 when estimating effects of other factors

If had not defined \texttt{datadist}, would have to define ranges for all var.

Estimate and test treatment (b-a) effect averaged over 3 cholesterols
\texttt{contrast(fit, list(treat=\text{\textquoteleft}b\textquoteleft}, \text{cholesterol}=c(150,200,250)\text{)},
\text{list(treat=\text{\textquoteleft}a\textquoteleft}, \text{cholesterol}=c(150,200,250)\text{)},
\text{type='average'})}

See the help file for \texttt{contrast.rms} for several examples of
how to obtain joint tests of multiple contrasts and how to get
double differences (interaction contrasts)

\texttt{p \leftarrow \text{Predict(fit, age=seq(20,80,length=100), treat, conf.int=FALSE)}}
\texttt{plot(p)} # Plot relationship between age and \log
or \texttt{ggplot(p), plot(p)} # odds, separate curve for each treat,
no C.I.
\texttt{plot(p, \sim \text{age} \mid \text{treat})} # Same but 2 panels
\texttt{ggplot(p, groups=FALSE)}
\texttt{bplot(Predict(fit, age, \text{cholesterol}, np=50))}

3-dimensional perspective plot for age, \text{cholesterol}, and \log odds using default
ranges for both variables
\texttt{plot(Predict(fit, num.diseases, \text{fun=function(x) 1/(1+exp(-x)), conf.int=.9)},
\text{ylab=\text{"Prob"}})}

Plot estimated probabilities instead of
\log odds (or use \texttt{ggplot()})
can also use \texttt{plot(p)} for \texttt{plotly}

Again, if no \texttt{datadist} were defined, would have to tell plot all limits
\texttt{logit \leftarrow \text{predict(fit, expand.grid(treat=\text{\textquoteleft}b\textquoteleft},num.dis=1:3,age=c(20,40,60),
\text{cholesterol}=\text{seq(100,300,length=10)))}}

Could also obtain list of predictor settings interactively
\texttt{logit \leftarrow \text{predict(fit, gendata(fit, nob=12))}}

Since age doesn't interact with anything, we can quickly and
interactively try various transformations of age, taking the spline
function of age as the gold standard. We are seeking a linearizing
transformation.
\texttt{ag \leftarrow 10:80}
logit ← predict(fit, expand.grid(treat="a", num.dis=0, age=ag, cholesterol=median(cholesterol)), type="terms")[,"age"]

Note: if age interacted with anything, this would be the age
"main effect" ignoring interaction terms
Could also use
logit ← Predict(f, age=ag, ...)$yhat,
which allows evaluation of the shape for any level of interacting
factors. When age does not interact with anything, the result from
predict(f, ..., type="terms") would equal the result from
Predict if all other terms were ignored

Could also specify
logit ← predict(fit, gendata(fit, age=ag, cholesterol=...))
Un-mentioned variables set to reference values

plot(ag^.5, logit) # try square root vs. spline transform.
plot(ag^1.5, logit) # try 1.5 power
latex(fit) # invokes latex.lrm, creates fit.tex
Draw a nomogram for the model fit
plot(nomogram(fit))

Compose R function to evaluate linear predictors analytically
g ← Function(fit)
g(treat='b', cholesterol=260, age=50)
Letting num.diseases default to reference value

To examine interactions in a simpler way, you may want to group age into tertiles:

age.tertile ← cut2(age, g=3)
For automatic ranges later, add age.tertile to datadist input
fit ← lrm(y ~ age.tertile * rcs(cholesterol))
Other Functions

- **supsmu**: Friedman’s “super smoother”
- **lowess**: Cleveland’s scatterplot smoother
- **glm**: generalized linear models (see `Glm`)
- **gam**: Generalized additive models
- **rpart**: Like original CART with surrogate splits for missings, censored data extension (Atkinson & Therneau)
- **validate.rpart**: in `rms`; validates recursive partitioning with respect to certain accuracy indexes
- **loess**: multi-dimensional scatterplot smoother

```r
f <- loess(y ~ age * pressure)
plot(f)                      # cross-sectional plots
ages <- seq(20, 70, length=40)
pressures <- seq(80, 200, length=40)
pred <- predict(f, expand.grid(age=ages, pressure=pressures))
persp(ages, pressures, pred) # 3-d plot
```
Chapter 7

Modeling Longitudinal Responses using Generalized Least Squares

7.1 Notation

- N subjects
- Subject i ($i = 1, 2, \ldots, N$) has n_i responses measured at times $t_{i1}, t_{i2}, \ldots, t_{in_i}$
- Response at time t for subject i: Y_{it}
- Subject i has baseline covariates X_i
- Generally the response measured at time $t_{i1} = 0$ is a covariate in X_i instead of being the first measured response Y_{i0}
- Time trend in response is modeled with k parameters so that the time “main effect” has k d.f.
• Let the basis functions modeling the time effect be \(g_1(t), g_2(t), \ldots, \).
7.2 Model Specification for Effects on $E(Y)$

7.2.1 Common Basis Functions

- k: dummy variables for $k+1$ unique times (assumes no functional form for time but may spend many d.f.)

- $k = 1$ for linear time trend, $g_1(t) = t$

- k–order polynomial in t

- $k + 1$–knot restricted cubic spline (one linear term, $k - 1$ nonlinear terms)

7.2.2 Model for Mean Profile

- A model for mean time-response profile without interactions between time and any X:

$$E[Y_{it}|X_i] = X_i\beta + \gamma_1 g_1(t) + \gamma_2 g_2(t) + \ldots + \gamma_k g_k(t)$$

- Model with interactions between time and some X’s: add product terms for desired interaction effects

- Example: To allow the mean time trend for subjects in group 1 (reference group) to be arbitrarily different from time trend
for subjects in group 2, have a dummy variable for group 2, a time “main effect” curve with \(k \) d.f. and all \(k \) products of these time components with the dummy variable for group 2.

7.2.3 Model Specification for Treatment Comparisons

- In studies comparing two or more treatments, a response is often measured at baseline (pre-randomization)

- Analyst has the option to use this measurement as \(Y_{i0} \) or as part of \(X_i \)

- Jim Rochon (Rho, Inc., Chapel Hill NC) has the following comments about this:

For RCTs, I draw a sharp line at the point when the intervention begins. The LHS [left hand side of the model equation] is reserved for something that is a response to treatment. Anything before this point can potentially be included as a covariate in the regression model. This includes the “baseline” value of the outcome variable. Indeed, the best predictor of the outcome at the end of the study is typically where the patient began at the beginning. It drinks up a lot of variability in the outcome; and, the effect of other covariates is typically mediated through this variable.

I treat anything after the intervention begins as an outcome. In the western scientific method, an “effect” must follow the “cause” even if by a split second.

Note that an RCT is different than a cohort study. In a cohort study, “Time 0” is not terribly meaningful. If we want to model, say, the trend over time, it would be legitimate, in my view, to include the “baseline” value on the LHS of that regression model.

Now, even if the intervention, e.g., surgery, has an immediate effect, I would include still reserve the LHS for anything that might legitimately be considered as the response to the intervention. So, if we cleared a blocked artery and then measured the MABP, then that would still be included on the LHS.

Now, it could well be that most of the therapeutic effect occurred by the time that the first repeated measure was taken, and then levels off. Then, a plot of the means would essentially be two parallel lines and the treatment effect is the distance between the lines, i.e., the difference in the intercepts.

If the linear trend from baseline to Time 1 continues beyond Time 1, then the lines will have a common intercept but the slopes will diverge. Then, the treatment effect will the difference in slopes.

One point to remember is that the estimated intercept is the value at time 0 that we predict from the set of repeated measures post randomization. In the first case above, the model will predict different intercepts even though randomization would suggest that they would start from the same place. This is because we were asleep at the switch and didn’t record the “action” from baseline to time 1. In the second case, the model will predict the same intercept values because the linear trend from baseline to time 1 was continued thereafter.

More importantly, there are considerable benefits to including it as a covariate on the RHS. The baseline value tends to be the best predictor of the outcome post-randomization, and this maneuver increases the precision of
the estimated treatment effect. Additionally, any other prognostic factors correlated with the outcome variable will also be correlated with the baseline value of that outcome, and this has two important consequences. First, this greatly reduces the need to enter a large number of prognostic factors as covariates in the linear models. Their effect is already mediated through the baseline value of the outcome variable. Secondly, any imbalances across the treatment arms in important prognostic factors will induce an imbalance across the treatment arms in the baseline value of the outcome. Including the baseline value thereby reduces the need to enter these variables as covariates in the linear models.

Stephen Senn [171] states that temporally and logically, a “baseline cannot be a response to treatment”, so baseline and response cannot be modeled in an integrated framework.

... one should focus clearly on ‘outcomes’ as being the only values that can be influenced by treatment and examine critically any schemes that assume that these are linked in some rigid and deterministic view to ‘baseline’ values. An alternative tradition sees a baseline as being merely one of a number of measurements capable of improving predictions of outcomes and models it in this way.

The final reason that baseline cannot be modeled as the response at time zero is that many studies have inclusion/exclusion criteria that include cutoffs on the baseline variable. In other words, the baseline measurement comes from a truncated distribution. In general it is not appropriate to model the baseline with the same distributional shape as the follow-up measurements. Thus the approach recommended by Liang and Zeger [125] and Liu et al. [129] are problematic.

In addition to this, one of the paper’s conclusions that analysis of covariance is not appropriate if the population means of the baseline variable are not identical in the treatment groups is not correct [171]. See [107] for a rebuke of [129].
7.3 Modeling Within-Subject Dependence

- Random effects and mixed effects models have become very popular

- Disadvantages:
 - Induced correlation structure for Y may be unrealistic
 - Numerically demanding
 - Require complex approximations for distributions of test statistics

- Conditional random effects vs. (subject-) marginal models:
 - Random effects are subject-conditional
 - Random effects models are needed to estimate responses for individual subjects
 - Models without random effects are marginalized with respect to subject-specific effects
 - They are natural when the interest is on group-level parameters (e.g., overall treatment effect)
 - Random effects are natural when there is clustering at more than the subject level (multi-level models)
• Extended linear model (marginal; with no random effects) is a logical extension of the univariate model (e.g., few statisticians use subject random effects for univariate Y).

• This was known as growth curve models and generalized least squares [155, 78] and was developed long before mixed effect models became popular.

• Pinheiro and Bates (Section 5.1.2) state that “in some applications, one may wish to avoid incorporating random effects in the model to account for dependence among observations, choosing to use the within-group component Λ_i to directly model variance-covariance structure of the response.”

• We will assume that $Y_{it} | X_i$ has a multivariate normal distribution with mean given above and with variance-covariance matrix V_i, an $n_i \times n_i$ matrix that is a function of t_{i1}, \ldots, t_{in_i}.

• We further assume that the diagonals of V_i are all equal.

• Procedure can be generalized to allow for heteroscedasticity over time or with respect to X (e.g., males may be allowed to have a different variance than females).

• This extended linear model has the following assumptions:

 – all the assumptions of OLS at a single time point including correct modeling of predictor effects and univariate normality of responses conditional on X.
– the distribution of two responses at two different times for the same subject, conditional on X, is bivariate normal with a specified correlation coefficient

– the joint distribution of all n_i responses for the i^{th} subject is multivariate normal with the given correlation pattern (which implies the previous two distributional assumptions)

– responses from any times for any two different subjects are uncorrelated
What Methods To Use for Repeated Measurements / Serial Data? \(^{ab}\)

<table>
<thead>
<tr>
<th>Method / Assumption</th>
<th>Repeated Measures ANOVA</th>
<th>GEE</th>
<th>Mixed Effects Model</th>
<th>GLS</th>
<th>Markov</th>
<th>LOCF</th>
<th>Summary Statistic(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumes normality</td>
<td></td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Assumes independence of measurements within subject</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Assumes a correlation structure(^f)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Requires same measurement times for all subjects</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Does not allow smooth modeling of time to save d.f.</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Does not allow adjustment for baseline covariates</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Does not easily extend to non-continuous (Y)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Loses information by not using intermediate measurements</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Does not allow widely varying # of observations per subject</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Does not allow for subjects to have distinct trajectories(^k)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Assumes subject-specific effects are Gaussian</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Badly biased if non-random dropouts</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Biased in general</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Harder to get tests & CLs</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Requires large # subjects/clusters</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>SEs are wrong</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Assumptions are not verifiable in small samples</td>
<td>(\times)</td>
<td>(N/A)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>Does not extend to complex settings such as time-dependent covariates and dynamic(^o) models</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
</tbody>
</table>

\(^{ab}\) Thanks to Charles Berry, Brian Cade, Peter Flom, Bert Gunter, and Leena Choi for valuable input.

\(^c\) GEE: generalized estimating equations; GLS: generalized least squares; LOCF: last observation carried forward.

\(^e\) E.g., compute within-subject slope, mean, or area under the curve over time. Assumes that the summary measure is an adequate summary of the time profile and assesses the relevant treatment effect.

\(^f\) Unless one uses the Huynh-Feldt or Greenhouse-Geisser correction

\(^g\) For full efficiency, if using the working independence model

\(^h\) Or requires the user to specify one

\(^i\) For full efficiency of regression coefficient estimates

\(^j\) Unless the last observation is missing

\(^k\) Or uses population averages

\(^l\) Unlike GLS, does not use standard maximum likelihood methods yielding simple likelihood ratio \(\chi^2\) statistics. Requires high-dimensional integration to marginalize random effects, using complex approximations, and if using SAS, unintuitive d.f. for the various tests.

\(^m\) Because there is no correct formula for SE of effects; ordinary SEs are not penalized for imputation and are too small

\(^n\) If correction not applied

\(^o\) E.g., a model with a predictor that is a lagged value of the response variable
• Markov models use ordinary univariate software and are very flexible

• They apply the same way to binary, ordinal, nominal, and continuous Y

• They require post-fitting calculations to get probabilities, means, and quantiles that are not conditional on the previous Y value

Gardiner et al. [74] compared several longitudinal data models, especially with regard to assumptions and how regression coefficients are estimated. Peters et al. [152] have an empirical study confirming that the “use all available data” approach of likelihood–based longitudinal models makes imputation of follow-up measurements unnecessary.
7.4 Parameter Estimation Procedure

- Generalized least squares

- Like weighted least squares but uses a covariance matrix that is not diagonal

- Each subject can have her own shape of V_i due to each subject being measured at a different set of times

- Maximum likelihood

- Newton-Raphson or other trial-and-error methods used for estimating parameters

- For small number of subjects, advantages in using REML (restricted maximum likelihood) instead of ordinary MLE [57, Section 5.3], [154, Chapter 5], [78] (esp. to get more unbiased estimate of the covariance matrix)

- When imbalances are not severe, OLS fitted ignoring subject identifiers may be efficient

 - But OLS standard errors will be too small as they don’t take intra-cluster correlation into account

 - May be rectified by substituting covariance matrix estimated from Huber-White cluster sandwich estimator or
from cluster bootstrap

- When imbalances are severe and intra-subject correlations are strong, OLS is not expected to be efficient because it gives equal weight to each observation
 - a subject contributing two distant observations receives $\frac{1}{5}$ the weight of a subject having 10 tightly-spaced observations
7.5 Common Correlation Structures

• Usually restrict ourselves to isotropic correlation structures — correlation between responses within subject at two times depends only on a measure of distance between the two times, not the individual times.

• We simplify further and assume depends on $|t_1 - t_2|$

• Can speak interchangeably of correlations of residuals within subjects or correlations between responses measured at different times on the same subject, conditional on covariates X

• Assume that the correlation coefficient for Y_{it_1} vs. Y_{it_2} conditional on baseline covariates X_i for subject i is $h(|t_1 - t_2|, \rho)$, where ρ is a vector (usually a scalar) set of fundamental correlation parameters.

• Some commonly used structures when times are continuous and are not equally spaced [154, Section 5.3.3] (\texttt{nlme} correlation function names are at the right if the structure is implemented in \texttt{nlme}):

 - **Compound symmetry**: $h = \rho$ if $t_1 \neq t_2$, 1 if $t_1 = t_2$ (Essentially what two-way ANOVA assumes)
 \begin{align*}
 \text{\texttt{nlme.corCompSymm}}
 \end{align*}

 - **Autoregressive-moving average lag 1**: $h = \rho^{|t_1 - t_2|} = \rho^s$
 \begin{align*}
 \text{\texttt{corCAR1}}
 \end{align*}
 where $s = |t_1 - t_2|$

 - **Exponential**: $h = \exp(-s/\rho)$
 \begin{align*}
 \text{\texttt{corExp}}
 \end{align*}

 - **Gaussian**: $h = \exp\left[-(s/\rho)^2\right]$
 \begin{align*}
 \text{\texttt{corGaus}}
 \end{align*}

 - **Linear**: $h = (1 - s/\rho)[s < \rho]$
 \begin{align*}
 \text{\texttt{corLin}}
 \end{align*}
Rational quadratic: \(h = 1 - (s/\rho)^2/[1 + (s/\rho)^2] \)

Spherical: \(h = [1 - 1.5(s/\rho) + 0.5(s/\rho)^3][s < \rho] \)

Linear exponent AR(1): \(h = \rho^{d_{\min} + \delta \frac{s - d_{\min}}{d_{\max} - d_{\min}}} \), 1 if \(t_1 = t_2 \) [174]

The structures 3–7 use \(\rho \) as a scaling parameter, not as something restricted to be in \([0, 1]\)
7.6 Checking Model Fit

- Constant variance assumption: usual residual plots
- Normality assumption: usual qq residual plots
- Correlation pattern: Variogram
 - Estimate correlations of all possible pairs of residuals at different time points
 - Pool all estimates at same absolute difference in time \(s \)
 - Variogram is a plot with \(y = 1 - \hat{h}(s, \rho) \) vs. \(s \) on the \(x \)-axis
 - Superimpose the theoretical variogram assumed by the model
R Software

- Nonlinear mixed effects model package of Pinheiro & Bates
- For linear models, fitting functions are
 - `lme` for mixed effects models
 - `gls` for generalized least squares without random effects
- For this version the rms package has `Gls` so that many features of rms can be used:
 - `anova`: all partial Wald tests, test of linearity, pooled tests
 - `summary`: effect estimates (differences in \hat{Y}) and confidence limits, can be plotted
 - `plot`, `ggplot`, `plotp`: continuous effect plots
 - `nomogram`: nomogram
 - `Function`: generate R function code for fitted model
 - `latex`: \LaTeX{} representation of fitted model
- In addition, `Gls` has a bootstrap option (hence you do not use rms’s `bootcov` for `Gls` fits).
- To get regular `gls` functions named `anova` (for likelihood ratio tests, AIC, etc.) or `summary` use `anova.gls` or `summary.gls`
- `nlme` package has many graphics and fit-checking functions
- Several functions will be demonstrated in the case study
Case Study

Consider the dataset in Table 6.9 of Davis [54, pp. 161-163] from a multicenter, randomized controlled trial of botulinum toxin type B (BotB) in patients with cervical dystonia from nine U.S. sites.

- Randomized to placebo ($N = 36$), 5000 units of BotB ($N = 36$), 10,000 units of BotB ($N = 37$)

- Response variable: total score on Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), measuring severity, pain, and disability of cervical dystonia (high scores mean more impairment)

- TWSTRS measured at baseline (week 0) and weeks 2, 4, 8, 12, 16 after treatment began

- Dataset cdystonia from web site

7.8.1 Graphical Exploration of Data

```r
require(rms)
options(prType='latex') # for model print, summary, anova
getHdata(cdystonia)
attach(cdystonia)

# Construct unique subject ID
uid ← with(cdystonia, factor(paste(site, id)))
```

Tabulate patterns of subjects' time points

```r
table(tapply(week, uid,
    function(w) paste(sort(unique(w)), collapse=' ')))
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>12</th>
<th>16</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>16</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>16</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Plot raw data, superposing subjects

```r
xl ← xlab('Week'); yl ← ylab('TWSTRS-total score')
ggplot(cdystonia, aes(x=week, y=twstrs, color=factor(id))) +
    geom_line() + xl + yl + facet_grid(treat ~ site) +
    guides(color=FALSE) # Fig. 7.1
```

![Figure 7.1: Time profiles for individual subjects, stratified by study site and dose](image)

Show quartiles

```r
require(data.table)
cdystonia ← data.table(cdystonia)
cdys ← cdystonia[, j=as.list(quantile(twstrs, (1 : 3)/4)),
    by = list(treat, week)]
cdys ← upData(cdys, rename=c('25%'='Q1', '50%'='Q2', '75%'='Q3'),
    print=FALSE) 
ggplot(cdys, aes(x=week, y=Q2)) + xl + yl + ylim(0, 70) +
```

![Figure 7.1: Time profiles for individual subjects, stratified by study site and dose](image)
```r
geom_line() + facet_wrap(~ treat, nrow=2) +
geom_ribbon(aes(ymin=Q1, ymax=Q3), alpha=0.2)  # Fig. 7.2
```

![Figure 7.2: Quartiles of TWSTRS stratified by dose](image)

```r
# Show means with bootstrap nonparametric CLs
cdys ← cdystonia[, j=as.list(smean.cl.boot(twstrs)), by = list(treat, week)]
ggplot(cdys, aes(x=week, y=Mean)) + xl + yl + ylim(0, 70) +
geom_line() + facet_wrap(~ treat, nrow=2) +
geom_ribbon(aes(x=week, ymin=Lower, ymax=Upper), alpha=0.2)  # Fig. 7.3
```

![Figure 7.3](image)
Figure 7.3: Mean responses and nonparametric bootstrap 0.95 confidence limits for population means, stratified by dose
Model with Y_{i0} as Baseline Covariate

```r
baseline ← subset(data.frame(cdystonia,uid), week == 0, -week)
baseline ← upData(baseline, rename=c(twstrs='twstrs0'), print=FALSE)
followup ← subset(data.frame(cdystonia,uid), week > 0, c(uid,week,twstrs))
rm(uid)
both ← merge(baseline, followup, by='uid')

dd ← datadist(both)
options(datadist='dd')
```

7.8.2 Using Generalized Least Squares

We stay with baseline adjustment and use a variety of correlation structures, with constant variance. Time is modeled as a restricted cubic spline with 3 knots, because there are only 3 unique interior values of week.

```r
require(nlme)

cp ← list(corCAR1,corExp,corCompSymm,corLin,corGaus,corSpher)
z ← vector('list',length(cp))
for (k in 1:length(cp)) {
  z[[k]] ← gls(twstrs ~ treat * rcs(week, 3) +
           rcs(twstrs0, 3) + rcs(age, 4) * sex, data=both,
           correlation=cp[[k]](form = ~week | uid))
}

anova(z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]])
```

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>AIC</th>
<th>BIC</th>
<th>logLik</th>
</tr>
</thead>
<tbody>
<tr>
<td>z[[1]]</td>
<td>1</td>
<td>20 3553.906</td>
<td>3638.357</td>
<td>-1756.953</td>
</tr>
<tr>
<td>z[[2]]</td>
<td>2</td>
<td>20 3553.906</td>
<td>3638.357</td>
<td>-1756.953</td>
</tr>
<tr>
<td>z[[3]]</td>
<td>3</td>
<td>20 3587.974</td>
<td>3672.426</td>
<td>-1773.987</td>
</tr>
<tr>
<td>z[[4]]</td>
<td>4</td>
<td>20 3575.079</td>
<td>3659.531</td>
<td>-1767.540</td>
</tr>
<tr>
<td>z[[5]]</td>
<td>5</td>
<td>20 3621.081</td>
<td>3705.532</td>
<td>-1790.540</td>
</tr>
<tr>
<td>z[[6]]</td>
<td>6</td>
<td>20 3570.958</td>
<td>3655.409</td>
<td>-1765.479</td>
</tr>
</tbody>
</table>

AIC computed above is set up so that smaller values are best. From this the continuous-time AR1 and exponential structures
are tied for the best. For the remainder of the analysis use corCAR1, using Gls.

\[
a \leftarrow \text{Gls}(\text{twstrs} \sim \text{treat} \times \text{rcs(week, 3)} + \text{rcs(twstrs0, 3)} + \\
\text{rcs(age, 4)} \times \text{sex}, \text{data=both}, \\
\text{correlation=corCAR1(form=~week | uid)})
\]

Generalized Least Squares Fit by REML

\[
\text{Gls(model = twstrs ~ treat \times \text{rcs(week, 3)} + \text{rcs(twstrs0, 3)} +} \\
\text{rcs(age, 4)} \times \text{sex, data = both, correlation = corCAR1(form = ~week | uid)})
\]

<table>
<thead>
<tr>
<th>Obs</th>
<th>522</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters</td>
<td>108</td>
</tr>
<tr>
<td>(g)</td>
<td>11.334</td>
</tr>
</tbody>
</table>

Log-restricted-likelihood	-1756.95
Model d.f.	17
\(g\)	11.334
\(\sigma\)	8.5917
d.f.	504

| \(\hat{\beta}\) | S.E. | \(t\) | Pr(>|\(t\)|) |
|----------------|------|--------|--------|
| Intercept | -0.3093 | 11.8804 | -0.03 | 0.9792 |
| treat=5000U | 0.4344 | 2.5962 | 0.17 | 0.8672 |
| treat=Placebo | 7.1433 | 2.6133 | 2.73 | 0.0065 |
| week | 0.2879 | 0.2973 | 0.97 | 0.3334 |
| week' | 0.7313 | 0.3078 | 2.38 | 0.0179 |
| twstrs0 | 0.8071 | 0.1449 | 5.57 | <0.0001 |
| twstrs0' | 0.2129 | 0.1795 | 1.19 | 0.2360 |
| age | -0.1178 | 0.2346 | -0.50 | 0.6158 |
| age' | 0.6968 | 0.6484 | 1.07 | 0.2830 |
| age`` | -3.4018 | 2.5599 | -1.33 | 0.1845 |
| sex=M | 24.2802 | 18.6208 | 1.30 | 0.1929 |
| treat=5000U \times week | 0.0745 | 0.4221 | 0.18 | 0.8599 |
| treat=Placebo \times week | -0.1256 | 0.4243 | -0.30 | 0.7674 |
| treat=5000U \times week' | -0.4389 | 0.4363 | -1.01 | 0.3149 |
| treat=Placebo \times week' | -0.6459 | 0.4381 | -1.47 | 0.1411 |
| age \times sex=M | -0.5846 | 0.4447 | -1.31 | 0.1892 |
| age' \times sex=M | 1.4652 | 1.2388 | 1.18 | 0.2375 |
| age`` \times sex=M | -4.0338 | 4.8123 | -0.84 | 0.4023 |

Correlation Structure: Continuous AR(1)

Formula: ~week | uid

Parameter estimate(s):

\[
\text{Phi}
\]

0.8666689
\(\hat{\rho} = 0.8672 \), the estimate of the correlation between two measurements taken one week apart on the same subject. The estimated correlation for measurements 10 weeks apart is \(0.8672^{10} = 0.24 \).

\[
v \leftarrow \text{Variogram}(a, \text{form} = \sim \text{week} \mid \text{uid})
\]

\[\text{plot}(v) \quad \# \text{Figure 7.4}\]

![Variogram](image)

Figure 7.4: Variogram, with assumed correlation pattern superimposed

Check constant variance and normality assumptions:

\[
\begin{align*}
\text{both}\$\text{resid} & \leftarrow r \leftarrow \text{resid}(a); \text{both}\$\text{fitted} \leftarrow \text{fitted}(a) \\
\text{yl} & \leftarrow \text{ylab('Residuals')} \\
\text{p1} & \leftarrow \text{ggplot}(\text{both}, \text{aes}(x=\text{fitted}, y=\text{resid})) + \text{geom_point()} + \\
& \quad \text{facet_grid(}\sim \text{treat}) + \text{yl} \\
\text{p2} & \leftarrow \text{ggplot}(\text{both}, \text{aes}(x=\text{twstrs0}, y=\text{resid})) + \text{geom_point()} + \text{yl} \\
\text{p3} & \leftarrow \text{ggplot}(\text{both}, \text{aes}(x=\text{week}, y=\text{resid})) + \text{yl} + \text{ylim(-20,20)} + \\
& \quad \text{stat_summary(}\text{fun.data} = \text{"mean_sdl"}, \text{geom}\='\text{smooth}') \\
\text{p4} & \leftarrow \text{ggplot}(\text{both}, \text{aes}(\text{sample}=\text{resid})) + \text{stat_qq()} + \\
& \quad \text{geom_abline(}\text{intercept} = \text{mean}(r), \text{slope} = \text{sd}(r)) + \text{yl}
\end{align*}
\]

\text{gridExtra::grid.arrange(p1, p2, p3, p4, ncol=2) \quad \# \text{Figure 7.5}}

Now get hypothesis tests, estimates, and graphically interpret the model.

\text{anova}(a)
Figure 7.5: Three residual plots to check for absence of trends in central tendency and in variability. Upper right panel shows the baseline score on the x-axis. Bottom left panel shows the mean $\pm 2 \times$ SD. Bottom right panel is the QQ plot for checking normality of residuals from the GLS fit.
Wald Statistics for twstrs

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>d.f.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>treat (Factor+Higher Order Factors)</td>
<td>22.11</td>
<td>6</td>
<td>0.0012</td>
</tr>
<tr>
<td>All Interactions</td>
<td>14.94</td>
<td>4</td>
<td>0.0048</td>
</tr>
<tr>
<td>week (Factor+Higher Order Factors)</td>
<td>77.27</td>
<td>6</td>
<td><0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>14.94</td>
<td>4</td>
<td>0.0048</td>
</tr>
<tr>
<td>Nonlinear (Factor+Higher Order Factors)</td>
<td>6.61</td>
<td>3</td>
<td>0.0852</td>
</tr>
<tr>
<td>twstrs0</td>
<td>233.83</td>
<td>2</td>
<td><0.0001</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>1.41</td>
<td>1</td>
<td>0.2354</td>
</tr>
<tr>
<td>age (Factor+Higher Order Factors)</td>
<td>9.68</td>
<td>6</td>
<td>0.1388</td>
</tr>
<tr>
<td>All Interactions</td>
<td>4.86</td>
<td>3</td>
<td>0.1826</td>
</tr>
<tr>
<td>Nonlinear (Factor+Higher Order Factors)</td>
<td>7.59</td>
<td>4</td>
<td>0.1077</td>
</tr>
<tr>
<td>sex (Factor+Higher Order Factors)</td>
<td>5.67</td>
<td>4</td>
<td>0.2252</td>
</tr>
<tr>
<td>All Interactions</td>
<td>4.86</td>
<td>3</td>
<td>0.1826</td>
</tr>
<tr>
<td>treat \times week (Factor+Higher Order Factors)</td>
<td>14.94</td>
<td>4</td>
<td>0.0048</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>2.27</td>
<td>2</td>
<td>0.3208</td>
</tr>
<tr>
<td>Nonlinear Interaction : f(A,B) vs. AB</td>
<td>2.27</td>
<td>2</td>
<td>0.3208</td>
</tr>
<tr>
<td>age \times sex (Factor+Higher Order Factors)</td>
<td>4.86</td>
<td>3</td>
<td>0.1826</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>3.76</td>
<td>2</td>
<td>0.1526</td>
</tr>
<tr>
<td>Nonlinear Interaction : f(A,B) vs. AB</td>
<td>3.76</td>
<td>2</td>
<td>0.1526</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>15.03</td>
<td>8</td>
<td>0.0586</td>
</tr>
<tr>
<td>TOTAL INTERACTION</td>
<td>19.75</td>
<td>7</td>
<td>0.0061</td>
</tr>
<tr>
<td>TOTAL NONLINEAR + INTERACTION</td>
<td>28.54</td>
<td>11</td>
<td>0.0027</td>
</tr>
<tr>
<td>TOTAL</td>
<td>322.98</td>
<td>17</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

```r
plot(anova(a))  # Figure 7.6

ylm ← ylim(25, 60)
p1 ← ggplot(Predict(a, week, treat, conf.int=FALSE),
             adj.subtitle=FALSE, legend.position='top') + ylm
p2 ← ggplot(Predict(a, twstrs0), adj.subtitle=FALSE) + ylm
p3 ← ggplot(Predict(a, age, sex), adj.subtitle=FALSE,
             legend.position='top') + ylm
gridExtra::grid.arrange(p1, p2, p3, ncol=2)  # Figure 7.7

summary(a)  # Shows for week 8
```

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
<th>Δ</th>
<th>Effect</th>
<th>S.E.</th>
<th>Lower 0.95</th>
<th>Upper 0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>week</td>
<td>4</td>
<td>12</td>
<td>8</td>
<td>6.69100</td>
<td>1.1057</td>
<td>4.5238</td>
<td>8.8582</td>
</tr>
<tr>
<td>twstrs0</td>
<td>39</td>
<td>53</td>
<td>14</td>
<td>13.55100</td>
<td>0.88618</td>
<td>11.8140</td>
<td>15.2880</td>
</tr>
<tr>
<td>age</td>
<td>46</td>
<td>65</td>
<td>19</td>
<td>2.50270</td>
<td>2.05140</td>
<td>-1.5179</td>
<td>6.5234</td>
</tr>
<tr>
<td>treat — 5000U:10000U</td>
<td>1</td>
<td>2</td>
<td></td>
<td>0.59167</td>
<td>1.99830</td>
<td>-3.3249</td>
<td>4.5083</td>
</tr>
<tr>
<td>treat — Placebo:10000U</td>
<td>1</td>
<td>3</td>
<td></td>
<td>5.49300</td>
<td>2.00430</td>
<td>1.5647</td>
<td>9.4212</td>
</tr>
<tr>
<td>sex — M:F</td>
<td>1</td>
<td>2</td>
<td></td>
<td>-1.08500</td>
<td>1.77860</td>
<td>-4.5711</td>
<td>2.4011</td>
</tr>
</tbody>
</table>
Figure 7.6: Results of \texttt{anova.rms} from generalized least squares fit with continuous time AR1 correlation structure.

Figure 7.7: Estimated effects of time, baseline TWSTRS, age, and sex.
To get results for week 8 for a different reference group
for treatment, use e.g. summary(a, week=4, treat='Placebo')

Compare low dose with placebo, separately at each time
k1 ← contrast(a, list(week=c(2,4,8,12,16), treat='5000 U'),
 list(week=c(2,4,8,12,16), treat='Placebo'))
options(width=80)
print(k1, digits=3)

| week | twstrs0 | age | sex | Contrast | S.E. | Lower | Upper | Z | Pr(>|z|) |
|------|---------|-----|-----|----------|------|-------|-------|---|---------|
| 1 | 2 | 46 | 56 | F | -6.31| -10.43| -2.186| 3.00| 0.0027 |
| 2 | 4 | 46 | 56 | F | -5.91| -9.47 | -2.349| -3.25| 0.0011 |
| 3 | 8 | 46 | 56 | F | -4.90| -8.85 | -0.953| -2.43| 0.0150 |
| 4* | 12 | 46 | 56 | F | -3.07| -6.49 | 0.361 | -1.75| 0.0795 |
| 5* | 16 | 46 | 56 | F | -1.02| -5.14 | 3.092 | -0.49| 0.6260 |

Redundant contrasts are denoted by *
Confidence intervals are 0.95 individual intervals

Compare high dose with placebo
k2 ← contrast(a, list(week=c(2,4,8,12,16), treat='10000 U'),
 list(week=c(2,4,8,12,16), treat='Placebo'))
print(k2, digits=3)

| week | twstrs0 | age | sex | Contrast | S.E. | Lower | Upper | Z | Pr(>|z|) |
|------|---------|-----|-----|----------|------|-------|-------|---|---------|
| 1 | 2 | 46 | 56 | F | -6.89| -10.96| -2.83 | -3.32| 0.0009 |
| 2 | 4 | 46 | 56 | F | -6.64| -10.15| -3.13 | -3.70| 0.0002 |
| 3 | 8 | 46 | 56 | F | -5.49| -9.42 | -1.56 | -2.74| 0.0061 |
| 4* | 12 | 46 | 56 | F | -1.76| -5.17 | 1.65 | -1.01| 0.3109 |
| 5* | 16 | 46 | 56 | F | 2.62 | 6.71 | 1.25 | 0.2099| |

Redundant contrasts are denoted by *
Confidence intervals are 0.95 individual intervals

k1 ← as.data.frame(k1[,c('week', 'Contrast', 'Lower', 'Upper')])
p1 ← ggplot(k1, aes(x=week, y=Contrast)) + geom_point() +
 geom_line() + ylab('Low Dose - Placebo') +
 geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0)
k2 ← as.data.frame(k2[,c('week', 'Contrast', 'Lower', 'Upper')])
p2 ← ggplot(k2, aes(x=week, y=Contrast)) + geom_point() +
 geom_line() + ylab('High Dose - Placebo') +
 geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0)
ggridExtra::grid.arrange(p1, p2, ncol=2) # Figure 7.8

Although multiple d.f. tests such as total treatment effects or
treatment × time interaction tests are comprehensive, their in-
creased degrees of freedom can dilute power. In a treatment
comparison, treatment contrasts at the last time point (single
d.f. tests) are often of major interest. Such contrasts are in-
formed by all the measurements made by all subjects (up until
dropout times) when a smooth time trend is assumed.

```r
n <- nomogram(a, age=c(seq(20, 80, by=10), 85))
plot(n, cex.axis=.55, cex.var=.8, lmgp=.25)  # Figure 7.9
```
Figure 7.9: Nomogram from GLS fit. Second axis is the baseline score.
Bayesian Proportional Odds Random Effects Model

- Develop a y-transformation invariant longitudinal model
- Proportional odds model with no grouping of TWSTRS scores
- Bayesian random effects model
- Random effects Gaussian with exponential prior distribution for its SD, with mean 1.0
- Compound symmetry correlation structure
- Demonstrates a large amount of patient-to-patient intercept variability

```r
require(rmsb)

stanSet() # in ~/.Rprofile - sets options(mc.cores =)

bpo ← blrm(twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) +
           rcs(age, 4) * sex + cluster(uid), data=both, file='bpo.rds')

# file= means that after the first time the model is run, it will not
# be re-run unless the data, fitting options, or underlying Stan code change
stanDx(bpo)

Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size
and Rhat is the potential scale reduction factor on split chains
(at convergence, Rhat=1)

<table>
<thead>
<tr>
<th></th>
<th>n_eff</th>
<th>Rhat</th>
</tr>
</thead>
<tbody>
<tr>
<td>y&gt;=7</td>
<td>1760</td>
<td>1.003</td>
</tr>
<tr>
<td>y&gt;=9</td>
<td>1569</td>
<td>1.004</td>
</tr>
<tr>
<td>y&gt;=10</td>
<td>1182</td>
<td>1.007</td>
</tr>
<tr>
<td>y&gt;=11</td>
<td>1005</td>
<td>1.009</td>
</tr>
<tr>
<td>$y \geq 13$</td>
<td>925 1.009</td>
<td></td>
</tr>
<tr>
<td>$y \geq 14$</td>
<td>832 1.011</td>
<td></td>
</tr>
<tr>
<td>$y \geq 15$</td>
<td>824 1.011</td>
<td></td>
</tr>
<tr>
<td>$y \geq 16$</td>
<td>757 1.013</td>
<td></td>
</tr>
<tr>
<td>$y \geq 17$</td>
<td>657 1.016</td>
<td></td>
</tr>
<tr>
<td>$y \geq 18$</td>
<td>601 1.017</td>
<td></td>
</tr>
<tr>
<td>$y \geq 19$</td>
<td>593 1.017</td>
<td></td>
</tr>
<tr>
<td>$y \geq 20$</td>
<td>577 1.017</td>
<td></td>
</tr>
<tr>
<td>$y \geq 21$</td>
<td>550 1.019</td>
<td></td>
</tr>
<tr>
<td>$y \geq 22$</td>
<td>493 1.020</td>
<td></td>
</tr>
<tr>
<td>$y \geq 23$</td>
<td>452 1.021</td>
<td></td>
</tr>
<tr>
<td>$y \geq 24$</td>
<td>431 1.024</td>
<td></td>
</tr>
<tr>
<td>$y \geq 25$</td>
<td>408 1.026</td>
<td></td>
</tr>
<tr>
<td>$y \geq 26$</td>
<td>396 1.028</td>
<td></td>
</tr>
<tr>
<td>$y \geq 27$</td>
<td>395 1.026</td>
<td></td>
</tr>
<tr>
<td>$y \geq 28$</td>
<td>384 1.026</td>
<td></td>
</tr>
<tr>
<td>$y \geq 29$</td>
<td>371 1.029</td>
<td></td>
</tr>
<tr>
<td>$y \geq 30$</td>
<td>355 1.029</td>
<td></td>
</tr>
<tr>
<td>$y \geq 31$</td>
<td>355 1.027</td>
<td></td>
</tr>
<tr>
<td>$y \geq 32$</td>
<td>347 1.028</td>
<td></td>
</tr>
<tr>
<td>$y \geq 33$</td>
<td>343 1.025</td>
<td></td>
</tr>
<tr>
<td>$y \geq 34$</td>
<td>347 1.024</td>
<td></td>
</tr>
<tr>
<td>$y \geq 35$</td>
<td>357 1.022</td>
<td></td>
</tr>
<tr>
<td>$y \geq 36$</td>
<td>353 1.024</td>
<td></td>
</tr>
<tr>
<td>$y \geq 37$</td>
<td>357 1.024</td>
<td></td>
</tr>
<tr>
<td>$y \geq 38$</td>
<td>360 1.023</td>
<td></td>
</tr>
<tr>
<td>$y \geq 39$</td>
<td>364 1.022</td>
<td></td>
</tr>
<tr>
<td>$y \geq 40$</td>
<td>370 1.022</td>
<td></td>
</tr>
<tr>
<td>$y \geq 41$</td>
<td>372 1.023</td>
<td></td>
</tr>
<tr>
<td>$y \geq 42$</td>
<td>384 1.022</td>
<td></td>
</tr>
<tr>
<td>$y \geq 43$</td>
<td>399 1.022</td>
<td></td>
</tr>
<tr>
<td>$y \geq 44$</td>
<td>424 1.020</td>
<td></td>
</tr>
<tr>
<td>$y \geq 45$</td>
<td>440 1.020</td>
<td></td>
</tr>
<tr>
<td>$y \geq 46$</td>
<td>474 1.018</td>
<td></td>
</tr>
<tr>
<td>$y \geq 47$</td>
<td>521 1.016</td>
<td></td>
</tr>
<tr>
<td>$y \geq 48$</td>
<td>541 1.017</td>
<td></td>
</tr>
<tr>
<td>$y \geq 49$</td>
<td>569 1.015</td>
<td></td>
</tr>
<tr>
<td>$y \geq 50$</td>
<td>652 1.013</td>
<td></td>
</tr>
<tr>
<td>$y \geq 51$</td>
<td>733 1.011</td>
<td></td>
</tr>
<tr>
<td>$y \geq 52$</td>
<td>802 1.011</td>
<td></td>
</tr>
<tr>
<td>$y \geq 53$</td>
<td>870 1.010</td>
<td></td>
</tr>
<tr>
<td>$y \geq 54$</td>
<td>956 1.009</td>
<td></td>
</tr>
<tr>
<td>$y \geq 55$</td>
<td>1065 1.006</td>
<td></td>
</tr>
<tr>
<td>$y \geq 56$</td>
<td>1121 1.006</td>
<td></td>
</tr>
<tr>
<td>$y \geq 57$</td>
<td>1253 1.005</td>
<td></td>
</tr>
<tr>
<td>$y \geq 58$</td>
<td>1370 1.003</td>
<td></td>
</tr>
<tr>
<td>$y \geq 59$</td>
<td>1458 1.002</td>
<td></td>
</tr>
<tr>
<td>$y \geq 60$</td>
<td>1849 1.002</td>
<td></td>
</tr>
<tr>
<td>$y \geq 61$</td>
<td>2014 1.002</td>
<td></td>
</tr>
<tr>
<td>$y \geq 62$</td>
<td>2093 1.001</td>
<td></td>
</tr>
<tr>
<td>$y \geq 63$</td>
<td>2181 1.001</td>
<td></td>
</tr>
<tr>
<td>$y \geq 64$</td>
<td>2130 1.001</td>
<td></td>
</tr>
<tr>
<td>$y \geq 65$</td>
<td>2291 1.000</td>
<td></td>
</tr>
<tr>
<td>$y \geq 66$</td>
<td>2471 1.000</td>
<td></td>
</tr>
<tr>
<td>$y \geq 67$</td>
<td>2524 1.000</td>
<td></td>
</tr>
<tr>
<td>$y \geq 68$</td>
<td>2546 1.000</td>
<td></td>
</tr>
<tr>
<td>$y \geq 71$</td>
<td>2621 1.001</td>
<td></td>
</tr>
</tbody>
</table>
Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.044 for Intercepts

```r
blrm(formula = twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) + rcs(age, 4) * sex + cluster(uid), data = both, file = "bpo.rds")
```

<table>
<thead>
<tr>
<th></th>
<th>Mixed Calibration/ Discrimination Indexes</th>
<th>Discrimination Indexes</th>
<th>Rank Discrim. Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>522</td>
<td>LOO log L -1745.98±23.68</td>
<td>g 3.828 [3.286, 4.402]</td>
</tr>
<tr>
<td>Draws</td>
<td>4000</td>
<td>LOO IC 3491.97±47.36</td>
<td>g_p 0.435 [0.416, 0.448]</td>
</tr>
<tr>
<td>Chains</td>
<td>4</td>
<td>Effective p 178.4±7.83</td>
<td>EV 0.592 [0.541, 0.645]</td>
</tr>
<tr>
<td>p</td>
<td>17</td>
<td>B 0.149 [0.138, 0.159]</td>
<td>v 11.419 [8.304, 15.017]</td>
</tr>
<tr>
<td>Cluster on uid</td>
<td></td>
<td>Clusters 109</td>
<td>vp 0.148 [0.134, 0.16]</td>
</tr>
<tr>
<td>Clusters</td>
<td>109</td>
<td>σγ 1.8908 [1.5399, 2.2828]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>Mean β</th>
<th>Median β</th>
<th>S.E.</th>
<th>Lower</th>
<th>Upper</th>
<th>Pr(β &gt; 0)</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>y≥7</td>
<td>-2.1766</td>
<td>-2.2287</td>
<td>4.1157</td>
<td>-10.1514</td>
<td>5.9119</td>
<td>0.2992</td>
<td>1.03</td>
</tr>
<tr>
<td>y≥9</td>
<td>-3.1869</td>
<td>-3.2609</td>
<td>4.0086</td>
<td>-10.5348</td>
<td>5.1551</td>
<td>0.2130</td>
<td>1.04</td>
</tr>
<tr>
<td>y≥10</td>
<td>-4.3653</td>
<td>-4.3480</td>
<td>3.9282</td>
<td>-12.0578</td>
<td>3.4376</td>
<td>0.1302</td>
<td>1.02</td>
</tr>
<tr>
<td>y≥11</td>
<td>-4.8021</td>
<td>-4.7881</td>
<td>3.9131</td>
<td>-12.7389</td>
<td>2.5489</td>
<td>0.1082</td>
<td>1.04</td>
</tr>
<tr>
<td>y≥13</td>
<td>-5.0057</td>
<td>-5.0119</td>
<td>3.9117</td>
<td>-12.8507</td>
<td>2.3876</td>
<td>0.1020</td>
<td>1.03</td>
</tr>
<tr>
<td>y≥14</td>
<td>-5.3621</td>
<td>-5.3583</td>
<td>3.9134</td>
<td>-13.0756</td>
<td>2.1929</td>
<td>0.0880</td>
<td>1.02</td>
</tr>
<tr>
<td>y≥15</td>
<td>-5.6728</td>
<td>-5.6477</td>
<td>3.9120</td>
<td>-13.6068</td>
<td>1.7705</td>
<td>0.0762</td>
<td>1.01</td>
</tr>
<tr>
<td>y≥16</td>
<td>-6.0588</td>
<td>-6.0563</td>
<td>3.9166</td>
<td>-13.9082</td>
<td>1.4526</td>
<td>0.0628</td>
<td>1.01</td>
</tr>
<tr>
<td>y≥17</td>
<td>-6.8684</td>
<td>-6.8575</td>
<td>3.9195</td>
<td>-14.4646</td>
<td>0.9032</td>
<td>0.0430</td>
<td>1.02</td>
</tr>
<tr>
<td>y≥18</td>
<td>-7.1228</td>
<td>-7.1011</td>
<td>3.9143</td>
<td>-14.5805</td>
<td>0.7661</td>
<td>0.0367</td>
<td>1.02</td>
</tr>
<tr>
<td>y≥19</td>
<td>-7.4118</td>
<td>-7.3881</td>
<td>3.9149</td>
<td>-14.9704</td>
<td>0.4064</td>
<td>0.0310</td>
<td>1.01</td>
</tr>
<tr>
<td>y≥20</td>
<td>-7.6074</td>
<td>-7.5594</td>
<td>3.9137</td>
<td>-15.2362</td>
<td>0.0963</td>
<td>0.0275</td>
<td>1.02</td>
</tr>
<tr>
<td>y≥21</td>
<td>-7.7874</td>
<td>-7.7255</td>
<td>3.9137</td>
<td>-15.1384</td>
<td>0.1638</td>
<td>0.0248</td>
<td>1.02</td>
</tr>
<tr>
<td>y≥22</td>
<td>-8.2022</td>
<td>-8.1798</td>
<td>3.9109</td>
<td>-15.6933</td>
<td>-0.3445</td>
<td>0.0180</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 23$</td>
<td>Mean $\hat{\beta}$</td>
<td>Median $\hat{\beta}$</td>
<td>S.E.</td>
<td>Lower</td>
<td>Upper</td>
<td>Pr($\beta &gt; 0$)</td>
<td>Symmetry</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>-8.4772</td>
<td>-8.4533</td>
<td>3.9120</td>
<td>-15.7727</td>
<td>-0.4267</td>
<td>0.0150</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>$y \geq 24$</td>
<td>-8.7590</td>
<td>-8.7572</td>
<td>3.9149</td>
<td>-16.1055</td>
<td>-0.6939</td>
<td>0.0127</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 25$</td>
<td>-9.0187</td>
<td>-8.9946</td>
<td>3.9154</td>
<td>-16.5415</td>
<td>-1.1603</td>
<td>0.0107</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 26$</td>
<td>-9.4148</td>
<td>-9.3872</td>
<td>3.9145</td>
<td>-16.7518</td>
<td>-1.3684</td>
<td>0.0085</td>
<td>1.04</td>
</tr>
<tr>
<td>$y \geq 27$</td>
<td>-9.7067</td>
<td>-9.7024</td>
<td>3.9150</td>
<td>-17.1118</td>
<td>-1.7369</td>
<td>0.0065</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 28$</td>
<td>-9.9486</td>
<td>-9.9211</td>
<td>3.9155</td>
<td>-17.4259</td>
<td>-2.0012</td>
<td>0.0055</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 29$</td>
<td>-10.1819</td>
<td>-10.1522</td>
<td>3.9153</td>
<td>-18.1714</td>
<td>-2.7561</td>
<td>0.0043</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 30$</td>
<td>-10.4853</td>
<td>-10.4399</td>
<td>3.9170</td>
<td>-17.8904</td>
<td>-2.4764</td>
<td>0.0032</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 31$</td>
<td>-10.7738</td>
<td>-10.7329</td>
<td>3.9178</td>
<td>-18.1240</td>
<td>-2.7320</td>
<td>0.0022</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 32$</td>
<td>-10.8900</td>
<td>-10.8624</td>
<td>3.9178</td>
<td>-18.2656</td>
<td>-2.8608</td>
<td>0.0022</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 33$</td>
<td>-11.2566</td>
<td>-11.2313</td>
<td>3.9207</td>
<td>-18.6004</td>
<td>-3.2128</td>
<td>0.0022</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 34$</td>
<td>-11.5653</td>
<td>-11.5192</td>
<td>3.9224</td>
<td>-18.9888</td>
<td>-3.6146</td>
<td>0.0018</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 35$</td>
<td>-11.7877</td>
<td>-11.7622</td>
<td>3.9236</td>
<td>-19.1365</td>
<td>-3.7604</td>
<td>0.0013</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 36$</td>
<td>-12.0338</td>
<td>-12.0038</td>
<td>3.9259</td>
<td>-19.3754</td>
<td>-3.9827</td>
<td>0.0010</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 37$</td>
<td>-12.3111</td>
<td>-12.2657</td>
<td>3.9272</td>
<td>-19.7920</td>
<td>-4.3857</td>
<td>0.0010</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 38$</td>
<td>-12.5376</td>
<td>-12.5120</td>
<td>3.9281</td>
<td>-20.4359</td>
<td>-5.0062</td>
<td>0.0010</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 39$</td>
<td>-12.7840</td>
<td>-12.7388</td>
<td>3.9314</td>
<td>-20.3261</td>
<td>-4.9190</td>
<td>0.0010</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 40$</td>
<td>-12.9686</td>
<td>-12.9408</td>
<td>3.9309</td>
<td>-20.8457</td>
<td>-5.4301</td>
<td>0.0010</td>
<td>1.01</td>
</tr>
<tr>
<td>$y \geq 41$</td>
<td>-13.1525</td>
<td>-13.1185</td>
<td>3.9327</td>
<td>-20.6746</td>
<td>-5.2604</td>
<td>0.0010</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 42$</td>
<td>-13.4765</td>
<td>-13.4597</td>
<td>3.9345</td>
<td>-20.9059</td>
<td>-5.4771</td>
<td>0.0010</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 43$</td>
<td>-13.7044</td>
<td>-13.6640</td>
<td>3.9359</td>
<td>-21.2206</td>
<td>-5.7800</td>
<td>0.0010</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 44$</td>
<td>-14.0447</td>
<td>-13.9972</td>
<td>3.9384</td>
<td>-21.6970</td>
<td>-6.2459</td>
<td>0.0008</td>
<td>1.03</td>
</tr>
<tr>
<td>$y \geq 45$</td>
<td>-14.3653</td>
<td>-14.3071</td>
<td>3.9386</td>
<td>-21.9644</td>
<td>-6.5455</td>
<td>0.0000</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 46$</td>
<td>-14.6657</td>
<td>-14.6244</td>
<td>3.9412</td>
<td>-22.3029</td>
<td>-6.8496</td>
<td>0.0000</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 47$</td>
<td>-15.0812</td>
<td>-15.0211</td>
<td>3.9443</td>
<td>-22.7833</td>
<td>-7.3329</td>
<td>0.0000</td>
<td>1.02</td>
</tr>
<tr>
<td>$y \geq 48$</td>
<td>-15.3706</td>
<td>-15.3139</td>
<td>3.9455</td>
<td>-23.0209</td>
<td>-7.5663</td>
<td>0.0000</td>
<td>1.01</td>
</tr>
</tbody>
</table>
## Table 7.1: Summary of Model Coefficients

<table>
<thead>
<tr>
<th>$y \geq 49$</th>
<th>$y \geq 50$</th>
<th>$y \geq 51$</th>
<th>$y \geq 52$</th>
<th>$y \geq 53$</th>
<th>$y \geq 54$</th>
<th>$y \geq 55$</th>
<th>$y \geq 56$</th>
<th>$y \geq 57$</th>
<th>$y \geq 58$</th>
<th>$y \geq 59$</th>
<th>$y \geq 60$</th>
<th>$y \geq 61$</th>
<th>$y \geq 62$</th>
<th>$y \geq 63$</th>
<th>$y \geq 64$</th>
<th>$y \geq 65$</th>
<th>$y \geq 66$</th>
<th>$y \geq 67$</th>
<th>$y \geq 68$</th>
<th>$y \geq 69$</th>
<th>$y \geq 70$</th>
<th>$y \geq 71$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr($\beta &gt; 0$)</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Symmetry</td>
<td>1.00</td>
<td>1.01</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.01</td>
<td>1.01</td>
<td>1.02</td>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td></td>
</tr>
</tbody>
</table>

Relative Explained Variation for $\textit{twstrs}$. Approximate total model Wald $\chi^2$ used in denominators of REV:252.8 [208.1, 328.8].

```r
a <- anova(bpo)
a
```
Show the final graphic (high dose:placebo contrast as function of time)

Intervals are 0.95 highest posterior density intervals

$y$-axis: log-odds ratio
wks ← c(2, 4, 8, 12, 16)
k ← contrast(bpo, list(week=wks, treat='10000U'),
        list(week=wks, treat='Placebo'),
        cnames=paste('Week', wks))
k

<table>
<thead>
<tr>
<th>week</th>
<th>Contrast</th>
<th>S.E.</th>
<th>Lower</th>
<th>Upper</th>
<th>Pr(Contrast &gt;0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>-2.2741167</td>
<td>0.6154921</td>
<td>-3.414998</td>
<td>-0.9800939</td>
<td>0.0000</td>
</tr>
<tr>
<td>Week 4</td>
<td>-2.1625817</td>
<td>0.5502386</td>
<td>-3.181820</td>
<td>-1.0091711</td>
<td>0.0000</td>
</tr>
<tr>
<td>Week 8</td>
<td>-1.8016186</td>
<td>0.6029870</td>
<td>-2.951032</td>
<td>-0.6042740</td>
<td>0.0013</td>
</tr>
<tr>
<td>Week 12</td>
<td>-0.8890838</td>
<td>0.5428456</td>
<td>-1.924157</td>
<td>0.2050322</td>
<td>0.0510</td>
</tr>
<tr>
<td>Week 16</td>
<td>0.1613439</td>
<td>0.6175396</td>
<td>-1.098165</td>
<td>1.3472247</td>
<td>0.6075</td>
</tr>
</tbody>
</table>

Redundant contrasts are denoted by *

Intervals are 0.95 highest posterior density intervals
Contrast is the posterior mean

plot(k)

k ← as.data.frame(k[c('week', 'Contrast', 'Lower', 'Upper'))
ggplot(k, aes(x=week, y=Contrast)) + geom_point() +
geom_line() + ylab('High Dose - Placebo') +
geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0)
For each posterior draw compute the difference in means and get an exact (to within simulation error) 0.95 highest posterior density intervals for these differences.

\[
M \leftarrow \text{Mean}(\text{bpo}) \quad \# \text{ create R function that computes mean } Y \text{ from } X^*b
\]

\[
k \leftarrow \text{contrast}(\text{bpo}, \text{list(week=wks, treat='10000 U')},
\phantom{k \leftarrow \text{contrast}(\text{bpo}, \text{list(week=wks, treat='Placebo')}},
\phantom{k \leftarrow \text{contrast}(\text{bpo}, \text{list(week=wks, treat='Placebo')}},
\phantom{k \leftarrow \text{contrast}(\text{bpo}, \text{list(week=wks, treat='Placebo')}})
\]

\[
\text{plot}(k, \text{which}'\text{diff'}) + \text{theme(legend.position='bottom')}
\]
7.8.4 Bayesian Markov Semiparametric Model

- First-order Markov model

- Serial correlation induced by Markov model is similar to AR(1) which we already know fits these data

- Markov model is more likely to fit the data than the random effects model, which induces a compound symmetry correlation structure

- Models state transitions
• PO model at each visit, with Y from previous visit conditioned upon just like any covariate

• Need to uncondition (marginalize) on previous Y to get the time-response profile we usually need

• Semiparametric model is especially attractive because one can easily “uncondition” a discrete Y model, and the distribution of Y for control subjects can be any shape

• Let measurement times be \( t_1, t_2, \ldots, t_m \), and the measurement for a subject at time \( t \) be denoted \( Y(t) \)

• First-order Markov model:

\[
\Pr(Y(t_i) \geq y | X, Y(t_{i-1})) = \expit(\alpha_y + X\beta + g(Y(t_{i-1}), t_i, t_i - t_{i-1}))
\]

• \( g \) involves any number of regression coefficients for a main effect of \( t \), the main effect of time gap \( t_i - t_{i-1} \) if this is not collinear with absolute time, a main effect of the previous state, and interactions between these

• Examples of how the previous state may be modeled in \( g \):
  – linear in numeric codes for \( Y \)
  – spline function in same
  – discontinuous bi-linear relationship where there is a slope
for in-hospital outcome severity, a separate slope for outpatient outcome severity, and an intercept jump at the transition from inpatient to outpatient (or vice versa)

- Markov model is quite flexible in handling time trends and serial correlation patterns
- Can allow for irregular measurement times: hbiostat.org/stat/irreg.html

Fit the model and run standard Stan diagnostics.

```r
Create a new variable to hold previous value of Y for the subject
For week 2, previous value is the baseline value
setDT(both, key=c('uid', 'week'))
both[, ptwstrs := shift(twstrs), by=uid]
both[week == 2, ptwstrs := twstrs0]
dd ← datadist(both)
bmark ← blrm(twstrs ~ treat * rcs(week, 3) + rcs(ptwstrs, 4) +
 rcs(age, 4) * sex,
 data=both, file='bmark.rds')

When adding partial PO terms for week and ptwstrs, z=-1.8, 5.04
stanDx(bmark)
```

Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1)

<table>
<thead>
<tr>
<th></th>
<th>n_eff</th>
<th>Rhat</th>
</tr>
</thead>
<tbody>
<tr>
<td>y&gt;=7</td>
<td>3933</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=9</td>
<td>5783</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=10</td>
<td>5257</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=11</td>
<td>5262</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=13</td>
<td>4668</td>
<td>0.999</td>
</tr>
<tr>
<td>y&gt;=14</td>
<td>4432</td>
<td>0.999</td>
</tr>
<tr>
<td>y&gt;=15</td>
<td>4721</td>
<td>0.999</td>
</tr>
<tr>
<td>y&gt;=16</td>
<td>4555</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=17</td>
<td>4002</td>
<td>0.999</td>
</tr>
<tr>
<td>y&gt;=18</td>
<td>3652</td>
<td>0.999</td>
</tr>
<tr>
<td>y&gt;=19</td>
<td>3663</td>
<td>0.999</td>
</tr>
<tr>
<td>y&gt;=20</td>
<td>3400</td>
<td>0.999</td>
</tr>
<tr>
<td>y&gt;=21</td>
<td>3521</td>
<td>0.999</td>
</tr>
<tr>
<td>y&gt;=22</td>
<td>3777</td>
<td>0.999</td>
</tr>
<tr>
<td>y&gt;=23</td>
<td>3692</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>y &gt;= 24</td>
<td>3734</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 25</td>
<td>3945</td>
<td>0.999</td>
</tr>
<tr>
<td>y &gt;= 26</td>
<td>3756</td>
<td>0.999</td>
</tr>
<tr>
<td>y &gt;= 27</td>
<td>3622</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 28</td>
<td>3690</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 29</td>
<td>3551</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 30</td>
<td>3444</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 31</td>
<td>3259</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 32</td>
<td>3613</td>
<td>0.999</td>
</tr>
<tr>
<td>y &gt;= 33</td>
<td>4222</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 34</td>
<td>4621</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 35</td>
<td>4725</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 36</td>
<td>5220</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 37</td>
<td>5384</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 38</td>
<td>5732</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 39</td>
<td>5991</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 40</td>
<td>6102</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 41</td>
<td>6332</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 42</td>
<td>6378</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 43</td>
<td>6555</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 44</td>
<td>7240</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 45</td>
<td>7492</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 46</td>
<td>6781</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 47</td>
<td>6324</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 48</td>
<td>6321</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 49</td>
<td>5792</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 50</td>
<td>5606</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 51</td>
<td>5400</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 52</td>
<td>5530</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 53</td>
<td>5254</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 54</td>
<td>5268</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 55</td>
<td>5061</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 56</td>
<td>4783</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 57</td>
<td>4759</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 58</td>
<td>5064</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 59</td>
<td>5103</td>
<td>1.001</td>
</tr>
<tr>
<td>y &gt;= 60</td>
<td>5137</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 61</td>
<td>5471</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 62</td>
<td>5419</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 63</td>
<td>5187</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 64</td>
<td>5392</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= 65</td>
<td>5339</td>
<td>1.001</td>
</tr>
<tr>
<td>y &gt;= 66</td>
<td>5346</td>
<td>1.002</td>
</tr>
<tr>
<td>y &gt;= 67</td>
<td>4516</td>
<td>1.001</td>
</tr>
<tr>
<td>y &gt;= 68</td>
<td>4670</td>
<td>1.001</td>
</tr>
<tr>
<td>y &gt;= 71</td>
<td>4841</td>
<td>1.000</td>
</tr>
<tr>
<td>treat = 5000U</td>
<td>9579</td>
<td>1.000</td>
</tr>
<tr>
<td>treat = Placebo</td>
<td>8212</td>
<td>1.000</td>
</tr>
<tr>
<td>week</td>
<td>6164</td>
<td>0.999</td>
</tr>
<tr>
<td>week’</td>
<td>8498</td>
<td>0.999</td>
</tr>
<tr>
<td>ptwtrstrs</td>
<td>3316</td>
<td>1.000</td>
</tr>
<tr>
<td>ptwtrstrs’</td>
<td>7429</td>
<td>1.000</td>
</tr>
<tr>
<td>ptwtrstrs’’</td>
<td>7112</td>
<td>1.000</td>
</tr>
<tr>
<td>age</td>
<td>6991</td>
<td>1.000</td>
</tr>
<tr>
<td>age’</td>
<td>7712</td>
<td>1.000</td>
</tr>
<tr>
<td>age’’</td>
<td>8219</td>
<td>1.000</td>
</tr>
<tr>
<td>sex = M</td>
<td>8158</td>
<td>1.000</td>
</tr>
</tbody>
</table>
treat = 5000 U * week  8469  1.000  
treat = Placebo * week  8037  1.000  
treat = 5000 U * week'  8265  1.000  
treat = Placebo * week'  8015  0.999  
age * sex = M  8998  0.999  
age' * sex = M  9445  1.000  
age'' * sex = M  8538  0.999  

Note that posterior sampling is much more efficient without random effects.

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.044 for Intercepts

```r
blrm(formula = twstrs ~ treat * rcs(week, 3) + rcs(ptwstrs, 4) +
```
rcs(age, 4) * sex, data = both, file = "bmark.rds")

Frequencies of Missing Values Due to Each Variable

<table>
<thead>
<tr>
<th></th>
<th>twstrs</th>
<th>treat</th>
<th>week</th>
<th>ptwstrs</th>
<th>age</th>
<th>sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mixed Calibration/ Discrimination Indexes</th>
<th>Discrimination Indexes</th>
<th>Rank Discrim. Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>LOO log L -1785.43±22.21</td>
<td>$g$ 3.262 [2.963, 3.535]</td>
<td>$C$ 0.828 [0.826, 0.83]</td>
</tr>
<tr>
<td>Draws</td>
<td>LOO IC 3570.86±44.42</td>
<td>$g_p$ 0.415 [0.401, 0.429]</td>
<td>$D_{xy}$ 0.656 [0.651, 0.661]</td>
</tr>
<tr>
<td>Chains</td>
<td>Effective p 89.27±4.67</td>
<td>EV 0.532 [0.491, 0.571]</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>B 0.117 [0.113, 0.121]</td>
<td>v 8.38 [6.902, 9.796]</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>vp 0.133 [0.123, 0.143]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mode $\hat{\beta}$</th>
<th>Mean $\hat{\beta}$</th>
<th>Median $\hat{\beta}$</th>
<th>S.E.</th>
<th>Lower</th>
<th>Upper</th>
<th>Pr($\beta &gt; 0$)</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>treat=5000U</td>
<td>0.2195</td>
<td>0.2140</td>
<td>0.2139</td>
<td>0.5458</td>
<td>-0.8897</td>
<td>1.2605</td>
<td>0.6542</td>
<td>0.98</td>
</tr>
<tr>
<td>treat=Placebo</td>
<td>1.8281</td>
<td>1.8320</td>
<td>1.8344</td>
<td>0.5801</td>
<td>0.6984</td>
<td>2.9785</td>
<td>0.9990</td>
<td>1.02</td>
</tr>
<tr>
<td>week</td>
<td>0.4858</td>
<td>0.4852</td>
<td>0.4850</td>
<td>0.0826</td>
<td>0.3310</td>
<td>0.6491</td>
<td>1.0000</td>
<td>1.03</td>
</tr>
<tr>
<td>week'</td>
<td>-0.2874</td>
<td>-0.2861</td>
<td>-0.2855</td>
<td>0.0875</td>
<td>-0.4574</td>
<td>-0.1167</td>
<td>0.0010</td>
<td>1.00</td>
</tr>
<tr>
<td>ptwstrs</td>
<td>0.1997</td>
<td>0.2008</td>
<td>0.2010</td>
<td>0.0270</td>
<td>0.1482</td>
<td>0.2539</td>
<td>1.0000</td>
<td>1.02</td>
</tr>
<tr>
<td>ptwstrs'</td>
<td>-0.0625</td>
<td>-0.0655</td>
<td>-0.0649</td>
<td>0.0639</td>
<td>-0.1886</td>
<td>0.0669</td>
<td>0.1498</td>
<td>0.98</td>
</tr>
<tr>
<td>ptwstrs&quot;</td>
<td>0.5338</td>
<td>0.5489</td>
<td>0.5451</td>
<td>0.2558</td>
<td>0.0074</td>
<td>1.0221</td>
<td>0.9848</td>
<td>1.06</td>
</tr>
<tr>
<td>age</td>
<td>-0.0295</td>
<td>-0.0287</td>
<td>-0.0285</td>
<td>0.0303</td>
<td>-0.0878</td>
<td>0.0301</td>
<td>0.1735</td>
<td>0.98</td>
</tr>
<tr>
<td>age'</td>
<td>0.1237</td>
<td>0.1219</td>
<td>0.1215</td>
<td>0.0849</td>
<td>-0.0454</td>
<td>0.2868</td>
<td>0.9240</td>
<td>0.99</td>
</tr>
<tr>
<td>age&quot;</td>
<td>-0.5072</td>
<td>-0.5021</td>
<td>-0.5016</td>
<td>0.3396</td>
<td>-1.1745</td>
<td>0.1535</td>
<td>0.0703</td>
<td>0.98</td>
</tr>
<tr>
<td>sex=M</td>
<td>-0.4593</td>
<td>-0.4728</td>
<td>-0.4209</td>
<td>2.4680</td>
<td>-5.2648</td>
<td>4.4731</td>
<td>0.4182</td>
<td>0.99</td>
</tr>
<tr>
<td>treat=5000U × week</td>
<td>-0.0338</td>
<td>-0.0313</td>
<td>-0.0304</td>
<td>0.1070</td>
<td>-0.2431</td>
<td>0.1710</td>
<td>0.3870</td>
<td>1.02</td>
</tr>
<tr>
<td>treat=Placebo × week</td>
<td>-0.2715</td>
<td>-0.2719</td>
<td>-0.2724</td>
<td>0.1125</td>
<td>-0.4868</td>
<td>-0.0553</td>
<td>0.0088</td>
<td>1.03</td>
</tr>
<tr>
<td>treat=5000U × week'</td>
<td>-0.0342</td>
<td>-0.0374</td>
<td>-0.0385</td>
<td>0.1166</td>
<td>-0.2692</td>
<td>0.1862</td>
<td>0.3815</td>
<td>0.98</td>
</tr>
<tr>
<td>treat=Placebo × week'</td>
<td>0.1195</td>
<td>0.1194</td>
<td>0.1203</td>
<td>0.1210</td>
<td>-0.1208</td>
<td>0.3486</td>
<td>0.8368</td>
<td>0.97</td>
</tr>
<tr>
<td>age × sex=M</td>
<td>0.0111</td>
<td>0.0116</td>
<td>0.0111</td>
<td>0.0594</td>
<td>-0.1059</td>
<td>0.1275</td>
<td>0.5785</td>
<td>1.00</td>
</tr>
<tr>
<td>age' × sex=M</td>
<td>-0.0510</td>
<td>-0.0531</td>
<td>-0.0522</td>
<td>0.1682</td>
<td>-0.3886</td>
<td>0.2759</td>
<td>0.3777</td>
<td>1.04</td>
</tr>
<tr>
<td>age&quot; × sex=M</td>
<td>0.2618</td>
<td>0.2712</td>
<td>0.2610</td>
<td>0.6523</td>
<td>-1.0108</td>
<td>1.5629</td>
<td>0.6577</td>
<td>0.96</td>
</tr>
</tbody>
</table>

a ← anova(bpo)
a

Relative Explained Variation for twstrs. Approximate total model Wald $\chi^2$ used in denominators of REV:252.8 [208, 325.2].
Let’s add subject-level random effects to the model. Smallness of the standard deviation of the random effects provides support for the assumption of conditional independence that we like to make for Markov models and allows us to simplify the model by omitting random effects.
rcs(age, 4) * sex + cluster(uid),
data=both, file='bmarkre.rds')

stanDx(bmarkre)

Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size
and Rhat is the potential scale reduction factor on split chains
(at convergence, Rhat=1)

<table>
<thead>
<tr>
<th>y</th>
<th>n_eff</th>
<th>Rhat</th>
</tr>
</thead>
<tbody>
<tr>
<td>y&gt;=7</td>
<td>2429</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=9</td>
<td>3542</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=10</td>
<td>2851</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=11</td>
<td>2709</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=13</td>
<td>2617</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=14</td>
<td>2451</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=15</td>
<td>2421</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=16</td>
<td>2377</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=17</td>
<td>2105</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=18</td>
<td>1998</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=19</td>
<td>1822</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=20</td>
<td>1757</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=21</td>
<td>1688</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=22</td>
<td>1676</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=23</td>
<td>1675</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=24</td>
<td>1689</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=25</td>
<td>1694</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=26</td>
<td>1659</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=27</td>
<td>1629</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=28</td>
<td>1571</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=29</td>
<td>1580</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=30</td>
<td>1612</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=31</td>
<td>1619</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=32</td>
<td>1669</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=33</td>
<td>1836</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=34</td>
<td>1938</td>
<td>1.001</td>
</tr>
<tr>
<td>y&gt;=35</td>
<td>2038</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=36</td>
<td>2245</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=37</td>
<td>2409</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=38</td>
<td>2477</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=39</td>
<td>2517</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=40</td>
<td>2639</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=41</td>
<td>2831</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=42</td>
<td>2943</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=43</td>
<td>3300</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=44</td>
<td>3718</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=45</td>
<td>3832</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=46</td>
<td>3835</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=47</td>
<td>3884</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=48</td>
<td>3960</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=49</td>
<td>3844</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=50</td>
<td>3728</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=51</td>
<td>3460</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=52</td>
<td>3286</td>
<td>1.000</td>
</tr>
<tr>
<td>y&gt;=53</td>
<td>2899</td>
<td>1.000</td>
</tr>
</tbody>
</table>
CHAPTER 7. MODELING LONGITUDINAL RESPONSES USING GENERALIZED LEAST SQUARES

\begin{verbatim}
y >= 54	2900 1.000
y >= 55	3163 1.000
y >= 56	3036 1.000
y >= 57	2940 1.000
y >= 58	2975 1.000
y >= 59	3109 1.000
y >= 60	3162 1.000
y >= 61	3139 1.000
y >= 62	3041 1.001
y >= 63	2885 1.001
y >= 64	2936 1.001
y >= 65	3284 1.000
y >= 66	3016 1.001
y >= 67	2933 1.001
y >= 68	3097 1.001
y >= 71	3348 1.001
treat = 5000 U	5397 1.000
treat = Placebo	4535 1.000
week	3273 1.000
week’	5366 0.999
ptwstrs	1626 1.001
ptwstrs’	3363 1.000
ptwstrs’’	4682 1.000
age	4341 1.000
age’	4768 1.000
age’’	4236 1.000
sex = M	4157 1.000
treat = 5000 U * week	5433 1.000
treat = Placebo * week	5088 0.999
treat = 5000 U * week’	5185 0.999
treat = Placebo * week’	5109 0.999
age * sex = M	4192 1.000
age’ * sex = M	4566 1.001
age’’ * sex = M	5666 1.000
sigmag	1140 1.001
\end{verbatim}

bmarkre

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.044 for Intercepts

```r
blrm(formula = twstrs ~ treat * rcs(week, 3) + rcs(ptwstrs, 4) +
 rcs(age, 4) * sex + cluster(uid), data = both, file = "bmarkre.rds")
```

Frequencies of Missing Values Due to Each Variable

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>5</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>twstrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>treat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ptwstrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cluster(uid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
The random effects SD is only 0.11 on the logit scale. Also, the standard deviations of all the regression parameter posterior distributions are virtually unchanged with the addition of random effects:

```r
plot(sqrt(diag(vcov(bmark))), sqrt(diag(vcov(bmarkre)))),
     xlab='Posterior SDs in Conditional Independence Markov Model',
     ylab='Posterior SDs in Random Effects Markov Model')
abline(a=0, b=1, col=gray(0.85))
```
So we will use the model omitting random effects.

Show the partial effects of all the predictors, including the effect of the previous measurement of TWSTRS. Also compute high dose:placebo treatment contrasts on these conditional estimates.

\begin{verbatim}
ggplot(Predict(bmark))
ggplot(Predict(bmark, week, treat))
\end{verbatim}
adjusted to: ptwstrs=42 age=56 sex=F

\[
k \leftarrow \text{contrast} (bmark, \text{list}(\text{week}=wks, \text{treat}= '10000U'),
\text{list}(\text{week}=wks, \text{treat}= '\text{Placebo}'),
cnames = \text{paste} ('\text{Week}', wks))
\]

<table>
<thead>
<tr>
<th>week</th>
<th>Contrast</th>
<th>S.E.</th>
<th>Lower</th>
<th>Upper</th>
<th>Pr(Contrast >0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Week 2</td>
<td>-1.2881567</td>
<td>0.3904306</td>
<td>-2.0283753</td>
<td>-0.5065498</td>
<td>0.0003</td>
</tr>
<tr>
<td>2 Week 4</td>
<td>-0.7443446</td>
<td>0.2636565</td>
<td>-1.2614970</td>
<td>-0.2410560</td>
<td>0.0018</td>
</tr>
<tr>
<td>3 Week 8</td>
<td>0.2239069</td>
<td>0.3507381</td>
<td>-0.4624913</td>
<td>0.9211815</td>
<td>0.7382</td>
</tr>
<tr>
<td>4* Week 12</td>
<td>0.7146670</td>
<td>0.2647678</td>
<td>0.2136860</td>
<td>1.2530821</td>
<td>0.9952</td>
</tr>
<tr>
<td>5* Week 16</td>
<td>1.0860543</td>
<td>0.4058400</td>
<td>0.3473830</td>
<td>1.8813078</td>
<td>0.9955</td>
</tr>
</tbody>
</table>

Redundant contrasts are denoted by *

Intervals are 0.95 highest posterior density intervals
Contrast is the posterior mean

\[
\text{plot}(k)
\]

\[
k \leftarrow \text{as.data.frame}(\text{k}[\text{c}('\text{week}', '\text{Contrast}', '\text{Lower}', '\text{Upper}'))
\]

\[
\text{ggplot}(k, \text{aes}(x=\text{week}, y=\text{Contrast})) + \text{geom_point()} +
\text{geom_line()} + \text{ylab('High Dose - Placebo')} +
\text{geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0)}
\]
Using posterior means for parameter values, compute the probability that at a given week \(t_{wstrs} \) will be \(\geq 40 \) when at the previous visit it was 40. Also show the conditional mean \(t_{wstrs} \) when it was 40 at the previous visit.

```r
ex ← ExProb(bmark)
ex40 ← function(lp, ...) ex(lp, y=40, ...)
ggplot(Predict(bmark, week, treat, ptwstrs=40, fun=ex40))
```

```r
ggplot(Predict(bmark, week, treat, ptwstrs=40, fun=Mean(bmark)))
```
Semiparametric models provide not only estimates of tendencies of Y but also estimate the whole distribution of Y.

Estimate the entire conditional distribution of Y at week 12 for high-dose patients having TWSTRS=42 at week 8.

Other covariates set to median/mode.

Use posterior mean of all the cell probabilities.

Also show pointwise 0.95 highest posterior density intervals.

To roughly approximate simultaneous confidence bands make the pointwise limits sum to 1 like the posterior means do.

```r
# Get median/mode for covariates including ptwstrs (TWSTRS in previous visit)
d ← gendata(bmark)
d
```

```
treat week ptwstrs age sex
1 10000U 8 42 56 F
```
- Repeat this showing the variation over 5 posterior draws

```r
p ← predict(bmark, d, type='fitted.ind', posterior.summary='all')
cols ← adjustcolor(1:10, 0.7)
for(i in 1:5) {
  if(i == 1) plot(yvals, p[i, 1, ], type='l', col=cols[1], xlab='TWSTRS', ylab='')
  else lines(yvals, p[i, 1, ], col=cols[i])
}
```
• Turn to marginalized (unconditional on previous twstrs) quantities

• Capitalize on PO model being a multinomial model, just with PO restrictions

• Manipulations of conditional probabilities to get the unconditional probability that twstrs = y doesn’t need to know about PO

• Compute all cell probabilities and use the law of total probability recursively

\[
\Pr(Y_t = y | X) = \sum_{j=1}^{k} \Pr(Y_t = y | X, Y_{t-1} = j) \Pr(Y_{t-1} = j | X)
\]

• `predict.blrm` method with `type='fitted.ind'` computes the needed conditional cell probabilities, optionally for all posterior draws at once
• Easy to get highest posterior density intervals for derived parameters such as unconditional probabilities or unconditional means

• Hmisc package soprobMarkovOrdm function (in version 4.6) computes an array of all the state occupancy probabilities for all the posterior draws

```r
# Baseline twstrs to 42 in d
# For each dose, get all the posterior draws for all state occupancy probabilities for all visit
ylev ← sort(unique(both$twstrs))
tlev ← c('Placebo', '10000U')
R ← list()
for(trt in tlev) {
  # separately by treatment
d$treat ← trt
  u ← soprobMarkovOrdm(bmark, d, wks, ylev,
    tvarname='week', pvarname='ptwstrs')
  R[[trt]] ← u
}
dim(R[[1]]) # posterior draws x times x distinct twstrs values

[1] 4000 5 62

# For each posterior draw, treatment, and week compute the mean TWSTRS
# Then compute posterior mean of means, and HPD interval
Rmean ← Rmeans ← list()
for(trt in tlev) {
  r ← R[[trt]]
  # Mean Y at each week and posterior draw (mean from a discrete distribution)
m ← apply(r, 1:2, function(x) sum(ylev * x))
  Rmeans[[trt]] ← m
  # Posterior mean and median and HPD interval over draws
  u ← apply(m, 2, f) # f defined above
  u ← rbind(week=as.numeric(colnames(u)), u)
  Rmean[[trt]] ← u
}
r ← lapply(Rmean, function(x) as.data.frame(t(x)))
for(trt in tlev) r[[trt]]$treat ← trt
r ← do.call(rbind, r)
ggplot(r, aes(x=week, y=Mean, color=treat)) + geom_line() +
  geom_ribbon(aes(ymin=Lower, ymax=Upper), alpha=0.2, linetype=0)
```
• Use the same posterior draws of unconditional probabilities of all values of TWSTRS to get the posterior distribution of differences in mean TWSTRS between high and low dose

\[
\text{Dif} \leftarrow \text{Rmeans}'10000U' - \text{Rmeans}'\text{Placebo'}
\]

\[
\text{dif} \leftarrow \text{as.data.frame(t(apply(Dif, 2, f)))}
\]

\[
\text{dif$week} \leftarrow \text{as.numeric(rownames(dif))}
\]

\[
\text{ggplot(dif, aes(x=week, y=Mean)) + geom_line()} +
\]

\[
\text{geom_ribbon(aes(ymin=Lower, ymax=Upper), alpha=0.2, linetype=0)} +
\]

\[
\text{ylab('High Dose - Placebo TWSTRS')}
\]

• Get posterior mean of all cell probabilities estimates at week
• Distribution of TWSTRS conditional high dose, median age, mode sex

• Not conditional on week 8 value

```
p <- R$'10000U'[, '12', ]  # 4000 x 62
pmean <- apply(p, 2, mean)
yvals <- as.numeric(names(pmean))
plot(yvals, pmean, type='l', xlab='TWSTRS', ylab='')
```
Chapter 8

Binary Logistic Regression

- $Y = 0, 1$
- Time of event not important
- $\ln C(Y|X)$ C is $\text{Prob}\{Y = 1\}$
- $g(u)$ is $\frac{1}{1+e^{-u}}$
Model

\[\text{Prob}\{Y = 1|X\} = \frac{1}{1 + \exp(-X\beta)}. \]

\[P = \frac{1}{1 + \exp(-x)} \]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{logistic_function.png}
\caption{Logistic function}
\end{figure}

- \(O = \frac{P}{1-P} \)
- \(P = \frac{O}{1+O} \)
- \(X\beta = \log \frac{P}{1-P} \)
- \(e^{X\beta} = O \)
Model Assumptions and Interpretation of Parameters

\[
\text{logit}\{Y = 1|X\} = \logit(P) = \log[P/(1 - P)] = X\beta,
\]

- Increase \(X_j\) by \(d\) \(\rightarrow\) increase odds \(Y = 1\) by \(\exp(\beta_j d)\), increase log odds by \(\beta_j d\).

- If there is only one predictor \(X\) and that predictor is binary, the model can be written

\[
\begin{align*}
\logit\{Y = 1|X = 0\} &= \beta_0 \\
\logit\{Y = 1|X = 1\} &= \beta_0 + \beta_1.
\end{align*}
\]

- One continuous predictor:

\[
\logit\{Y = 1|X\} = \beta_0 + \beta_1 X,
\]

- Two treatments (indicated by \(X_1 = 0\) or \(1\)) and one continuous covariable \((X_2)\).

\[
\begin{align*}
\logit\{Y = 1|X\} &= \beta_0 + \beta_1 X_1 + \beta_2 X_2, \\
\logit\{Y = 1|X_1 = 0, X_2\} &= \beta_0 + \beta_2 X_2 \\
\logit\{Y = 1|X_1 = 1, X_2\} &= \beta_0 + \beta_1 + \beta_2 X_2.
\end{align*}
\]
8.1.2

Odds Ratio, Risk Ratio, and Risk Difference

- **Odds ratio capable of being constant**

- **Ex:** risk factor doubles odds of disease

<table>
<thead>
<tr>
<th>Without Risk Factor</th>
<th>With Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>Odds</td>
</tr>
<tr>
<td>.2</td>
<td>.25</td>
</tr>
<tr>
<td>.5</td>
<td>1</td>
</tr>
<tr>
<td>.8</td>
<td>4</td>
</tr>
<tr>
<td>.9</td>
<td>9</td>
</tr>
<tr>
<td>.98</td>
<td>49</td>
</tr>
</tbody>
</table>

```
plot(0, 0, type = "n", xlab = "Risk for Subject Without Risk Factor", ylab = "Increase in Risk", xlim = c(0, 1), ylim = c(0, .6))  # Figure 8.2
i ← 0
or ← c(1.1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 10)
for (h in or) {
  i ← i + 1
  p ← seq(.0001, .9999, length = 200)
  logit ← log(p/(1 - p))  # same as qlogis(p)
  logit ← logit + log(h)  # modify by odds ratio
  p2 ← 1/(1 + exp(-logit))  # same as plogis(logit)
  d ← p2 - p
  lines(p, d, lty = i)
  maxd ← max(d)
  smax ← p[d == maxd]
  text(smax, maxd + .02, format(h), cex = .6)
}
```

Let X_1 be a binary risk factor and let $A = \{X_2, \ldots, X_p\}$ be the other factors. Then the estimate of $\Pr(Y = 1 \mid X_1 = 1, A) - \Pr(Y = 1 \mid X_1 = 0, A)$ is

$$
\frac{1}{1 + \exp[-(\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 X_2 + \ldots + \hat{\beta}_p X_p)]} - \frac{1}{1 + \exp[-(\hat{\beta}_0 + \hat{\beta}_2 X_2 + \ldots + \hat{\beta}_p X_p)]}
$$
Figure 8.2: Absolute benefit as a function of risk of the event in a control subject and the relative effect (odds ratio) of the risk factor. The odds ratios are given for each curve.

\[
\hat{R} = \frac{1}{1 + (\frac{1-R}{R}) \exp(-\hat{\beta}_1)} - \hat{R},
\]

where \(R = \text{Prob}[Y = 1|X_1 = 0, A] \).

- Risk ratio is \(\frac{1+e^{-X_2\beta}}{1+e^{-X_1\beta}} \)

- Does not simplify like odds ratio, which is \(\frac{e^{X_1\beta}}{e^{X_2\beta}} = e^{(X_1-X_2)\beta} \)

Detailed Example

<table>
<thead>
<tr>
<th>Females Age:</th>
<th>37 39 39 42 47 48 48 52 53 55 56 57 58 60 64 65 68 68 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response:</td>
<td>0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1</td>
</tr>
</tbody>
</table>

| Males Age: | 34 38 40 40 41 43 43 44 46 47 48 48 50 50 52 55 60 61 61 |
| Response: | 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 |

```r
require(rms)
getHdata(sex.age.response)
d <- sex.age.response
dd <- datadist(d); options(datadist='dd')
f <- lrm(response ~ sex + age, data=d)
fasr <- f # Save for later
w <- function(...) 
    with(d, {
```

```r```
$X \hat{\beta} = -9.84 + 3.49[\text{male}] + 0.158 \text{age}$.

<table>
<thead>
<tr>
<th>sex</th>
<th>response</th>
<th>Frequency</th>
<th>0</th>
<th>1</th>
<th>Total</th>
<th>Odds/Log</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Row Pct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>70.00</td>
<td>30.00</td>
<td></td>
<td>6/14=.429</td>
<td>-.847</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>30.00</td>
<td>70.00</td>
<td></td>
<td>14/6=2.33</td>
<td>.847</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M:F odds ratio = (14/6)/(6/14) = 5.44, log=1.695

sex \times response

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DF</th>
<th>Value</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi Square</td>
<td>1</td>
<td>6.400</td>
<td>0.011</td>
</tr>
<tr>
<td>Likelihood Ratio Chi-Square</td>
<td>1</td>
<td>6.583</td>
<td>0.010</td>
</tr>
</tbody>
</table>
Figure 8.3: Data, subgroup proportions, and fitted logistic model, with 0.95 pointwise confidence bands
### Parameter Estimates and Likelihood Ratios

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std Err</th>
<th>Wald $\chi^2$</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_0$</td>
<td>-0.847</td>
<td>0.488</td>
<td>3.015</td>
<td></td>
</tr>
<tr>
<td>$\beta_1$</td>
<td>1.695</td>
<td>0.690</td>
<td>6.030</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Log likelihood ($\beta_1 = 0$) : -27.727  
Log likelihood (max) : -24.435  
$LR \chi^2(H_0 : \beta_1 = 0)$ : $-2(-27.727 - (-24.435)) = 6.584$

### Relationship Between Age and Response, Ignoring Sex

<table>
<thead>
<tr>
<th>age</th>
<th>response</th>
<th>Frequency</th>
<th>Row Pct</th>
<th>Odds/Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;45</td>
<td>0</td>
<td>8</td>
<td>61.5</td>
<td>5/8 = .625</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>38.4</td>
<td>-.47</td>
</tr>
<tr>
<td>45-54</td>
<td>0</td>
<td>6</td>
<td>50.0</td>
<td>6/6 = 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>50.0</td>
<td>0</td>
</tr>
<tr>
<td>55+</td>
<td>0</td>
<td>6</td>
<td>40.0</td>
<td>9/6 = 1.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
<td>60.0</td>
<td>.405</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

55+: <45 odds ratio = (9/6)/(5/8) = 2.4, log = .875  

### Likelihood Ratios

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std Err</th>
<th>Wald $\chi^2$</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_0$</td>
<td>-2.734</td>
<td>1.838</td>
<td>2.213</td>
<td></td>
</tr>
<tr>
<td>$\beta_1$</td>
<td>0.054</td>
<td>0.036</td>
<td>2.276</td>
<td>0.131</td>
</tr>
</tbody>
</table>

The estimate of $\beta_1$ is in rough agreement with that obtained from the frequency table. The 55+:<45 log odds ratio is .875, and since the respective mean ages in the 55+ and <45 age groups are 61.1 and 40.2, an estimate of the log odds ratio increase per year is $.875/(61.1-40.2)=.875/20.9=.042$.  

The likelihood ratio test for $H_0$: no association between age and response is obtained as follows:
Log likelihood ($\beta_1 = 0$) : -27.727  
Log likelihood (max) : -26.511  
LR $\chi^2(H_0 : \beta_1 = 0)$ : $-2(-27.727 - -26.511) = 2.432$

(Compare 2.432 with the Wald statistic 2.28.)

Next we consider the simultaneous association of age and sex with response.

A logistic model for relating sex and age simultaneously to response is given below.
### CHAPTER 8. BINARY LOGISTIC REGRESSION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Err</th>
<th>Wald $\chi^2$</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_0$</td>
<td>-9.843</td>
<td>3.676</td>
<td>7.171</td>
<td></td>
</tr>
<tr>
<td>$\beta_1$ (sex)</td>
<td>3.490</td>
<td>1.199</td>
<td>8.469</td>
<td>0.004</td>
</tr>
<tr>
<td>$\beta_2$ (age)</td>
<td>0.158</td>
<td>0.062</td>
<td>6.576</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Likelihood ratio tests are obtained from the information below.
Log likelihood \((\beta_1 = 0, \beta_2 = 0)\) : -27.727
Log likelihood (max) : -19.458
Log likelihood \((\beta_1 = 0)\) : -26.511
Log likelihood \((\beta_2 = 0)\) : -24.435

\[ \text{LR } \chi^2 (H_0 : \beta_1 = \beta_2 = 0) : -2(-27.727 - (-19.458)) = 16.538 \]
\[ \text{LR } \chi^2 (H_0 : \beta_1 = 0) \text{ sex} | \text{age} : -2(-26.511 - (-19.458)) = 14.106 \]
\[ \text{LR } \chi^2 (H_0 : \beta_2 = 0) \text{ age} | \text{sex} : -2(-24.435 - (-19.458)) = 9.954 \]

The 14.1 should be compared with the Wald statistic of 8.47, and 9.954 should be compared with 6.58. The fitted logistic model is plotted separately for females and males in Figure 8.3. The fitted model is

\[ \text{logit}\{\text{Response } = 1 | \text{sex, age}\} = -9.84 + 3.49 \times \text{sex} + .158 \times \text{age}, \]

where as before sex=0 for females, 1 for males. For example, for a 40 year old female, the predicted logit is \(-9.84 + .158(40) = -3.52\). The predicted probability of a response is \(1/[1 + \exp(3.52)] = .029\). For a 40 year old male, the predicted logit is \(-9.84 + 3.49 + .158(40) = -.03\), with a probability of .492.

---

**Design Formulations**

- Can do ANOVA using \(k - 1\) dummies for a \(k\)-level predictor
- Can get same \(\chi^2\) statistics as from a contingency table
- Can go farther: covariable adjustment
• Simultaneous comparison of multiple variables between two groups: Turn problem backwards to predict group from all the dependent variables

• This is more robust than a parametric multivariate test

• Propensity scores for adjusting for nonrandom treatment selection: Predict treatment from all baseline variables

• Adjusting for the predicted probability of getting a treatment adjusts adequately for confounding from all of the variables

• In a randomized study, using logistic model to adjust for covariates, even with perfect balance, will improve the treatment effect estimate
**Estimation**

### 8.2.1 Maximum Likelihood Estimates

Like binomial case but $P$s vary; $\hat{\beta}$ computed by trial and error using an iterative maximization technique.

### 8.2.2 Estimation of Odds Ratios and Probabilities

$$\hat{P}_i = \left[1 + \exp(-X_i\hat{\beta})\right]^{-1}.$$  
$$\left\{1 + \exp[-(X_i\hat{\beta} \pm z_s)]\right\}^{-1}.$$

### 8.2.3 Minimum Sample Size Requirement

- Simplest case: no covariates, only an intercept
- Consider margin of error of 0.1 in estimating $\theta = \text{Prob}[Y = 1]$ with 0.95 confidence
- Worst case: $\theta = \frac{1}{2}$
- Requires $n = 96$ observationsa

---

*a* The general formula for the sample size required to achieve a margin of error of $\delta$ in estimating a true probability of $\theta$ at the 0.95 confidence.
• Single binary predictor with prevalence $\frac{1}{2}$: need $n = 96$ for each value of $X$

• For margin of error of ±0.05, $n = 384$ is required (if true probabilities near 0.5 are possible); $n = 246$ required if true probabilities are only known not to be in $[0.2, 0.8]$.

• Single continuous predictor $X$ having a normal distribution with mean zero and standard deviation $\sigma$, with true $P = \frac{1}{1+\exp(-X)}$ so that the expected number of events is $\frac{n}{2}$.

Compute mean of $\max_{X \in [-1.5,1.5]} |P - \hat{P}|$ over 1000 simulations for varying $n$ and $\sigma$

```r
sigmas ← c(.5, .75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4)
ns ← seq(25, 300, by=25)
nsim ← 1000
xs ← seq(-1.5, 1.5, length=200)
pactual ← plogis(xs)

dn ← list(sigma=format(sigmas), n=format(ns))
maxerr ← N1 ← array(NA, c(length(sigmas), length(ns)), dn)
require(rms)

i ← 0
for(s in sigmas) {
 i ← i + 1
 j ← 0
 for(n in ns) {
 j ← j + 1
 n1 ← maxe ← 0
 for(k in 1:nsim) {
 x ← rnorm(n, 0, s)
 P ← plogis(x)
 y ← ifelse(runif(n) ≤ P, 1, 0)
 n1 ← n1 + sum(y)
 beta ← lrm.fit(x, y)$coefficients
 maxe ← maxe + max(abs(phat - pactual))
 }
 n1 ← n1/nsim
 maxe ← maxe/nsim
 maxerr[i,j] ← maxe
 }
}
```

level is $n = (\frac{1.96}{2})^2 \times \theta(1 - \theta)$. Set $\theta = \frac{1}{2}$ for the worst case.

$^b$An average absolute error of 0.05 corresponds roughly to a 0.95 confidence interval margin of error of 0.1.
\begin{verbatim}
N1[i,j] ← n1
}
} 
 
xrange ← range(xs)
 
simerr ← llist(N1, maxerr, sigmas, ns, nsim, xrange)

maxe ← reShape(maxerr)

# Figure 8.4
xYplot(maxerr ~ n, groups=sigma, data=maxe,
       ylab=expression(paste('Average Maximum ',
                                abs(hat(P) - P))),
       type='l', lty=rep(1:2, 5), label.curve=FALSE,
       abline=list(h=c(.15, .1, .05), col=gray(.85))
Key(.8, .68, other=list(cex=.7,
                          title=expression(~~~~sigma)))
\end{verbatim}

Figure 8.4: Simulated expected maximum error in estimating probabilities for \( x \in [-1.5, 1.5] \) with a single normally distributed \( X \) with mean zero.
8.3 Test Statistics

- Likelihood ratio test best
- Score test second best (score $\chi^2 \equiv$ Pearson $\chi^2$)
- Wald test may misbehave but is quick
Partial residuals (to check predictor transformations)

\[ r_{ij} = \hat{\beta}_j X_{ij} + \frac{Y_i - \hat{P}_i}{\hat{P}_i(1 - \hat{P}_i)}, \]
### 8.5 Assessment of Model Fit

\[
\text{logit}\{Y = 1|X\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2,
\]

Figure 8.5: Logistic regression assumptions for one binary and one continuous predictor

```r
getHdata(acath)
acath$sex ← factor(acath$sex, 0:1, c('male','female'))
dd ← datadist(acath); options(datadist='dd')
f ← lrm(sigdz ~ rcs(age, 4) * sex, data=acath)

w ← function(...)
with(acath, {
 plsmo(age, sigdz, group=sex, fun=qlogis, lty='dotted',
 add=TRUE, grid=TRUE)
 af ← cut2(age, g=10, levels.mean=TRUE)
 prop ← qlogis(tapply(sigdz, list(af, sex), mean,
 na.rm=TRUE))
 agem ← as.numeric(row.names(prop))
 lpoints(agem, prop[, 'female'], pch=4, col='green')
 lpoints(agem, prop[, 'male'], pch=2, col='green')
}) # Figure 8.6

plot(Predict(f, age, sex), ylim=c(-2, 4), addpanel=w,
 label.curve=list(offset=unit(0.5, 'cm')))
```

- Can verify by plotting stratified proportions
Figure 8.6: Logit proportions of significant coronary artery disease by sex and deciles of age for n=3504 patients, with spline fits (smooth curves). Spline fits are for \( k = 4 \) knots at age= 36, 48, 56, and 68 years, and interaction between age and sex is allowed. Shaded bands are pointwise 0.95 confidence limits for predicted log odds. Smooth nonparametric estimates are shown as dotted curves. Data courtesy of the Duke Cardiovascular Disease Databank.

- \( \hat{P} = \) number of events divided by stratum size
- \( \hat{O} = \frac{\hat{P}}{1-\hat{P}} \)
- Plot \( \log \hat{O} \) (scale on which linearity is assumed)
- Stratified estimates are noisy
- 1 or 2 \( X \)s \( \rightarrow \) nonparametric smoother
- `plsmo` function makes it easy to use loess to compute logits of nonparametric estimates (fun=qlogis)
- General: restricted cubic spline expansion of one or more predictors

\[
\logit\{Y = 1|X\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2' + \beta_4 X_2''
\]
\[
\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + f(X_2),
\]

\[
\text{logit}\{Y = 1|X\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2' + \beta_4 X_2''
\]
\[
+ \beta_5 X_1 X_2 + \beta_6 X_1 X_2' + \beta_7 X_1 X_2''
\]

```r
lr <- function(formula) {
 f <- lrm(formula, data = acath)
 stats <- f$stats[c('Model L.R.', 'd.f.')] # Extract model L.R. and degrees of freedom
 cat('L.R. Chi-square:', round(stats[1], 1), 'd.f.:', stats[2], '
')
 f
}
aplus <- lr(sigdz ~ sex + age)
bplus <- lr(sigdz ~ sex * age)
cplus <- lr(sigdz ~ sex + rcs(age, 4))
dplus <- lr(sigdz ~ sex * rcs(age, 4))
lrtest(a plus, b plus)
```

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigdz ~ sex + age</td>
<td>sigdz ~ sex * age</td>
</tr>
<tr>
<td>L.R. Chisq</td>
<td>2.1964146</td>
</tr>
<tr>
<td>d.f.</td>
<td>1.0000000</td>
</tr>
<tr>
<td>P</td>
<td>0.1383322</td>
</tr>
</tbody>
</table>

```r
lrtest(a plus, c plus)
```

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigdz ~ sex + age</td>
<td>sigdz ~ sex + rcs(age, 4)</td>
</tr>
<tr>
<td>L.R. Chisq</td>
<td>3.4502500</td>
</tr>
<tr>
<td>d.f.</td>
<td>2.0000000</td>
</tr>
<tr>
<td>P</td>
<td>0.1781508</td>
</tr>
</tbody>
</table>

```r
lrtest(a plus, d plus)
```

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigdz ~ sex + age</td>
<td>sigdz ~ sex * rcs(age, 4)</td>
</tr>
<tr>
<td>L.R. Chisq</td>
<td>3.4502500</td>
</tr>
<tr>
<td>d.f.</td>
<td>2.0000000</td>
</tr>
<tr>
<td>P</td>
<td>0.1781508</td>
</tr>
</tbody>
</table>
Model 1: sigdz ∼ sex + age
Model 2: sigdz ∼ sex * rcs(age, 4)

L.R. Chisq  d.f.  P
16.547036344  5.000000000  0.005444012

lrtest(b, d)

Model 1: sigdz ∼ sex * age
Model 2: sigdz ∼ sex * rcs(age, 4)

L.R. Chisq  d.f.  P
14.350621767  4.000000000  0.006256138

lrtest(c, d)

Model 1: sigdz ∼ sex + rcs(age, 4)
Model 2: sigdz ∼ sex * rcs(age, 4)

L.R. Chisq  d.f.  P
13.096786352  3.000000000  0.004431906

<table>
<thead>
<tr>
<th>Model / Hypothesis</th>
<th>Likelihood Ratio $\chi^2$</th>
<th>d.f.</th>
<th>$P$</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>a: sex, age (linear, no interaction)</td>
<td>766.0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b: sex, age, age × sex</td>
<td>768.2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c: sex, spline in age</td>
<td>769.4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d: sex, spline in age, interaction</td>
<td>782.5</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H_0$: no age × sex interaction given linearity</td>
<td>2.2</td>
<td>1</td>
<td>.14</td>
<td>$(b - a)$</td>
</tr>
<tr>
<td>$H_0$: age linear</td>
<td>3.4</td>
<td>2</td>
<td>.18</td>
<td>$(c - a)$</td>
</tr>
<tr>
<td>$H_0$: age linear, no interaction</td>
<td>16.6</td>
<td>5</td>
<td>.005</td>
<td>$(d - a)$</td>
</tr>
<tr>
<td>$H_0$: age linear, product form interaction</td>
<td>14.4</td>
<td>4</td>
<td>.006</td>
<td>$(d - b)$</td>
</tr>
<tr>
<td>$H_0$: no interaction, allowing for nonlinearity in age</td>
<td>13.1</td>
<td>3</td>
<td>.004</td>
<td>$(d - c)$</td>
</tr>
</tbody>
</table>

- Example of finding transform. of a single continuous predictor
- Duration of symptoms vs. odds of severe coronary disease
Look at AIC to find best \# knots for the money

<table>
<thead>
<tr>
<th>k</th>
<th>Model $\chi^2$</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>99.23</td>
<td>97.23</td>
</tr>
<tr>
<td>3</td>
<td>112.69</td>
<td>108.69</td>
</tr>
<tr>
<td>4</td>
<td>121.30</td>
<td>115.30</td>
</tr>
<tr>
<td>5</td>
<td>123.51</td>
<td>115.51</td>
</tr>
<tr>
<td>6</td>
<td>124.41</td>
<td>114.41</td>
</tr>
</tbody>
</table>

dz ← subset(acath, sigdz==1)
dd ← datadist(dz)

f ← lrm(tvdlm ~ rcs(cad.dur, 5), data=dz)
w ← function(...)
with(dz, {
    plsmo(cad.dur, tvdlm, fun=qlogis, add=TRUE,
        grid=TRUE, lty='dotted')
    x ← cut2(cad.dur, g=15, levels.mean=TRUE)
    prop ← tapply(tvdlm, x, mean, na.rm=TRUE)
    xm ← as.numeric(names(prop))
    lpoints(xm, prop, pch=2, col='green')
})  # Figure 8.7

plot(Predict(f, cad.dur), addpanel=w)

Figure 8.7: Estimated relationship between duration of symptoms and the log odds of severe coronary artery disease for $k = 5$. Knots are marked with arrows. Solid line is spline fit; dotted line is a nonparametric loess estimate.
Figure 8.8: Fitted linear logistic model in $\log_{10}(\text{duration}+1)$, with subgroup estimates using groups of 150 patients. Fitted equation is $\logit(tvd1m) = -0.9809 + 0.7122 \log_{10}(\text{months} + 1)$. 
CHAPTER 8. BINARY LOGISTIC REGRESSION

Modeling Interaction Surfaces

- Sample of 2258 pts
- Predict significant coronary disease
- For now stratify age into tertiles to examine interactions simply
- Model has 2 dummies for age, sex, age × sex, 4-knot restricted cubic spline in cholesterol, age tertile × cholesterol

```r
acath ← transform(acath,
 cholesterol = choleste,
 age.tertile = cut2(age,g=3),
 sx = as.integer(acath$sex) - 1)
sx for loess, need to code as numeric
dd ← datadist(acath); options(datadist='dd')

First model stratifies age into tertiles to get more empirical estimates of age × cholesterol interaction
f ← lrm(sigdz ~ age.tertile*(sex + rcs(cholesterol,4)),
 data=acath)
f
```

Logistic Regression Model

```
lrm(formula = sigdz ~ age.tertile * (sex + rcs(cholesterol, 4)),
 data = acath)
```

Frequencies of Missing Values Due to Each Variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Missing Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigdz</td>
<td>0</td>
</tr>
<tr>
<td>age.tertile</td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td>0</td>
</tr>
<tr>
<td>cholesterol</td>
<td>1246</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Missing Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigdz</td>
<td>0</td>
</tr>
<tr>
<td>age.tertile</td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td>0</td>
</tr>
<tr>
<td>cholesterol</td>
<td>768</td>
</tr>
</tbody>
</table>

Model Likelihood

- Discernible $\chi^2$ 533.52
- d.f. 14
- Pr($\chi^2$) < 0.0001

Discrimination

- $R^2_{14,2258}$ 0.206
- $R^2_{14,1520.4}$ 0.289
- Brier 0.173
- $\tau_a$ 0.251

Rank Discrim.

- C 0.780
- $D_{xy}$ 0.560
- $\gamma$ 0.560
- $\tau_a$ 0.251

\[ Many patients had missing cholesterol. \]
\[ \hat{\beta} \]

|                          | \( \hat{\beta} \) | S.E. | Wald \( Z \) | Pr(>|Z|) |
|-------------------------|---------------------|------|---------------|----------|
| Intercept               | -0.4155             | 1.0987 | -0.38         | 0.7053   |
| age.tertile=[49,58)     | 0.8781              | 1.7337 | 0.51          | 0.6125   |
| age.tertile=[58,82]     | 4.7861              | 1.8143 | 2.64          | 0.0083   |
| sex=female              | -1.6123             | 0.1751 | -9.21         | <0.0001  |
| cholesterol             | 0.0029              | 0.0060 | 0.48          | 0.6347   |
| cholesterol'            | 0.0384              | 0.0242 | 1.59          | 0.1126   |
| cholesterol''           | -0.1148             | 0.0768 | -1.49         | 0.1350   |
| age.tertile=[49,58) × sex=female | -0.7900             | 0.2537 | -3.11         | 0.0018   |
| age.tertile=[58,82] × sex=female | -0.4530             | 0.2978 | -1.52         | 0.1283   |
| age.tertile=[49,58) × cholesterol | 0.0011              | 0.0095 | 0.11          | 0.9093   |
| age.tertile=[58,82] × cholesterol | -0.0158             | 0.0099 | -1.59         | 0.1111   |
| age.tertile=[49,58) × cholesterol' | -0.0183             | 0.0365 | -0.50         | 0.6162   |
| age.tertile=[58,82] × cholesterol'' | 0.0127              | 0.0406 | 0.31          | 0.7550   |
| age.tertile=[49,58) × cholesterol'' × sex=female | 0.0582              | 0.1140 | 0.51          | 0.6095   |
| age.tertile=[58,82] × cholesterol'' × cholesterol | -0.0092             | 0.1301 | -0.07         | 0.9436   |

\( X \hat{\beta} = -0.415 + 0.878([\text{age.tertile} \in [49,58]) + 4.79([\text{age.tertile} \in [58,82]] - 1.61([\text{female}]+0.00287[	ext{cholesterol} + 1.52 \times 10^{-6}(	ext{cholesterol} - 160)_{+}^{3} - 4.53 \times 10^{-6}(	ext{cholesterol} - 208)_{+}^{3} + 3.44 \times 10^{-6}(	ext{cholesterol} - 243)_{+}^{3} - 4.28 \times 10^{-7}(	ext{cholesterol} - 319)_{+}^{3} + [\text{female}][-0.79([\text{age.tertile} \in [49,58] - 0.453([\text{age.tertile} \in [58,82]] + [\text{age.tertile} \in [49,58]][0.00108[	ext{cholesterol} - 7.23 \times 10^{-7}(	ext{cholesterol} - 160)_{+}^{3} + 2.3 \times 10^{-6}(	ext{cholesterol} - 208)_{+}^{3} - 1.84 \times 10^{-6}(	ext{cholesterol} - 243)_{+}^{3} + 2.69 \times 10^{-7}(	ext{cholesterol} - 319)_{+}^{3} + [\text{age.tertile} \in [58,82]][-0.0158[	ext{cholesterol} + 5 \times 10^{-7}(	ext{cholesterol} - 160)_{+}^{3} - 3.64 \times 10^{-7}(	ext{cholesterol} - 208)_{+}^{3} - 5.15 \times 10^{-7}(	ext{cholesterol} - 243)_{+}^{3} + 3.78 \times 10^{-7}(	ext{cholesterol} - 319)_{+}^{3}.\]

\[
\text{print}(\text{anova}(f), \text{caption}='\text{Crudely categorizing age into tertiles}', \text{size}='\text{smaller}')\]

**Crudely categorizing age into tertiles**

<table>
<thead>
<tr>
<th></th>
<th>( \chi^2 )</th>
<th>d.f.</th>
<th>( P )</th>
</tr>
</thead>
<tbody>
<tr>
<td>age.tertile (Factor+Higher Order Factors)</td>
<td>120.74</td>
<td>10</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>21.87</td>
<td>8</td>
<td>0.0052</td>
</tr>
<tr>
<td>sex (Factor+Higher Order Factors)</td>
<td>329.54</td>
<td>3</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>9.78</td>
<td>2</td>
<td>0.0075</td>
</tr>
<tr>
<td>cholesterol (Factor+Higher Order Factors)</td>
<td>93.75</td>
<td>9</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>10.03</td>
<td>6</td>
<td>0.1235</td>
</tr>
<tr>
<td>Nonlinear (Factor+Higher Order Factors)</td>
<td>9.96</td>
<td>6</td>
<td>0.1263</td>
</tr>
<tr>
<td>age.tertile × sex (Factor+Higher Order Factors)</td>
<td>9.78</td>
<td>2</td>
<td>0.0075</td>
</tr>
<tr>
<td>age.tertile × cholesterol (Factor+Higher Order Factors)</td>
<td>10.03</td>
<td>6</td>
<td>0.1235</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>2.62</td>
<td>4</td>
<td>0.6237</td>
</tr>
<tr>
<td>Nonlinear Interaction : f(A,B) vs. AB</td>
<td>2.62</td>
<td>4</td>
<td>0.6237</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>9.96</td>
<td>6</td>
<td>0.1263</td>
</tr>
<tr>
<td>TOTAL INTERACTION</td>
<td>21.87</td>
<td>8</td>
<td>0.0052</td>
</tr>
<tr>
<td>TOTAL NONLINEAR + INTERACTION</td>
<td>29.67</td>
<td>10</td>
<td>0.0010</td>
</tr>
<tr>
<td>TOTAL</td>
<td>410.75</td>
<td>14</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

\( y_1 \leftarrow c(-1,5) \)

\[
\text{plot(Predict(f, cholesterol, age.tertile), adj.subtitle=FALSE, ylim=y1)} \quad \# \text{Figure 8.9}\]
- Now model age as continuous predictor

- Start with nonparametric surface using $Y = 0/1$

```r
Re-do model with continuous age
f ← loess(sigdz ~ age * (sx + cholesterol), data=acath,
 parametric="sx", drop.square="sx")
ages ← seq(25, 75, length=40)
chols ← seq(100, 400, length=40)
g ← expand.grid(cholesterol=chols, age=ages, sx=0)
drop sex dimension of grid since held to 1 value
p ← drop(predict(f, g))
p[p < 0.001] ← 0.001
p[p > 0.999] ← 0.999
zl ← c(-3, 6) # Figure 8.10
wireframe(qlogis(p) ~ cholesterol*age,
 xlab=list(rot=30), ylab=list(rot=-40),
 zlab=list(label="log odds", rot=90), zlim=zl,
 scales=list(arrows = FALSE), data=g)
```

- Next try parametric fit using linear spline in age, chol. (3 knots each), all product terms. For all the remaining 3-d plots we limit plotting to points that are supported by at least 5 subjects beyond those cholesterol/age combinations

```r
f ← lrm(sigdz ~ lsp(age,c(46,52,59)) *
 (sex + lsp(cholesterol,c(196,224,259)))),
data=acath)
ltx(f)
```
Figure 8.10: Local regression fit for the logit of the probability of significant coronary disease vs. age and cholesterol for males, based on the \texttt{loess} function.
\[
X \hat{\beta} = -1.83 + 0.0232 \text{age} + 0.0759(\text{age} - 46)_+ - 0.0025(\text{age} - 52)_+ + 2.27(\text{age} - 59)_+ + \\
3.02[\text{female}] - 0.0177 \text{cholesterol} + 0.114(\text{cholesterol} - 196)_+ - 0.131(\text{cholesterol} - 224)_+ + \\
0.0651(\text{cholesterol} - 259)_+ + [\text{female}] - 0.112 \text{age} + 0.0852(\text{age} - 46)_+ - 0.0302(\text{age} - 52)_+ + \\
0.176(\text{age} - 59)_+ + \text{age}[0.00577\text{cholesterol} - 0.00286(\text{cholesterol} - 196)_+ + 0.0382(\text{cholesterol} - \\
224)_+ - 0.00205(\text{cholesterol} - 259)_+] + (\text{age} - 46)_+ [0.00936\text{cholesterol} + 0.00643(\text{cholesterol} - \\
196)_+ - 0.0115(\text{cholesterol} - 224)_+ + 0.0076(\text{cholesterol} - 259)_+] + (\text{age} - 52)_+ [0.000433\text{cholesterol} - \\
0.0037 (\text{cholesterol} - 196)_+ + 0.00815 (\text{cholesterol} - 224)_+ - 0.00715 (\text{cholesterol} - 259)_+ + \\
(\text{age} - 59)_+ [0.0124 \text{cholesterol} + 0.015 (\text{cholesterol} - 196)_+ - 0.0067 (\text{cholesterol} - 224)_+ + \\
0.00752 (\text{cholesterol} - 259)_+].
\]

\[
\text{print(anova(f), caption='Linear spline surface', size='smaller')}
\]

| Linear spline surface |  | 
|-----------------------|--|---
| age (Factor+Higher Order Factors) | 164.17 | 24 | <0.0001
| All Interactions | 42.28 | 20 | 0.0025
| Nonlinear (Factor+Higher Order Factors) | 25.21 | 18 | 0.1192
| sex (Factor+Higher Order Factors) | 343.80 | 5 | <0.0001
| All Interactions | 23.90 | 4 | <0.0001
| cholesterol (Factor+Higher Order Factors) | 100.13 | 20 | <0.0001
| All Interactions | 16.27 | 16 | 0.4341
| Nonlinear (Factor+Higher Order Factors) | 16.35 | 15 | 0.3595
| age × sex (Factor+Higher Order Factors) | 23.90 | 4 | <0.0001
| Nonlinear | 12.97 | 3 | 0.0047
| Nonlinear Interaction : f(A,B) vs. AB | 12.97 | 3 | 0.0047
| age × cholesterol (Factor+Higher Order Factors) | 16.27 | 16 | 0.4341
| Nonlinear | 11.45 | 15 | 0.7204
| Nonlinear Interaction : f(A,B) vs. AB | 11.45 | 15 | 0.7204
| f(A,B) vs. Af(B) + Bg(A) | 9.38 | 9 | 0.4033
| Nonlinear Interaction in age vs. Af(B) | 9.99 | 12 | 0.6167
| Nonlinear Interaction in cholesterol vs. Bg(A) | 10.75 | 12 | 0.5503
| TOTAL NONLINEAR | 33.22 | 24 | 0.0995
| TOTAL INTERACTION | 42.28 | 20 | 0.0025
| TOTAL NONLINEAR + INTERACTION | 49.03 | 26 | 0.0041
| TOTAL | 449.26 | 29 | <0.0001

\[
\text{perim} \leftarrow \text{with(acath,}
\text{perimeter(cholesterol, age, xinc=20, n=5))}
\]
\[
zl \leftarrow c(-2, 4) \quad \# \text{Figure 8.11}
\]
\[
\text{bplot(Predict(f, cholesterol, age, np=40), perim=perim,}
\text{lfun=wireframe, zlim=zl, adj.subtitle=FALSE)}
\]

- Next try smooth spline surface, include all cross-products

\[
f \leftarrow \text{lrn(sigdz ~ rcs(age,4)*}(\text{sex + rcs(cholesterol,4))),
\text{data=acath, tol=1e-11)}
\]
\[
\text{ltx(f)}
\]
\[
X \hat{\beta} = -6.41 + 0.166\text{age} - 0.00067(\text{age} - 36)_+^3 + 0.00543(\text{age} - 48)_+^3 - 0.00727(\text{age} - 56)_+^3 + \\
0.00251(\text{age} - 68)_+^3 + 2.87[\text{female}] + 0.000979\text{cholesterol} + 1.96 \times 10^{-6}(\text{cholesterol} - 160)_+^3 - \\
7.16 \times 10^{-6}(\text{cholesterol} - 208)_+^3 + 6.35 \times 10^{-6}(\text{cholesterol} - 243)_+^3 - 1.16 \times 10^{-6}(\text{cholesterol} - \\
319)_+^3 + [\text{female}][-0.109\text{age} + 7.52 \times 10^{-5}(\text{age} - 36)_+^3 + 0.00015(\text{age} - 48)_+^3 - 0.00045(\text{age} - \\
68)_+^3 + 0.00002(\text{age} - 80)_+^3].
\]
Figure 8.11: Linear spline surface for males, with knots for age at 46, 52, 59 and knots for cholesterol at 196, 224, and 259 (quartiles).
\[ 56 \times 3 + 0.000225(\text{age} - 68)^3 + \text{age} - 0.00028(\text{cholesterol} + 2.68 \times 10^{-9}(\text{cholesterol} - 160)^3 + 3.03 \times 10^{-8}(\text{cholesterol} - 208)^3 - 4.99 \times 10^{-8}(\text{cholesterol} - 243)^3 + 1.69 \times 10^{-8}(\text{cholesterol} - 319)^3 + \text{age}^2 - 0.00341(\text{cholesterol} - 4.02 \times 10^{-7}(\text{cholesterol} - 160)^2 + 9.71 \times 10^{-7}(\text{cholesterol} - 208)^2 - 5.79 \times 10^{-7}(\text{cholesterol} - 243)^2 + 8.79 \times 10^{-9}(\text{cholesterol} - 319)^2) + \text{age}^2 - 0.029(\text{cholesterol} + 3.04 \times 10^{-6}(\text{cholesterol} - 160)^2) - 7.34 \times 10^{-6}(\text{cholesterol} - 208)^2 + 4.36 \times 10^{-6}(\text{cholesterol} - 243)^2 - 5.82 \times 10^{-8}(\text{cholesterol} - 319)^2]. \]

```r
print(anova(f), caption = 'Cubic spline surface', size = 'smaller')
```

### Cubic spline surface

<table>
<thead>
<tr>
<th>Term</th>
<th>( \chi^2 )</th>
<th>d.f.</th>
<th>( P )</th>
</tr>
</thead>
<tbody>
<tr>
<td>age (Factor + Higher Order Factors)</td>
<td>165.23</td>
<td>15</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>37.32</td>
<td>12</td>
<td>0.0002</td>
</tr>
<tr>
<td>Nonlinear (Factor + Higher Order Factors)</td>
<td>21.01</td>
<td>10</td>
<td>0.0210</td>
</tr>
<tr>
<td>sex (Factor + Higher Order Factors)</td>
<td>343.67</td>
<td>4</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>23.31</td>
<td>3</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>cholesterol (Factor + Higher Order Factors)</td>
<td>97.50</td>
<td>12</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>12.95</td>
<td>9</td>
<td>0.1649</td>
</tr>
<tr>
<td>Nonlinear (Factor + Higher Order Factors)</td>
<td>13.62</td>
<td>8</td>
<td>0.0923</td>
</tr>
<tr>
<td>age ( \times ) sex (Factor + Higher Order Factors)</td>
<td>23.31</td>
<td>3</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>13.37</td>
<td>2</td>
<td>0.0013</td>
</tr>
<tr>
<td>Nonlinear Interaction : ( f(A,B) ) vs. ( AB )</td>
<td>13.37</td>
<td>2</td>
<td>0.0013</td>
</tr>
<tr>
<td>Nonlinear (Factor + Higher Order Factors)</td>
<td>12.95</td>
<td>9</td>
<td>0.1649</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>7.27</td>
<td>8</td>
<td>0.5078</td>
</tr>
<tr>
<td>Nonlinear Interaction : ( f(A,B) ) vs. ( AB )</td>
<td>7.27</td>
<td>8</td>
<td>0.5078</td>
</tr>
<tr>
<td>( f(A,B) ) vs. ( Af(B) + Bg(A) )</td>
<td>5.41</td>
<td>4</td>
<td>0.2480</td>
</tr>
<tr>
<td>Nonlinear Interaction in age vs. ( Af(B) )</td>
<td>6.44</td>
<td>6</td>
<td>0.3753</td>
</tr>
<tr>
<td>Nonlinear Interaction in cholesterol vs. ( Bg(A) )</td>
<td>6.27</td>
<td>6</td>
<td>0.3931</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>29.22</td>
<td>14</td>
<td>0.0097</td>
</tr>
<tr>
<td>TOTAL INTERACTION</td>
<td>37.32</td>
<td>12</td>
<td>0.0002</td>
</tr>
<tr>
<td>TOTAL NONLINEAR + INTERACTION</td>
<td>45.41</td>
<td>16</td>
<td>0.0001</td>
</tr>
<tr>
<td>TOTAL</td>
<td>450.88</td>
<td>19</td>
<td>&lt; 0.0001</td>
</tr>
</tbody>
</table>

```r
Figure 8.12:
bplot(Predict(f, cholesterol, age, np=40), perim=perim, lfun=wireframe, zlim=zl, adj.subtitle=FALSE)
```

- Now restrict surface by excluding doubly nonlinear terms

```r
f ← lrm(sigdz ~ sex*rcs(age,4) + rcs(cholesterol,4) + rcs(age,4) %ia% rcs(cholesterol,4), data=acath)
print(anova(f), size='smaller',
 caption='Singly nonlinear cubic spline surface')
```
Figure 8.12: Restricted cubic spline surface in two variables, each with $k = 4$ knots
Singly nonlinear cubic spline surface

<table>
<thead>
<tr>
<th></th>
<th>( \chi^2 )</th>
<th>d.f.</th>
<th>( P )</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex (Factor+Higher Order Factors)</td>
<td>343.42</td>
<td>4</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>24.05</td>
<td>3</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>age (Factor+Higher Order Factors)</td>
<td>169.35</td>
<td>11</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>34.80</td>
<td>8</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Nonlinear (Factor+Higher Order Factors)</td>
<td>16.55</td>
<td>6</td>
<td>0.0111</td>
</tr>
<tr>
<td>cholesterol (Factor+Higher Order Factors)</td>
<td>93.62</td>
<td>8</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>10.83</td>
<td>5</td>
<td>0.0548</td>
</tr>
<tr>
<td>Nonlinear (Factor+Higher Order Factors)</td>
<td>10.87</td>
<td>4</td>
<td>0.0281</td>
</tr>
<tr>
<td>age \times cholesterol (Factor+Higher Order Factors)</td>
<td>10.83</td>
<td>5</td>
<td>0.0548</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>3.12</td>
<td>4</td>
<td>0.5372</td>
</tr>
<tr>
<td>Nonlinear Interaction : f(A,B) vs. AB</td>
<td>3.12</td>
<td>4</td>
<td>0.5372</td>
</tr>
<tr>
<td>Nonlinear Interaction in age vs. A(f(B))</td>
<td>1.60</td>
<td>2</td>
<td>0.4946</td>
</tr>
<tr>
<td>Nonlinear Interaction in cholesterol vs. B(g(A))</td>
<td>1.64</td>
<td>2</td>
<td>0.4400</td>
</tr>
<tr>
<td>sex \times age (Factor+Higher Order Factors)</td>
<td>24.05</td>
<td>3</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>13.58</td>
<td>2</td>
<td>0.0011</td>
</tr>
<tr>
<td>Nonlinear Interaction : f(A,B) vs. AB</td>
<td>13.58</td>
<td>2</td>
<td>0.0011</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>27.89</td>
<td>10</td>
<td>0.0019</td>
</tr>
<tr>
<td>TOTAL INTERACTION</td>
<td>34.80</td>
<td>8</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>TOTAL NONLINEAR + INTERACTION</td>
<td>45.45</td>
<td>12</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>TOTAL</td>
<td>453.10</td>
<td>15</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

\[ \hat{X} = -7.2 + 2.96[\text{female}] + 0.164\text{age} + 7.23 \times 10^{-5}(\text{age} - 36)_+^3 - 0.000106(\text{age} - 48)_+^3 - 1.63 \times 10^{-5}(\text{age} - 56)_+^3 + 4.99 \times 10^{-5}(\text{age} - 68)_+^3 + 0.0148\text{cholesterol} + 1.21 \times 10^{-6}(\text{cholesterol} - 160)_+^3 - 5.5 \times 10^{-6}(\text{cholesterol} - 208)_+^3 + 5.5 \times 10^{-6}(\text{cholesterol} - 243)_+^3 - 1.21 \times 10^{-6}(\text{cholesterol} - 319)_+^3 + \text{age}[-0.00029\text{cholesterol} + 9.28 \times 10^{-9}(\text{cholesterol} - 160)_+^3 + 1.7 \times 10^{-8}(\text{cholesterol} - 208)_+^3 - 4.43 \times 10^{-8}(\text{cholesterol} - 243)_+^3 + 1.79 \times 10^{-8}(\text{cholesterol} - 319)_+^3 + \text{cholesterol}[2.3 \times 10^{-7}(\text{age} - 36)_+^3 + 4.21 \times 10^{-7}(\text{age} - 48)_+^3 - 1.31 \times 10^{-6}(\text{age} - 56)_+^3 + 6.64 \times 10^{-7}(\text{age} - 68)_+^3] + [\text{female}][-0.111\text{age} + 8.03 \times 10^{-5}(\text{age} - 36)_+^3 + 0.000135(\text{age} - 48)_+^3 - 0.00044(\text{age} - 56)_+^3 + 0.000224(\text{age} - 68)_+^3]].\]

- Finally restrict the interaction to be a simple product

\[ f \leftarrow \text{lrn}(\text{sigdz} \sim \text{rcs(\text{age},4)} \times \text{sex} + \text{rcs(\text{cholesterol},4)} + \text{age} \%\% \text{cholesterol}, \text{data=acath}) \]

\[ \text{print(anova(f), caption='Linear interaction surface', size='smaller')} \]
Figure 8.13: Restricted cubic spline fit with age $\times$ spline(cholesterol) and cholesterol $\times$ spline(age)
Linear interaction surface

<table>
<thead>
<tr>
<th></th>
<th>$\chi^2$</th>
<th>d.f.</th>
<th>$P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>age (Factor+Higher Order Factors)</td>
<td>167.83</td>
<td>7</td>
<td>$&lt;0.0001$</td>
</tr>
<tr>
<td>All Interactions</td>
<td>31.03</td>
<td>4</td>
<td>$&lt;0.0001$</td>
</tr>
<tr>
<td>Nonlinear (Factor+Higher Order Factors)</td>
<td>14.58</td>
<td>4</td>
<td>0.0057</td>
</tr>
<tr>
<td>sex (Factor+Higher Order Factors)</td>
<td>345.88</td>
<td>4</td>
<td>$&lt;0.0001$</td>
</tr>
<tr>
<td>All Interactions</td>
<td>22.30</td>
<td>3</td>
<td>$&lt;0.0001$</td>
</tr>
<tr>
<td>cholesterol (Factor+Higher Order Factors)</td>
<td>89.37</td>
<td>4</td>
<td>$&lt;0.0001$</td>
</tr>
<tr>
<td>All Interactions</td>
<td>7.99</td>
<td>1</td>
<td>0.0047</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>10.65</td>
<td>2</td>
<td>0.0049</td>
</tr>
<tr>
<td>age $\times$ cholesterol (Factor+Higher Order Factors)</td>
<td>7.99</td>
<td>1</td>
<td>0.0047</td>
</tr>
<tr>
<td>age $\times$ sex (Factor+Higher Order Factors)</td>
<td>22.30</td>
<td>3</td>
<td>$&lt;0.0001$</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>12.06</td>
<td>2</td>
<td>0.0024</td>
</tr>
<tr>
<td>Nonlinear Interaction : $f(A,B)$ vs. AB</td>
<td>12.06</td>
<td>2</td>
<td>0.0024</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>25.72</td>
<td>6</td>
<td>0.0003</td>
</tr>
<tr>
<td>TOTAL INTERACTION</td>
<td>31.03</td>
<td>4</td>
<td>$&lt;0.0001$</td>
</tr>
<tr>
<td>TOTAL NONLINEAR + INTERACTION</td>
<td>43.59</td>
<td>8</td>
<td>$&lt;0.0001$</td>
</tr>
<tr>
<td>TOTAL</td>
<td>452.75</td>
<td>11</td>
<td>$&lt;0.0001$</td>
</tr>
</tbody>
</table>

\[ X\hat{\beta} = -7.36 + 0.182age - 5.18 \times 10^{-5}(age - 36)^3 + 8.45 \times 10^{-5}(age - 48)^3 - 2.91 \times 10^{-6}(age - 56)^3 - 2.99 \times 10^{-5}(age - 68)^3 + 2.8[female] + 0.0139\text{cholesterol} + 1.76 \times 10^{-6}\text{(cholesterol - 160)}^3 - 4.88 \times 10^{-6}\text{(cholesterol - 208)}^3 + 3.45 \times 10^{-6}\text{(cholesterol - 243)}^3 - 3.26 \times 10^{-7}\text{(cholesterol - 319)}^3 - 0.00034\text{age} \times \text{cholesterol} + [\text{female}][-0.107\text{age} + 7.71 \times 10^{-5}(age - 36)^3 + 0.000115\text{(age - 48)}^3 - 0.000398\text{(age - 56)}^3 + 0.000205\text{(age - 68)}^3]. \]

The Wald test for age $\times$ cholesterol interaction yields $\chi^2 = 7.99$ with 1 d.f., $p = .005$.

- See how well this simple interaction model compares with initial model using 2 dummies for age
- Request predictions to be made at mean age within tertiles

\[ \text{mean.age} \leftarrow \text{with} (\text{acath}, \text{as.vector} (\text{tapply} (\text{age}, \text{age.tertile}, \text{mean}, \text{na.rm=TRUE}))) \]
\[ \text{plot} (\text{Predict}(f, \text{cholesterol}, \text{age}=\text{round(mean.age,2)}, \text{sex}="male"), \text{adj.subtitle}=\text{FALSE}, \text{ylim}=\text{yl}) \]
Figure 8.14: Spline fit with nonlinear effects of cholesterol and age and a simple product interaction

Figure 8.15: Predictions from linear interaction model with mean age in tertiles indicated.
• Using residuals for “duration of symptoms” example

```r
def f <- lrm(tvdlm ~ cad.dur, data=dz, x=TRUE, y=TRUE)
resid(f, "partial", pl="loess", xlim=c(0,250), ylim=c(-3,3))
scat1d(dz$cad.dur)
log.cad.dur <- log10(dz$cad.dur + 1)
f <- lrm(tvdlm ~ log.cad.dur, data=dz, x=TRUE, y=TRUE)
resid(f, "partial", pl="loess", ylim=c(-3,3))
scat1d(log.cad.dur) # Figure 8.16
```

![Graphs showing partial residuals for duration and log_{10}(duration+1). Data density shown at top of each plot.](image)

• Relative merits of strat., nonparametric, splines for checking fit
<table>
<thead>
<tr>
<th>Method</th>
<th>Choice Required</th>
<th>Assumes Additivity</th>
<th>Uses Ordering of $X$</th>
<th>Low Variance</th>
<th>Good Resolution on $X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratification Intervals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoother on $X_1$ stratifying on $X_2$</td>
<td>Bandwidth</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$\times$ ($X_1$)</td>
</tr>
<tr>
<td>Smooth partial residual plot</td>
<td>Bandwidth</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$\times$</td>
</tr>
<tr>
<td>Spline model for all $X$'s</td>
<td>Knots</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$\times$</td>
</tr>
</tbody>
</table>

- Hosmer-Lemeshow test is a commonly used test of goodness-of-fit of a binary logistic model.
  Compares proportion of events with mean predicted probability within deciles of $\hat{P}$
  - Arbitrary (number of groups, how to form groups)
  - Low power (too many d.f.)
  - Does not reveal the culprits

- A new omnibus test based of SSE has more power and requires no grouping; still does not lead to corrective action.

- Any omnibus test lacks power against specific alternatives such as nonlinearity or interaction
8.6 Collinearity

8.7 Overly Influential Observations

8.8 Quantifying Predictive Ability

- Generalized Nagelkerke $R^2$: equals ordinary $R^2$ in normal case:

$$R^2_N = \frac{1 - \exp(-LR/n)}{1 - \exp(-L^0/n)},$$

- 4 versions of Maddala-Cox-Snell $R^2$: hbiostat.org/bib/r2.html
  - Perhaps best: $R^2_{p,m} = 1 - \exp(-(LR - p)/m)$
  - $m$ is the effective sample size based on approximate variance of a log odds ratio in a proportional odds ordinal logistic model
  - If $Y$ has $k$ distinct values with proportions $p_1, p_2, \ldots, p_k$, $m = n \times (1 - \Sigma_{i=1}^k p_i^3)$
  - For binary $Y$ with proportion $Y = 1$ of $p$, $m = n \times 3p(1 - p)$
• With perfect prediction in the case where there are 50 $X = 0$ and 50 $X = 1$ with $Y = X$, $R^2_N = 1$, $R^2_{n,0} = 0.75$, $R^2_{m,0} = 0.84$.

• Brier score (calibration + discrimination):
  
  $$B = \frac{1}{n} \sum_{i=1}^{n} (\hat{P}_i - Y_i)^2,$$

• $c$ = “concordance probability” = ROC area
  
  – Related to Wilcoxon-Mann-Whitney stat and Somers’ $D_{xy}$
    
    $$D_{xy} = 2(c - .5).$$

  – Good pure index of predictive discrimination for a single model

  – Not useful for comparing two models [46, 150]d

• “Coefficient of discrimination” [190]: average $\hat{P}$ when $Y = 1$ minus average $\hat{P}$ when $Y = 0$
  
  – Has many advantages. Tjur shows how it ties in with sum of squares–based $R^2$ measures.

• “Percent classified correctly” has lots of problems
  
  – improper scoring rule; optimizing it will lead to incorrect model

  – arbitrary, insensitive, uses a strange loss (utility function)

  dBut see [148].
Validating the Fitted Model

- Possible indexes [9]
  - Accuracy of $\hat{P}$: calibration
    Plot $\frac{1}{1+e^{-X_{new}\beta_{old}}}$ against estimated prob. that $Y = 1$ on new data
  - Discrimination: $C$ or $D_{xy}$
  - $R^2$ or $B$

- Use bootstrap to estimate calibration equation
  \[ P_c = \text{Prob}\{Y = 1|X\hat{\beta}\} = [1 + \exp - (\gamma_0 + \gamma_1X\hat{\beta})]^{-1}, \]
  \[ E_{max}(a, b) = \max_{a \leq \hat{P} \leq b} |\hat{P} - \hat{P}_c|, \]

- Bootstrap validation of age-sex-response data, 150 samples

- 2 predictors forced into every model

```r
d ← sex.age.response
dd ← datadist(d); options(datadist='dd')
f ← lrm(response ~ sex + age, data=d, x=TRUE, y=TRUE)
set.seed(3) # for reproducibility
v1 ← validate(f, B=150)
latex(v1, caption='Bootstrap Validation, 2 Predictors Without Stepdown',
 insert.bottom='\label{pg:lrm-sex-age-response-boot}',
 digits=2, size='Ssize', file='')
```
Bootstrap Validation, 2 Predictors Without Stepdown

<table>
<thead>
<tr>
<th>Index</th>
<th>Original Sample</th>
<th>Training Sample</th>
<th>Test Sample</th>
<th>Optimism</th>
<th>Corrected Index</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{xy}$</td>
<td>0.70</td>
<td>0.70</td>
<td>0.67</td>
<td>0.03</td>
<td>0.66</td>
<td>150</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.45</td>
<td>0.48</td>
<td>0.43</td>
<td>0.05</td>
<td>0.40</td>
<td>150</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>−0.04</td>
<td>0.04</td>
<td>150</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>0.92</td>
<td>0.08</td>
<td>0.92</td>
<td>150</td>
</tr>
<tr>
<td>$E_{\max}$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>150</td>
</tr>
<tr>
<td>$D$</td>
<td>0.39</td>
<td>0.43</td>
<td>0.36</td>
<td>0.07</td>
<td>0.32</td>
<td>150</td>
</tr>
<tr>
<td>$U$</td>
<td>−0.05</td>
<td>−0.05</td>
<td>0.02</td>
<td>−0.07</td>
<td>0.02</td>
<td>150</td>
</tr>
<tr>
<td>$Q$</td>
<td>0.44</td>
<td>0.48</td>
<td>0.34</td>
<td>0.14</td>
<td>0.30</td>
<td>150</td>
</tr>
<tr>
<td>$B$</td>
<td>0.16</td>
<td>0.15</td>
<td>0.18</td>
<td>−0.03</td>
<td>0.19</td>
<td>150</td>
</tr>
<tr>
<td>$g$</td>
<td>2.10</td>
<td>2.38</td>
<td>1.97</td>
<td>0.41</td>
<td>1.70</td>
<td>150</td>
</tr>
<tr>
<td>$g_p$</td>
<td>0.35</td>
<td>0.35</td>
<td>0.34</td>
<td>0.01</td>
<td>0.34</td>
<td>150</td>
</tr>
</tbody>
</table>

- Allow for step-down at each re-sample
- Use individual tests at $\alpha = 0.10$
- Both age and sex selected in 137 of 150, neither in 3 samples

```r
v2 <- validate(f, B=150, bw=TRUE, rule='p', sls=.1, type='individual')
latex(v2, caption='Bootstrap Validation, 2 Predictors with Stepdown', digits=2, B=15, file='', size='Ssize')
```

Bootstrap Validation, 2 Predictors with Stepdown

<table>
<thead>
<tr>
<th>Index</th>
<th>Original Sample</th>
<th>Training Sample</th>
<th>Test Sample</th>
<th>Optimism</th>
<th>Corrected Index</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{xy}$</td>
<td>0.70</td>
<td>0.71</td>
<td>0.65</td>
<td>0.07</td>
<td>0.63</td>
<td>150</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.45</td>
<td>0.50</td>
<td>0.41</td>
<td>0.09</td>
<td>0.36</td>
<td>150</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>−0.01</td>
<td>0.01</td>
<td>150</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>0.83</td>
<td>0.17</td>
<td>0.83</td>
<td>150</td>
</tr>
<tr>
<td>$E_{\max}$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>150</td>
</tr>
<tr>
<td>$D$</td>
<td>0.39</td>
<td>0.46</td>
<td>0.35</td>
<td>0.11</td>
<td>0.28</td>
<td>150</td>
</tr>
<tr>
<td>$U$</td>
<td>−0.05</td>
<td>−0.05</td>
<td>0.05</td>
<td>−0.10</td>
<td>0.05</td>
<td>150</td>
</tr>
<tr>
<td>$Q$</td>
<td>0.44</td>
<td>0.51</td>
<td>0.29</td>
<td>0.21</td>
<td>0.22</td>
<td>150</td>
</tr>
<tr>
<td>$B$</td>
<td>0.16</td>
<td>0.14</td>
<td>0.18</td>
<td>−0.04</td>
<td>0.20</td>
<td>150</td>
</tr>
<tr>
<td>$g$</td>
<td>2.10</td>
<td>2.60</td>
<td>1.90</td>
<td>0.70</td>
<td>1.40</td>
<td>150</td>
</tr>
<tr>
<td>$g_p$</td>
<td>0.35</td>
<td>0.35</td>
<td>0.33</td>
<td>0.02</td>
<td>0.33</td>
<td>150</td>
</tr>
</tbody>
</table>
Factors Retained in Backwards Elimination
First 15 Resamples

<table>
<thead>
<tr>
<th>sex</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequencies of Numbers of Factors Retained

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>138</td>
</tr>
</tbody>
</table>

- Try adding 5 noise candidate variables

```r
set.seed(133)
n ← nrow(d)
x1 ← runif(n)
x2 ← runif(n)
x3 ← runif(n)
x4 ← runif(n)
x5 ← runif(n)
f ← lrm(response ~ age + sex + x1 + x2 + x3 + x4 + x5,
data=d, x=TRUE, y=TRUE)
v3 ← validate(f, B=150, bw=TRUE,
rule='p', sls=.1, type='individual')
k ← attr(v3, 'kept')
Compute number of x1-x5 selected
nx ← apply(k[,3:7], 1, sum)
Get selections of age and sex
v ← colnames(k)
as ← apply(k[,1:2], 1,
function(x) paste(v[1:2][x], collapse=', '))
table(paste(as, ',', nx, 'Xs'))
```

<table>
<thead>
<tr>
<th>0 Xs</th>
<th>1 Xs age, sex</th>
<th>0 Xs age, sex</th>
<th>1 Xs age, sex</th>
<th>2 Xs</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4</td>
<td>30</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>age, sex</td>
<td>3 Xs</td>
<td>sex</td>
<td>0 Xs</td>
<td>sex</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Bootstrap Validation with 5 Noise Variables and Stepdown

<table>
<thead>
<tr>
<th>Original Sample</th>
<th>Training Sample</th>
<th>Test Sample</th>
<th>Optimism</th>
<th>Corrected Index</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{xy}$</td>
<td>0.70</td>
<td>0.47</td>
<td>0.38</td>
<td>0.09</td>
<td>0.61</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.45</td>
<td>0.34</td>
<td>0.23</td>
<td>0.11</td>
<td>0.34</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>-0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>0.77</td>
<td>0.23</td>
<td>0.77</td>
</tr>
<tr>
<td>$E_{max}$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>$D$</td>
<td>0.39</td>
<td>0.31</td>
<td>0.18</td>
<td>0.13</td>
<td>0.26</td>
</tr>
<tr>
<td>$U$</td>
<td>-0.05</td>
<td>-0.05</td>
<td>0.06</td>
<td>-0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>$Q$</td>
<td>0.44</td>
<td>0.36</td>
<td>0.12</td>
<td>0.24</td>
<td>0.20</td>
</tr>
<tr>
<td>$B$</td>
<td>0.16</td>
<td>0.18</td>
<td>0.21</td>
<td>-0.04</td>
<td>0.20</td>
</tr>
<tr>
<td>$g$</td>
<td>2.10</td>
<td>1.81</td>
<td>1.06</td>
<td>0.75</td>
<td>1.35</td>
</tr>
<tr>
<td>$g_p$</td>
<td>0.35</td>
<td>0.24</td>
<td>0.19</td>
<td>0.04</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Factors Retained in Backwards Elimination

First 15 Resamples

<table>
<thead>
<tr>
<th>age</th>
<th>sex</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x5</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Frequencies of Numbers of Factors Retained

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>13</td>
<td>33</td>
<td>27</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

- Repeat but force age and sex to be in all models

v4 ← validate(f, B=150, bw=TRUE, rule='p', sls=.1, type='individual', force=1:2)
ap4 ← round(v4[, ‘index.orig’], 2)
bc4 ← round(v4[, ‘index.corrected’], 2)

latex(v4,
    caption = ‘Bootstrap Validation with 5 Noise Variables and Stepdown,
             Forced Inclusion of age and sex’,
    digits = 2, B = 15, size = ‘Ssize’)

<table>
<thead>
<tr>
<th>Index</th>
<th>Original Sample</th>
<th>Training Sample</th>
<th>Test Sample</th>
<th>Optimism</th>
<th>Corrected Index</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D_{xy})</td>
<td>0.70</td>
<td>0.76</td>
<td>0.66</td>
<td>0.10</td>
<td>0.60</td>
<td>130</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.45</td>
<td>0.54</td>
<td>0.41</td>
<td>0.12</td>
<td>0.33</td>
<td>130</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>-0.06</td>
<td>0.06</td>
<td>130</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>0.76</td>
<td>0.24</td>
<td>0.76</td>
<td>130</td>
</tr>
<tr>
<td>(E_{\text{max}})</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>130</td>
</tr>
<tr>
<td>(D)</td>
<td>0.39</td>
<td>0.50</td>
<td>0.35</td>
<td>0.15</td>
<td>0.24</td>
<td>130</td>
</tr>
<tr>
<td>(U)</td>
<td>-0.05</td>
<td>-0.05</td>
<td>0.08</td>
<td>-0.13</td>
<td>0.08</td>
<td>130</td>
</tr>
<tr>
<td>(Q)</td>
<td>0.44</td>
<td>0.55</td>
<td>0.27</td>
<td>0.28</td>
<td>0.16</td>
<td>130</td>
</tr>
<tr>
<td>(B)</td>
<td>0.16</td>
<td>0.14</td>
<td>0.18</td>
<td>-0.04</td>
<td>0.21</td>
<td>130</td>
</tr>
<tr>
<td>(g)</td>
<td>2.10</td>
<td>2.75</td>
<td>1.89</td>
<td>0.86</td>
<td>1.25</td>
<td>130</td>
</tr>
<tr>
<td>(g_p)</td>
<td>0.35</td>
<td>0.37</td>
<td>0.33</td>
<td>0.04</td>
<td>0.31</td>
<td>130</td>
</tr>
</tbody>
</table>

Factors Retained in Backwards Elimination
First 15 Resamples

<table>
<thead>
<tr>
<th>age</th>
<th>sex</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequencies of Numbers of Factors Retained

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>29</td>
<td>10</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
8.10 Describing the Fitted Model

\[
s \leftarrow \text{summary(f.linear)}
\]
\[
\text{print(s, size='Ssize')}
\]

\[
\begin{array}{cccccccc}
\text{Low} & \text{High} & \Delta & \text{Effect} & \text{S.E.} & \text{Lower 0.95} & \text{Upper 0.95} \\
age & 46 & 59 & 13 & 0.90629 & 0.18381 & 0.546030 & 1.26650 \\
\text{Odds Ratio} & 46 & 59 & 13 & 2.47510 & 1.726400 & 3.54860 \\
\text{cholesterol} & 196 & 259 & 63 & 0.75479 & 0.13642 & 0.487410 & 1.02220 \\
\text{Odds Ratio} & 196 & 259 & 63 & 2.12720 & 1.628100 & 2.77920 \\
\text{sex — female:male} & 1 & 2 & -2.42970 & 0.14839 & -2.720600 & -2.13890 \\
\text{Odds Ratio} & 1 & 2 & 0.08806 & 0.065837 & 0.11778 \\
\end{array}
\]

\[
\text{plot(s)} \quad \# \text{Figure 8.17}
\]

**Figure 8.17:** Odds ratios and confidence bars, using quartiles of age and cholesterol for assessing their effects on the odds of coronary disease.

Adjusted to: age=52 sex=male cholesterol=224.5
Figure 8.18: Linear spline fit for probability of bacterial vs. viral meningitis as a function of age at onset [176]. Points are simple proportions by age quantile groups.
Figure 8.19: (A) Relationship between myocardium at risk and ventricular fibrillation, based on the individual best fit equations for animals anesthetized with pentobarbital and α-chloralose. The amount of myocardium at risk at which 0.5 of the animals are expected to fibrillate (MAR₅₀) is shown for each anesthetic group. (B) Relationship between myocardium at risk and ventricular fibrillation, based on equations derived from the single slope estimate. Note that the MAR₅₀ describes the overall relationship between myocardium at risk and outcome when either the individual best fit slope or the single slope estimate is used. The shift of the curve to the right during α-chloralose anesthesia is well described by the shift in MAR₅₀. Test for interaction had P=0.10 [211]. Reprinted by permission, NRC Research Press.
Figure 8.20: A nomogram for estimating the likelihood of significant coronary artery disease (CAD) in women. ECG = electrocardiographic; MI = myocardial infarction [156]. Reprinted from American Journal of Medicine, Vol 75, Pryor DB et al., "Estimating the likelihood of significant coronary artery disease", p. 778, Copyright 1983, with permission from Excerpta Medica, Inc.
Figure 8.21: Nomogram for estimating probability of bacterial (ABM) vs. viral (AVM) meningitis. Step 1, place ruler on reading lines for patient’s age and month of presentation and mark intersection with line A; step 2, place ruler on values for glucose ratio and total polymorphonuclear leukocyte (PMN) count in cerebrospinal fluid and mark intersection with line B; step 3, use ruler to join marks on lines A and B, then read off the probability of ABM vs. AVM [176].
# Draw a nomogram that shows examples of confidence intervals
nom ← nomogram(f.linia, cholesterol=seq(150, 400, by=50),
    interact=list(age=seq(30, 70, by=10)),
    lp.at=seq(-2, 3.5, by=.5),
    conf.int=TRUE, conf.lp="all",
    fun=function(x)1/(1+exp(-x)), # or plogis
    funlabel="Probability of CAD",
    fun.at=c(seq(.1, .9, by=.1), .95, .99)
) # Figure 8.22
plot(nom, col.grid = gray(c(0.8, 0.95)),
    varname.label=FALSE, ia.space=1, xfrac=.46, lmgp=.2)
Figure 8.22: Nomogram relating age, sex, and cholesterol to the log odds and to the probability of significant coronary artery disease. Select one axis corresponding to sex and to age ∈ \{30, 40, 50, 60, 70\}. There was linear interaction between age and sex and between age and cholesterol. 0.70 and 0.90 confidence intervals are shown (0.90 in gray). Note that for the “Linear Predictor” scale there are various lengths of confidence intervals near the same value of $X\hat{\beta}$, demonstrating that the standard error of $X\hat{\beta}$ depends on the individual $X$ values. Also note that confidence intervals corresponding to smaller patient groups (e.g., females) are wider.
8.11

Bayesian Logistic Model Example

Re-analyze data in Section 8.1.3 using the R rmsb package. See hbiostat.org/doc/rms/lrm-brms.pdf for a parallel analysis using the brms package.

The rmsb package relies on the Stan Bayesian modeling system [188, 32].

The frequentist model was fitted using lrm and the Bayesian model is fitted using the rmsb blrm function. For the Bayesian model, the intercept prior is non-informative (iprior=1). For blrm a complication arises in specifying priors for regression coefficients. This is due to the QR decomposition being used on the design matrix to remove MCMC sampling problems with collinearities. By default, priors correspond to the re-mixed, scaled, and centered covariates. To keep predictors in raw form (and risk some posterior sampling problems), use the keepsep argument as done below on both predictors. Then Gaussian priors are used. The age and sex parameters were given mean zero priors with standard deviations computed to achieve specified tail prior probabilities. Four MCMC chains with 5000 iterations were used with a warm-up of 2500 iterations each, resulting in 10000 retained draws from the posterior distribution.

Before fitting the Bayesian model with two skeptical priors, fit the model with a flat prior for the intercept and Gaussian priors
with SD=100 for the two slopes. See below that the posterior modes from this fit are in close agreement with the maximum likelihood estimates from the frequentist model fit.

```r
dd ← datadist(sex.age.response)
options(datadist = 'dd')
require(rmsb)

Frequentist model
flrm ← lrm(response ~ sex + age, data=sex.age.response)

Bayesian model
Distribute chains across all available cpu cores:
options(mc.cores=parallel::detectCores())

Fit a model with all flat priors
set.seed(8)
ff ← blrm(response ~ sex + age, data=sex.age.response, iter=5000)
Elapsed time 2.2s
latexVerbatim(round(rbind(MLE = coef(flrm), Mode = coef(ff, 'mode'),
 Mean = coef(ff), Median = coef(ff, 'median'))), 3),
 file='')

Intercept sex=male age
MLE -9.843 3.490 0.158
Mode -9.827 3.485 0.158
Mean -11.345 3.985 0.182
Median -10.976 3.876 0.177

Set priors
Solve for SD such that sex effect has only a 0.025 chance of
being above 5 (or being below -5)
s1 ← 5 / qnorm(0.975)

Solve for SD such that 10-year age effect has only 0.025 chance
of being above 20
s2 ← (20 / qnorm(0.975)) / 10 # divide by 10 since ratio on 10b scale

Full model
set.seed(11)
f ← blrm(response ~ sex + age, data=sex.age.response,
 priorsd=c(s1, s2), iprior=1, keepsep='age|sex', iter=5000)
Elapsed time 1.7s
f
```

Bayesian Logistic Model

Non-informative Priors for Intercepts

```r
blrm(formula = response ~ sex + age, keepsep = "age|sex", data = sex.age.response,
 priorsd=c(s1, s2), iprior=1, keepsep='age|sex', iter=5000)
```
The following parameters remained separate (where not orthogonalized) during model fitting so that prior distributions could be focused explicitly on them: sex=male, age

**MCMC sampling diagnostics are below. No apparent problems.**

```r
MCMC sampling diagnostics
stanDx(f)
```

- **Iterations**: 5000 on each of 4 chains, with 10000 posterior distribution samples saved
- For each parameter, n_eff is a crude measure of effective sample size and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1)

```r
n_eff Rhat
Intercept 9224 1
sex=male 6575 1
age 6686 1
```

```r
stanDxplot(f)
```
The model summaries for the frequentist and Bayesian models are shown below, with posterior means computed as Bayesian “point estimates.” The parameter estimates are similar for the two approaches. The frequentist 0.95 confidence interval for the age parameter is 0.037 - 0.279 while the Bayesian 0.95 credible interval is 0.047 - 0.263. Similarly, the 0.95 confidence interval for sex is 1.14 - 5.84 and the corresponding Bayesian 0.95 credible interval is 1.23 - 5.19. The results made sense in view of the use of skeptical priors when the sample size is
The figure shows the posterior draws for the age and sex parameters as well as the trace of the 4 MCMC chains for each parameter and the bivariate posterior distribution. The posterior distributions of each parameter are roughly round shaped and the overlap between chains in the trace plots indicates good convergence. The bivariate density plot indicates moderate correlation between the age and sex parameters.

Create a 0.95 bivariate credible interval for the joint distribution of age and sex. Any number of intervals could be drawn, as any region that covers 0.95 of the posterior density could be accurately be called a 0.95 credible interval. Commonly used: maximum a-posteriori probability (MAP) interval, which seeks to find the region that holds 0.95 of the density, while also having the smallest area. In a 1-dimensional setting, this would

```r
Bayesian model output
summary(f, age=20:21) # posterior means

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
<th>∆</th>
<th>Effect</th>
<th>S.E.</th>
<th>Lower 0.95</th>
<th>Upper 0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>20</td>
<td>21</td>
<td>1</td>
<td>0.15266</td>
<td>0.040614</td>
<td>0.26156</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>1</td>
<td>1.6490</td>
<td>1.041400</td>
<td>1.29900</td>
</tr>
<tr>
<td>sex — male:female</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3.21560</td>
<td>1.032300</td>
<td>5.28140</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>24.91800</td>
<td>3.490400</td>
<td>196.65000</td>
</tr>
</tbody>
</table>

Note that mean vs median doesn't affect HPD intervals, only pt estimates

summary(f, age=20:21, posterior.summary='median') # post. medians

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
<th>∆</th>
<th>Effect</th>
<th>S.E.</th>
<th>Lower 0.95</th>
<th>Upper 0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>20</td>
<td>21</td>
<td>1</td>
<td>0.14893</td>
<td>0.040614</td>
<td>0.26156</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>1</td>
<td>1.16060</td>
<td>1.041400</td>
<td>1.29900</td>
</tr>
<tr>
<td>sex — male:female</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3.15190</td>
<td>1.250000</td>
<td>5.28140</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>23.38100</td>
<td>3.490400</td>
<td>196.65000</td>
</tr>
</tbody>
</table>
translate into having the shortest interval length, and therefore the most precise estimate. The figure below shows the point estimate as well as the corresponding MAP interval.

```r
# display posterior densities for age and sex parameters
plot(f)

plot(f, bivar=TRUE)  # MAP region
```
In the above figure, the point estimate does not appear quite at the point of highest density. This is because `blrm` estimates (by
default) the posterior mean, rather than the posterior mode. You have the full posterior density, so you can calculate whatever you’d like if you don’t want the mean.

A plot of the partial effects on the probability scale from the Bayesian model reveals the same pattern as Figure 8.3.

```
# Partial effects plot
ggplot(Predict(f, age, sex, fun=plogis, funint=FALSE), ylab='P(Y=1)')
```

Using the code in the block above, we calculate the frequentist sampling-based parameter estimate correlation coefficient is 0.75 while the linear correlation between the posterior draws for the age and sex parameters is 0.67. Both models indicate
a comparable amount of correlation between the parameters, though in difference senses (sampling data vs. sampling posterior distribution of parameters).

\[P \leftarrow \text{PostF(f, pr=TRUE)} \]

<table>
<thead>
<tr>
<th>Original Name</th>
<th>Short Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>a1</td>
</tr>
<tr>
<td>sex=male</td>
<td>b1</td>
</tr>
<tr>
<td>age</td>
<td>b2</td>
</tr>
</tbody>
</table>

\[(p1 \leftarrow P(b1 > 0)) \quad \# \text{post prob (sex has positive association with Y)}\]

[1] 0.9999

\[(p2 \leftarrow P(b2 > 0))\]

[1] 0.9994

\[(p3 \leftarrow P(b1 > 0 \land b2 > 0))\]

[1] 0.9993

\[(p4 \leftarrow P(b1 > 0 | b2 > 0))\]

[1] 1

The posterior probability that sex has a positive relationship with hospital death is estimated as \(\text{Prob}(\beta_{sex} > 0) = 0.9999 \) while the posterior probability that age has a positive relationship with hospital death is \(\text{Prob}(\beta_{age} > 0) = 0.9994 \) and the probability of both events is \(\text{Prob}(\beta_{sex} > 0 \land \beta_{age} > 0) = 0.9993 \). Even using somewhat skeptical priors centered around 0, male gender and increasing age are highly likely to be associated with the response.

As seen above, the MCMC algorithm used by \texttt{blrm} provides us with samples from the joint posterior distribution of \(\beta_{age} \) and \(\beta_{sex} \). Unlike frequentist intervals which require the log-likelihood to be approximately quadratic in form, there are no
such restrictions placed on the posterior distribution, as it will always be proportional to the product of the likelihood density and the prior, regardless of the likelihood function that is used. In this specific example, we notice that the bivariate density is somewhat skewed – a characteristic that would likely lead to unequal tail coverage probabilities if a symmetric confidence interval is used.

```r
ggplot(as.data.frame(draws), aes(x='sex=male', y = age)) + geom_hex() + theme(legend.position="none")
```
Chapter 9

Logistic Model Case Study: Survival of Titanic Passengers

Data source: The Titanic Passenger List edited by Michael A. Findlay, originally published in Eaton & Haas (1994) Titanic: Triumph and Tragedy, Patrick Stephens Ltd, and expanded with the help of the Internet community. The original html files were obtained from Philip Hind (1999) (http://atschool.eduweb.co.uk/phind). The dataset was compiled and interpreted by Thomas Cason. It is available in Rand spreadsheet formats from hbiostat.org/data under the name titanic3.
9.1 Descriptive Statistics

```r
require(rms)
options(prType='latex')
getHdata(titanic3)# get dataset from website
# List of names of variables to analyze
v ← c('pclass', 'survived', 'age', 'sex', 'sibsp', 'parch')
t3 ← titanic3[, v]
units(t3$age) ← 'years'
l latex(describe(t3), file='')
```

6 Variables t3 1309 Observations

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pclass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>missing</td>
<td>distinct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1309</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>323</td>
<td>277</td>
<td>709</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>0.247</td>
<td>0.212</td>
<td>0.542</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

survived : Survived						
n	missing	distinct	Info	Sum	Mean	Gmd
1309	0	2	0.708	500	0.382	0.4725

age : Age [years]												
n	missing	distinct	Info	Mean	Gmd .05	.10	.25	.50	.75	.90	.95	
1046	263	98	0.999	29.88	16.06	5	14	21	28	39	50	57

sex						
n	missing	distinct				
1309	0	2				

sibsp : Number of Siblings/Spouses Aboard						
n	missing	distinct	Info	Mean	Gmd	
1309	0	7	0.67	0.4989	0.777	

parch : Number of Parents/Children Aboard						
n	missing	distinct	Info	Mean	Gmd	
1309	0	8	0.549	0.385	0.6375	

```
dd ← datadist(t3)
# describe distributions of variables to rms
options(datadist='dd')
s ← summary(survived ~ age + sex + pclass +
cut2(sibsp,0:3) + cut2(parch,0:3), data=t3)
plot(s, main='', subtitles=FALSE)  # Figure 9.1
```
Show 4-way relationships after collapsing levels. Suppress estimates based on < 25 passengers.

```
A tn ← transform(t3,
  agec = ifelse(age < 21, 'child', 'adult'),
  sibsp= ifelse(sibsp == 0, 'no sib/sp', 'sib/sp'),
  parch= ifelse(parch == 0, 'no par/child', 'par/child'))

g ← function(y) if(length(y) < 25) NA else mean(y)
s ← with(tn, summarize(survived,
    llist(agec, sex, pclass, sibsp, parch), g))
# llist, summarize in Hmisc package
# Figure 9.2:
ggplot(subset(s, agec != 'NA'),
  aes(x=survived, y=pclass, shape=sex)) +
  geom_point() + facet_grid(agec ~ sibsp * parch) +
  xlab('Proportion Surviving') + ylab('Passenger Class') +
  scale_x_continuous(breaks=c(0, .5, 1))
```
Figure 9.2: Multi-way summary of Titanic survival
9.2 Exploring Trends with Nonparametric Regression

Figure 9.3
b ← scale_size_discrete(range=c(.1, .85))

y1 ← ylab(NULL)
p1 ← ggplot(t3, aes(x=age, y=survived)) +
 histSpikeg(survived ~ age, lowess=TRUE, data=t3) +
 ylim(0,1) + yl
p2 ← ggplot(t3, aes(x=age, y=survived, color=sex)) +
 histSpikeg(survived ~ age + sex, lowess=TRUE,
 data=t3) + ylim(0,1) + yl
p3 ← ggplot(t3, aes(x=age, y=survived, size=pclass)) +
 histSpikeg(survived ~ age + pclass, lowess=TRUE,
 data=t3) + b + ylim(0,1) + yl
p4 ← ggplot(t3, aes(x=age, y=survived, color=sex,
 size=pclass)) +
 histSpikeg(survived ~ age + sex + pclass,
 lowess=TRUE, data=t3) +
 b + ylim(0,1) + yl
gridExtra::grid.arrange(p1, p2, p3, p4, ncol=2) # combine 4

Figure 9.4

top ← theme(legend.position='top')
p1 ← ggplot(t3, aes(x=age, y=survived, color=cut2(sibsp,
 0:2)) + stat_plsmo() + b + ylim(0,1) + yl + top +
 scale_color_discrete(name='siblings/spouses')
p2 ← ggplot(t3, aes(x=age, y=survived, color=cut2(parch,
 0:2)) + stat_plsmo() + b + ylim(0,1) + yl + top +
 scale_color_discrete(name='parents/children')
ggridExtra::grid.arrange(p1, p2, ncol=2)
Figure 9.3: Nonparametric regression (loess) estimates of the relationship between age and the probability of surviving the Titanic, with tick marks depicting the age distribution. The top left panel shows unstratified estimates of the probability of survival. Other panels show nonparametric estimates by various stratifications.
Figure 9.4: Relationship between age and survival stratified by the number of siblings or spouses on board (left panel) or by the number of parents or children of the passenger on board (right panel).
9.3 Binary Logistic Model with Casewise Deletion of Missing Values

First fit a model that is saturated with respect to age, sex, pclass. Insufficient variation in sibsp, parch to fit complex interactions or nonlinearities.

```r
f1 <- lrm(survived ~ sex * pclass * rcs(age, 5) + rcs(age, 5) * (sibsp + parch), data = t3) # Table
print(f1, coefs = FALSE)
```

Logistic Regression Model

```r
lrm(formula = survived ~ sex * pclass * rcs(age, 5) + rcs(age, 5) * (sibsp + parch), data = t3)
```

Frequencies of Missing Values Due to Each Variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>survived</td>
<td>1046</td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td>619</td>
<td>0</td>
</tr>
<tr>
<td>pclass</td>
<td>427</td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>263</td>
<td>0</td>
</tr>
<tr>
<td>sibsp</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>parch</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Model Likelihood

<table>
<thead>
<tr>
<th>Ratio Test</th>
<th>Discrimination</th>
<th>Rank Discrim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs 1046</td>
<td>LR χ^2 573.41</td>
<td>R^2 0.569</td>
</tr>
<tr>
<td>0 619</td>
<td>d.f. 39</td>
<td>$R^2_{39,1046}$ 0.400 D_{xy} 0.766</td>
</tr>
<tr>
<td>1 427</td>
<td>Pr($>\chi^2$) < 0.0001</td>
<td>$R^2_{39,758.1}$ 0.506 γ 0.767</td>
</tr>
<tr>
<td>max</td>
<td>$</td>
<td>\frac{\partial \log L}{\partial \beta}</td>
</tr>
</tbody>
</table>

```r
print(anova(f1), table.env = TRUE, label = 'titanic-anova3', size = 'small')
```

3-way interactions, parch clearly insignificant, so drop

```r
f <- lrm(survived ~ (sex + pclass + rcs(age, 5))^2 + rcs(age, 5) * sibsp, data = t3)
print(f)
```

Logistic Regression Model

```r
lrm(formula = survived ~ (sex + pclass + rcs(age, 5))^2 + rcs(age, 5) * sibsp, data = t3)
```
Table 9.1: Wald Statistics for survived

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>d.f.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex (Factor+Higher Order Factors)</td>
<td>187.15</td>
<td>15</td>
<td><0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>59.74</td>
<td>14</td>
<td><0.0001</td>
</tr>
<tr>
<td>pclass (Factor+Higher Order Factors)</td>
<td>100.10</td>
<td>20</td>
<td><0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>46.51</td>
<td>18</td>
<td>0.0003</td>
</tr>
<tr>
<td>age (Factor+Higher Order Factors)</td>
<td>56.20</td>
<td>32</td>
<td>0.0052</td>
</tr>
<tr>
<td>All Interactions</td>
<td>34.57</td>
<td>28</td>
<td>0.1826</td>
</tr>
<tr>
<td>Nonlinear (Factor+Higher Order Factors)</td>
<td>28.66</td>
<td>24</td>
<td>0.2331</td>
</tr>
<tr>
<td>sibsp (Factor+Higher Order Factors)</td>
<td>19.67</td>
<td>5</td>
<td>0.0014</td>
</tr>
<tr>
<td>All Interactions</td>
<td>12.13</td>
<td>4</td>
<td>0.0164</td>
</tr>
<tr>
<td>parch (Factor+Higher Order Factors)</td>
<td>3.51</td>
<td>5</td>
<td>0.6217</td>
</tr>
<tr>
<td>All Interactions</td>
<td>3.51</td>
<td>4</td>
<td>0.4761</td>
</tr>
<tr>
<td>sex \times pclass (Factor+Higher Order Factors)</td>
<td>42.43</td>
<td>10</td>
<td><0.0001</td>
</tr>
<tr>
<td>sex \times age (Factor+Higher Order Factors)</td>
<td>15.89</td>
<td>12</td>
<td>0.1962</td>
</tr>
<tr>
<td>Nonlinear (Factor+Higher Order Factors)</td>
<td>14.47</td>
<td>9</td>
<td>0.1066</td>
</tr>
<tr>
<td>Nonlinear Interaction : f(A,B) vs. AB</td>
<td>4.17</td>
<td>3</td>
<td>0.2441</td>
</tr>
<tr>
<td>pclass \times age (Factor+Higher Order Factors)</td>
<td>13.47</td>
<td>16</td>
<td>0.6385</td>
</tr>
<tr>
<td>Nonlinear (Factor+Higher Order Factors)</td>
<td>12.92</td>
<td>12</td>
<td>0.3749</td>
</tr>
<tr>
<td>Nonlinear Interaction : f(A,B) vs. AB</td>
<td>6.88</td>
<td>6</td>
<td>0.3324</td>
</tr>
<tr>
<td>age \times sibsp (Factor+Higher Order Factors)</td>
<td>12.13</td>
<td>4</td>
<td>0.0164</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>1.76</td>
<td>3</td>
<td>0.6235</td>
</tr>
<tr>
<td>Nonlinear Interaction : f(A,B) vs. AB</td>
<td>1.76</td>
<td>3</td>
<td>0.6235</td>
</tr>
<tr>
<td>age \times parch (Factor+Higher Order Factors)</td>
<td>3.51</td>
<td>4</td>
<td>0.4761</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>1.80</td>
<td>3</td>
<td>0.6147</td>
</tr>
<tr>
<td>Nonlinear Interaction : f(A,B) vs. AB</td>
<td>1.80</td>
<td>3</td>
<td>0.6147</td>
</tr>
<tr>
<td>sex \times pclass \times age (Factor+Higher Order Factors)</td>
<td>8.34</td>
<td>8</td>
<td>0.4006</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>7.74</td>
<td>6</td>
<td>0.2581</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>28.66</td>
<td>24</td>
<td>0.2331</td>
</tr>
<tr>
<td>TOTAL INTERACTION</td>
<td>75.61</td>
<td>30</td>
<td><0.0001</td>
</tr>
<tr>
<td>TOTAL NONLINEAR + INTERACTION</td>
<td>79.49</td>
<td>33</td>
<td><0.0001</td>
</tr>
<tr>
<td>TOTAL</td>
<td>241.93</td>
<td>39</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Frequencies of Missing Values Due to Each Variable

<table>
<thead>
<tr>
<th>survived</th>
<th>sex</th>
<th>pclass</th>
<th>age</th>
<th>sibsp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>619</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>427</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Model Likelihood</th>
<th>Discrimination</th>
<th>Rank Discrim.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ratio Test</td>
<td>Indexes</td>
<td>Indexes</td>
</tr>
<tr>
<td>Obs 1046</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>LR χ^2 553.87</td>
<td>R^2 0.555</td>
<td>C 0.878</td>
</tr>
<tr>
<td>d.f. 26</td>
<td>$R_{26,1046}^2$ 0.396</td>
<td>D_{xy} 0.756</td>
<td></td>
</tr>
<tr>
<td>Pr($>\chi^2$) < 0.0001</td>
<td>$R_{26,758.1}^2$ 0.502</td>
<td>γ 0.758</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brier 0.130</td>
<td>τ_a 0.366</td>
<td></td>
</tr>
</tbody>
</table>

$$\max |\frac{\partial \log L}{\partial \beta}| = 6 \times 10^{-6}$$

| | $\hat{\beta}$ | S.E. | Wald Z | Pr($>|Z|)$ |
|-------------|----------------|------|----------|------------|
| Intercept | 3.3075 | 1.8427 | 1.79 | 0.0727 |
| sex=male | -1.1478 | 1.0878 | -1.06 | 0.2914 |
| pclass=2nd | 6.7309 | 3.9617 | 1.70 | 0.0893 |
| pclass=3rd | -1.6437 | 1.8299 | -0.90 | 0.3691 |
| age | 0.0886 | 0.1346 | 0.66 | 0.5102 |
| age' | -0.7410 | 0.6513 | -1.14 | 0.2552 |
| age" | 4.9264 | 4.0047 | 1.23 | 0.2186 |
| age"" | -6.6129 | 5.4100 | -1.22 | 0.2216 |
| sibsp | -1.0446 | 0.3441 | -3.04 | 0.0024 |
| sex=male × pclass=2nd | -0.7682 | 0.7083 | -1.08 | 0.2781 |
| sex=male × pclass=3rd | 2.1520 | 0.6214 | 3.46 | 0.0005 |
| sex=male × age | -0.2191 | 0.0722 | -3.04 | 0.0024 |
| sex=male × age' | 1.0842 | 0.3886 | 2.79 | 0.0053 |
| sex=male × age" | -6.5578 | 2.6511 | -2.47 | 0.0134 |
| sex=male × age"" | 8.3716 | 3.8532 | 2.17 | 0.0298 |
| pclass=2nd × age | -0.5446 | 0.2653 | -2.05 | 0.0401 |
| pclass=3rd × age | -0.1634 | 0.1308 | -1.25 | 0.2118 |
| pclass=2nd × age' | 1.9156 | 1.0189 | 1.88 | 0.0601 |
| pclass=3rd × age' | 0.8205 | 0.6091 | 1.35 | 0.1780 |
| pclass=2nd × age" | -8.9545 | 5.5027 | -1.63 | 0.1037 |
| pclass=3rd × age" | -5.4276 | 3.6475 | -1.49 | 0.1367 |
| pclass=2nd × age"" | 9.3926 | 6.9559 | 1.35 | 0.1769 |
| pclass=3rd × age"" | 7.5403 | 4.8519 | 1.55 | 0.1202 |
| age × sibsp | 0.0357 | 0.0340 | 1.05 | 0.2933 |
| age' × sibsp | -0.0467 | 0.2213 | -0.21 | 0.8330 |
| age" × sibsp | 0.5574 | 1.6680 | 0.33 | 0.7382 |
| age"" × sibsp | -1.1937 | 2.5711 | -0.46 | 0.6425 |

Note that the adjusted Maddala-Cox-Snell R^2 using an effective sample size of 758.1 is only 0.004 smaller than the full model.
Show the many effects of predictors.

\[p \leftarrow \text{Predict}(f, \text{age, sex, pclass, sibsp}=0, \text{fun=plogis}) \]

\[\text{ggplot}(p) \quad \# \text{Fig. 9.5} \]

\[\text{ggplot}(\text{Predict}(f, \text{sibsp, age=c(10,15,20,50), conf.int=FALSE})) \]

\[\# \text{Figure 9.6} \]

Note that children having many siblings apparently had lower survival. Married adults had slightly higher survival than unmarried ones.

Validate the model using the bootstrap to check overfitting. Ignoring two very insignificant pooled tests.

\[f \leftarrow \text{update}(f, \text{x=TRUE, y=TRUE}) \]

\[\# x=\text{TRUE, y=TRUE} \text{ adds raw data to fit object so can bootstrap} \]

\[\text{set.seed}(131) \quad \# \text{so can replicate re-samples} \]

\[\text{latex}(\text{validate}(f, B=200), \text{digits}=2, \text{size='Ssize'}) \]
Figure 9.5: Effects of predictors on probability of survival of Titanic passengers, estimated for zero siblings or spouses

Figure 9.6: Effect of number of siblings and spouses on the log odds of surviving, for third class males
Table

<table>
<thead>
<tr>
<th>Index</th>
<th>Original Sample</th>
<th>Training Sample</th>
<th>Test Sample</th>
<th>Optimism</th>
<th>Corrected Index</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{xy}</td>
<td>0.76</td>
<td>0.77</td>
<td>0.74</td>
<td>0.03</td>
<td>0.72</td>
<td>200</td>
</tr>
<tr>
<td>R^2</td>
<td>0.55</td>
<td>0.58</td>
<td>0.53</td>
<td>0.05</td>
<td>0.50</td>
<td>200</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.00</td>
<td>0.00</td>
<td>−0.08</td>
<td>0.08</td>
<td>−0.08</td>
<td>200</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>0.86</td>
<td>0.14</td>
<td>0.86</td>
<td>200</td>
</tr>
<tr>
<td>E_{max}</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>200</td>
</tr>
<tr>
<td>D</td>
<td>0.53</td>
<td>0.56</td>
<td>0.49</td>
<td>0.06</td>
<td>0.46</td>
<td>200</td>
</tr>
<tr>
<td>U</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>−0.01</td>
<td>0.01</td>
<td>200</td>
</tr>
<tr>
<td>Q</td>
<td>0.53</td>
<td>0.56</td>
<td>0.49</td>
<td>0.07</td>
<td>0.46</td>
<td>200</td>
</tr>
<tr>
<td>B</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>−0.01</td>
<td>0.14</td>
<td>200</td>
</tr>
<tr>
<td>g</td>
<td>2.43</td>
<td>2.78</td>
<td>2.40</td>
<td>0.38</td>
<td>2.04</td>
<td>200</td>
</tr>
<tr>
<td>g_p</td>
<td>0.37</td>
<td>0.37</td>
<td>0.35</td>
<td>0.02</td>
<td>0.35</td>
<td>200</td>
</tr>
</tbody>
</table>

```r

cal ← calibrate(f, B=200)  # Figure 9.7
plot(cal, subtitles=FALSE)
```

n=1046 Mean absolute error=0.011 Mean squared error=0.00016
0.9 Quantile of absolute error=0.018

![Calibration Curve](image)

Figure 9.7: Bootstrap overfitting-corrected loess nonparametric calibration curve for casewise deletion model

But moderate problem with missing data
Examining Missing Data Patterns

```r
na.patterns ← naclus(titanic3)
require(rpart)  # Recursive partitioning package

who.na ← rpart(is.na(age) ~ sex + pclass + survived +
                 sibsp + parch, data=titanic3, minbucket=15)
naplot(na.patterns, 'na per var')
plot(who.na, margin=.1); text(who.na)  # Figure 9.8
plot(na.patterns)
```

Figure 9.8: Patterns of missing data. Upper left panel shows the fraction of observations missing on each predictor. Lower panel depicts a hierarchical cluster analysis of missingness combinations. The similarity measure shown on the Y-axis is the fraction of observations for which both variables are missing. Right panel shows the result of recursive partitioning for predicting `is.na(age)`. The `rpart` function found only strong patterns according to passenger class.

```r
plot(summary(is.na(age) ~ sex + pclass + survived +
             sibsp + parch, data=t3))  # Figure 9.9

m ← lrm(is.na(age) ~ sex * pclass + survived + sibsp + parch,
         data=t3)
print(m, needspace='3.5in')
```
Logistic Regression Model

\[
lrm(formula = \text{is.na(age)} \sim \text{sex} \times \text{pclass} + \text{survived} + \text{sibsp} + \text{parch}, \text{data} = \text{t3})
\]

<table>
<thead>
<tr>
<th>Obs</th>
<th>1309</th>
<th>LR 114.99</th>
<th>8</th>
<th>0.133</th>
<th>0.703</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>1046</td>
<td></td>
<td>8</td>
<td>0.078</td>
<td>0.406</td>
</tr>
<tr>
<td>TRUE</td>
<td>263</td>
<td></td>
<td></td>
<td>0.156</td>
<td>0.451</td>
</tr>
<tr>
<td>max</td>
<td>5×10^{-6}</td>
<td>0.148</td>
<td>0.131</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9.9: Univariable descriptions of proportion of passengers with missing age
Table 9.3: Wald Statistics for is.na(age)

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>d.f.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex (Factor+Higher Order Factors)</td>
<td>5.61</td>
<td>3</td>
<td>0.1324</td>
</tr>
<tr>
<td>All Interactions</td>
<td>5.58</td>
<td>2</td>
<td>0.0614</td>
</tr>
<tr>
<td>pclass (Factor+Higher Order Factors)</td>
<td>68.43</td>
<td>4</td>
<td><0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>5.58</td>
<td>2</td>
<td>0.0614</td>
</tr>
<tr>
<td>survived</td>
<td>0.98</td>
<td>1</td>
<td>0.3232</td>
</tr>
<tr>
<td>sibsp</td>
<td>0.35</td>
<td>1</td>
<td>0.5548</td>
</tr>
<tr>
<td>parch</td>
<td>7.92</td>
<td>1</td>
<td>0.0049</td>
</tr>
<tr>
<td>sex \times pclass (Factor+Higher Order Factors)</td>
<td>5.58</td>
<td>2</td>
<td>0.0614</td>
</tr>
<tr>
<td>TOTAL</td>
<td>82.90</td>
<td>8</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

| | $\hat{\beta}$ | S.E. | Wald Z | Pr($>|Z|)$ |
|---------------|----------------|------|--------|------------|
| Intercept | -2.2030 | 0.3641| -6.05 | <0.0001 |
| sex=male | 0.6440 | 0.3953| 1.63 | 0.1033 |
| pclass=2nd | -1.0079 | 0.6658| -1.51 | 0.1300 |
| pclass=3rd | 1.6124 | 0.3596| 4.48 | <0.0001 |
| survived | -0.1806 | 0.1828| -0.99 | 0.3232 |
| sibsp | 0.0435 | 0.0737| 0.59 | 0.5548 |
| parch | -0.3526 | 0.1253| -2.81 | 0.0049 |
| sex=male \times pclass=2nd | 0.1347 | 0.7545| 0.18 | 0.8583 |
| sex=male \times pclass=3rd | -0.8563 | 0.4214| -2.03 | 0.0422 |

`print(anova(m), table.env=TRUE, label='titanic-anova.na')` # Table 9.3

pclass and parch are the important predictors of missing age.
First try: conditional mean imputation
Default spline transformation for age caused distribution of imputed values to be much different from non-imputed ones; constrain to linear

```r
xtrans ← transcan(~ I(age) + sex + pclass + sibsp + parch, 
imputed=TRUE, pl=FALSE, pr=FALSE, data=t3)
```

```
summary(xtrans)
```

```
transcan(x = ~I(age) + sex + pclass + sibsp + parch, imputed = TRUE, 
        pr = FALSE, pl = FALSE, data = t3)
```

Iterations: 5

\(R^2 \) achieved in predicting each variable:

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>sex</th>
<th>pclass</th>
<th>sibsp</th>
<th>parch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.264</td>
<td>0.076</td>
<td>0.242</td>
<td>0.249</td>
<td>0.291</td>
</tr>
</tbody>
</table>

Adjusted \(R^2 \):

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>sex</th>
<th>pclass</th>
<th>sibsp</th>
<th>parch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.260</td>
<td>0.073</td>
<td>0.239</td>
<td>0.245</td>
<td>0.288</td>
</tr>
</tbody>
</table>

Coefficients of canonical variates for predicting each (row) variable

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>sex</th>
<th>pclass</th>
<th>sibsp</th>
<th>parch</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>0.92</td>
<td>6.05</td>
<td>-2.02</td>
<td>-2.65</td>
<td></td>
</tr>
<tr>
<td>sex</td>
<td>0.03</td>
<td>-0.56</td>
<td>-0.01</td>
<td>-0.75</td>
<td></td>
</tr>
<tr>
<td>pclass</td>
<td>0.08</td>
<td>-0.26</td>
<td>0.03</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>sibsp</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>parch</td>
<td>-0.03</td>
<td>-0.30</td>
<td>0.23</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

Summary of imputed values

<table>
<thead>
<tr>
<th>age</th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
<td>0</td>
<td>24</td>
<td>0.91</td>
<td>28.53</td>
<td>6.925</td>
<td>17.34</td>
<td>21.77</td>
<td></td>
</tr>
<tr>
<td>.25</td>
<td>.50</td>
<td>.75</td>
<td>.90</td>
<td>.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.17</td>
<td>28.10</td>
<td>28.10</td>
<td>42.77</td>
<td>42.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

lowest : 9.82894 11.75710 13.22440 15.15250 17.28300
highest: 33.24650 34.73840 38.63790 40.83950 42.76770

Starting estimates for imputed values:
Logistic Regression Model

```r
lrm(formula = survived ~ (sex + pclass + rcs(age.i, 5))^2 + rcs(age.i, 5) * sibsp, data = t3)
```

<table>
<thead>
<tr>
<th>Model Likelihood Ratio Test</th>
<th>Discrimination Indexes</th>
<th>Rank Discrim. Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs 1309</td>
<td>LR^2 640.85</td>
<td>R^2 0.526</td>
</tr>
<tr>
<td>0 809</td>
<td>d.f. 26</td>
<td>$R^2_{26,1309}$ 0.375</td>
</tr>
<tr>
<td>1 500</td>
<td>Pr(χ^2) < 0.0001</td>
<td>$R^2_{26,927}$ 0.485</td>
</tr>
<tr>
<td>max $</td>
<td>\frac{\partial \log L}{\partial \beta}</td>
<td>$ 0.0004</td>
</tr>
</tbody>
</table>

$p1 \leftarrow \text{Predict}(f, \text{age}, \text{pclass}, \text{sex}, \text{sibsp}=0, \text{fun}=\text{plogis})$

$p2 \leftarrow \text{Predict}(f.si, \text{age}[,], \text{pclass}, \text{sex}, \text{sibsp}=0, \text{fun}=\text{plogis})$

$p \leftarrow \text{rbind}(\text{'Casewise Deletion'=p1, 'Single Imputation'=p2,}
\text{rename=c(age.i='age'))} # creates .set. variable

```r
ggplot(p, groups='sex', ylab='Probability of Surviving')
```

```
# Figure 9.10
```

```r
print(anova(f.si), table.env=TRUE, label='titanic-anova.si') # Table 9.4
```
Figure 9.10: Predicted probability of survival for males from fit using casewise deletion (bottom) and single conditional mean imputation (top). sibsp is set to zero for these predicted values.
Table 9.4: Wald Statistics for \textit{survived}

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>d.f.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex (Factor+Higher Order Factors)</td>
<td>245.39</td>
<td>7</td>
<td><0.0001</td>
</tr>
<tr>
<td>\textit{All Interactions}</td>
<td>52.85</td>
<td>6</td>
<td><0.0001</td>
</tr>
<tr>
<td>pclass (Factor+Higher Order Factors)</td>
<td>112.07</td>
<td>12</td>
<td><0.0001</td>
</tr>
<tr>
<td>\textit{All Interactions}</td>
<td>36.79</td>
<td>10</td>
<td><0.0001</td>
</tr>
<tr>
<td>age.i (Factor+Higher Order Factors)</td>
<td>49.32</td>
<td>20</td>
<td>0.0003</td>
</tr>
<tr>
<td>\textit{All Interactions}</td>
<td>25.62</td>
<td>16</td>
<td>0.0595</td>
</tr>
<tr>
<td>\textit{Nonlinear (Factor+Higher Order Factors)}</td>
<td>19.71</td>
<td>15</td>
<td>0.1835</td>
</tr>
<tr>
<td>sibsp (Factor+Higher Order Factors)</td>
<td>22.02</td>
<td>5</td>
<td>0.0005</td>
</tr>
<tr>
<td>\textit{All Interactions}</td>
<td>12.28</td>
<td>4</td>
<td>0.0154</td>
</tr>
<tr>
<td>sex \times pclass (Factor+Higher Order Factors)</td>
<td>30.29</td>
<td>2</td>
<td><0.0001</td>
</tr>
<tr>
<td>sex \times age.i (Factor+Higher Order Factors)</td>
<td>8.91</td>
<td>4</td>
<td>0.0633</td>
</tr>
<tr>
<td>\textit{Nonlinear}</td>
<td>5.62</td>
<td>3</td>
<td>0.1319</td>
</tr>
<tr>
<td>\textit{Nonlinear Interaction} : $f(A,B)$ vs. AB</td>
<td>5.62</td>
<td>3</td>
<td>0.1319</td>
</tr>
<tr>
<td>pclass \times age.i (Factor+Higher Order Factors)</td>
<td>6.05</td>
<td>8</td>
<td>0.6421</td>
</tr>
<tr>
<td>\textit{Nonlinear}</td>
<td>5.44</td>
<td>6</td>
<td>0.4888</td>
</tr>
<tr>
<td>\textit{Nonlinear Interaction} : $f(A,B)$ vs. AB</td>
<td>5.44</td>
<td>6</td>
<td>0.4888</td>
</tr>
<tr>
<td>age.i \times sibsp (Factor+Higher Order Factors)</td>
<td>12.28</td>
<td>4</td>
<td>0.0154</td>
</tr>
<tr>
<td>\textit{Nonlinear}</td>
<td>2.05</td>
<td>3</td>
<td>0.5614</td>
</tr>
<tr>
<td>\textit{Nonlinear Interaction} : $f(A,B)$ vs. AB</td>
<td>2.05</td>
<td>3</td>
<td>0.5614</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>19.71</td>
<td>15</td>
<td>0.1835</td>
</tr>
<tr>
<td>TOTAL INTERACTION</td>
<td>67.00</td>
<td>18</td>
<td><0.0001</td>
</tr>
<tr>
<td>TOTAL NONLINEAR $+$ INTERACTION</td>
<td>69.53</td>
<td>21</td>
<td><0.0001</td>
</tr>
<tr>
<td>TOTAL</td>
<td>305.74</td>
<td>26</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Multiple Imputation

The following uses `aregImpute` with predictive mean matching. By default, `aregImpute` does not transform `age` when it is being predicted from the other variables. Four knots are used to transform `age` when used to impute other variables (not needed here as no other missings were present). Since the fraction of observations with missing age is \(\frac{263}{1309} = 0.2 \) we use 20 imputations.

```r
set.seed(17)  # so can reproduce random aspects
mi ← aregImpute(~ age + sex + pclass +
                 sibsp + parch + survived,
                 data=t3, n.impute=20, nk=4, pr=FALSE)
```

Multiple Imputation using Bootstrap and PMM

```
aregImpute(formula = ~age + sex + pclass + sibsp + parch + survived,
            data = t3, n.impute = 20, nk = 4, pr = FALSE)
```

n: 1309 p: 6 Imputations: 20 nk: 4

Number of NAs:

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>sex</th>
<th>pclass</th>
<th>sibsp</th>
<th>parch</th>
<th>survived</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAs</td>
<td>263</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>s 1</td>
</tr>
<tr>
<td>sex</td>
<td>c 1</td>
</tr>
<tr>
<td>pclass</td>
<td>c 2</td>
</tr>
<tr>
<td>sibsp</td>
<td>s 3</td>
</tr>
<tr>
<td>parch</td>
<td>s 3</td>
</tr>
<tr>
<td>survived</td>
<td>l 1</td>
</tr>
</tbody>
</table>

Transformation of Target Variables Forced to be Linear

R-squares for Predicting Non-Missing Values for Each Variable Using Last Imputations of Predictors

<table>
<thead>
<tr>
<th></th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-sq</td>
<td>0.373</td>
</tr>
</tbody>
</table>

Print the first 10 imputations for the first 10 passengers
Show the distribution of imputed (black) and actual ages (gray).

```
plot(mi)
Ecdf(t3$age, add=TRUE, col='gray', lwd=2,
    subtitles=FALSE)  # Fig. 9.11
```

Figure 9.11: Distributions of imputed and actual ages for the Titanic dataset. Imputed values are in black and actual ages in gray.

Fit logistic models for 20 completed datasets and print the ratio of imputation-corrected variances to average ordinary variances

```
f.mi ← fit.mult.impute(
    survived ~ (sex + pclass + rcs(age,5))^2 +
    rcs(age,5)*sibsp,
    lrm, mi, data=t3, pr=FALSE)
print(anova(f.mi), table.env=TRUE, label='titanic-anova.mi',
    size='small')  # Table 9.5
```

The Wald χ^2 for age is reduced by accounting for imputation
but is increased by using patterns of association with survival status to impute missing age.

Show estimated effects of age by classes.

```r
p1 <- predict(f.si, age.i, pclass, sex, sibsp=0, fun=plogis)
p2 <- predict(f.mi, age, pclass, sex, sibsp=0, fun=plogis)
p <- rbind('Single Imputation'=p1, 'Multiple Imputation'=p2, 
          rename=c(age.i='age'))
ggplot(p, groups='sex', ylab='Probability of Surviving')
# Figure 9.12
```
Figure 9.12: Predicted probability of survival for males from fit using single conditional mean imputation again (top) and multiple random draw imputation (bottom). Both sets of predictions are for sibsp=0.
9.7 Summarizing the Fitted Model

Show odds ratios for changes in predictor values

```r
# Get predicted values for certain types of passengers
s <- summary(f.mi, age=c(1,30), sibsp=0:1)
# override default ranges for 3 variables
plot(s, log=TRUE, main='')  # Figure 9.13

phat <- predict(f.mi, combos <- expand.grid(age=c(2,21,50), sex=levels(t3$sex),
                                          pclass=levels(t3$pclass),
                                          sibsp=0), type='fitted')
# Can also use Predict(f.mi, age=c(2,21,50), sex, pclass,
#                      sibsp=0, fun=plogis)$yhat
options(digits=1)
data.frame(combos, phat)
```

<table>
<thead>
<tr>
<th>age</th>
<th>sex</th>
<th>pclass</th>
<th>sibsp</th>
<th>phat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>female</td>
<td>1st</td>
<td>0.97</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>female</td>
<td>1st</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>female</td>
<td>1st</td>
<td>0.97</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>male</td>
<td>1st</td>
<td>0.89</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>male</td>
<td>1st</td>
<td>0.47</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>male</td>
<td>1st</td>
<td>0.26</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>female</td>
<td>2nd</td>
<td>1.00</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>female</td>
<td>2nd</td>
<td>0.90</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>female</td>
<td>2nd</td>
<td>0.81</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>male</td>
<td>2nd</td>
<td>1.00</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>male</td>
<td>2nd</td>
<td>0.08</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>male</td>
<td>2nd</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Figure 9.13: Odds ratios for some predictor settings
We can also get predicted values by creating an S function that will evaluate the model on demand.

```r
def pred.logit <- function (f.mi)
  # Note: if don't define sibsp to pred.logit, defaults to 0
  # normally just type the function name to see its body
  latex(pred.logit, file='', type='Sinput', size='small',
          width.cutoff=49)

  pred.logit <- function (sex ="male", pclass ="3rd", age = 28,
                           sibsp = 0)
  {
    3.373079 - 1.0484795 * (sex == "male") + 5.8078168 *
         (pclass == "2nd") - 1.4370771 * (pclass ==
         "3rd") + 0.07834718 * age - 0.0027150053 *
         pmax(age - 6, 0)^3 + 0.0017093284 * pmax(age -
         21, 0)^3 - 0.0023751505 * pmax(age - 28, 0)^3 +
         0.0010126373 * pmax(age - 36, 0)^3 - 7.5314668e-05 *
         pmax(age - 56, 0)^3 - 1.1799235 * sibsp +
         (sex == "male") * (-0.47754081 * (pclass ==
         "2nd") + 2.0665924 * (pclass == "3rd")) +
         (sex == "male") * (-0.21884197 * age + 0.0004263444 *
         pmax(age - 6, 0)^3 - 0.0023860246 * pmax(age -
         21, 0)^3 + 0.003096682 * pmax(age - 28,
         0)^3 - 0.0012255784 * pmax(age - 36, 0)^3 +
         8.7300463e-05 * pmax(age - 56, 0)^3) +
         (pclass == "2nd") * (-0.47647131 * age + 0.00068483 *
         pmax(age - 6, 0)^3 - 0.0029990417 * pmax(age -
         21, 0)^3 + 0.0031221255 * pmax(age - 28,
         0)^3 - 0.00083472782 * pmax(age - 36,
         0)^3 + 2.6813959e-05 * pmax(age - 56,
         0)^3) + (pclass == "3rd") * (-0.16335774 *
         age + 0.00030986546 * pmax(age - 6, 0)^3 -
         0.0018174715 * age - 0.00027150053 *
         pmax(age - 28, 0)^3 - 0.0010126373 * pmax(age -
         36, 0)^3 + 9.8357307e-05 * pmax(age - 56,
         0)^3) + sibsp * (0.042368037 * age - 2.0590588e-05 *
         pmax(age - 6, 0)^3 + 0.00017884546 * pmax(age -
         21, 0)^3 - 0.00039201911 * pmax(age - 28,
         0)^3 + 0.00028732385 * pmax(age - 36, 0)^3 -
         5.3559508e-05 * pmax(age - 56, 0)^3)
  }

  # Run the newly created function
  plogis(pred.logit(age=c(2,21,50), sex='male', pclass='3rd'))

  [1] 0.912648 0.134219 0.050343
```
A nomogram could be used to obtain predicted values manually, but this is not feasible when so many interaction terms are present.
9.8 Bayesian Analysis

- Repeat the multiple imputation-based approach but using a Bayesian binary logistic model.

- Using default `blrm` function normal priors on regression coefficients with zero mean and large SD making the priors almost flat.

- `blrm` uses the `rstan` package that provides the full power of Stan to R.

- Could use smaller SDs to get penalized estimates.

- Using 4 independent Markov chain Hamiltonion posterior sampling procedures each with 1000 burn-in iterations that are discarded, and 1000 “real” iterations for a total of 4000 posterior sample draws.

- Use the first 10 multiple imputations already developed above (object `mi`), running the Bayesian procedure separately for 10 completed datasets.

- Merely have to stack the posterior draws into one giant sample to account for imputation and get correct posterior distribution.

Use all available CPU cores. Each chain will be run on its
Bayesian Logistic Model

Dirichlet Priors With Concentration Parameter 0.541 for Intercepts

```r
stackMI(formula = survived ~ (sex + pclass + rcs(age, 5))^2 +
        rcs(age, 5) * sibsp, fitter = blrm, xtrans = mi, data = t3, n.impute = 10, refresh = 25)
```

<table>
<thead>
<tr>
<th>Mixed Calibration/</th>
<th>Discrimination</th>
<th>Rank Discrim.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indexes</td>
<td>Indexes</td>
</tr>
<tr>
<td>Obs 1309</td>
<td>B 0.134 [0.132, 0.136]</td>
<td>g 2.543 [2.214, 2.98]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gp 0.358 [0.341, 0.373]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EV 0.463 [0.424, 0.506]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v 5.928 [3.76, 8.404]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vp 0.109 [0.101, 0.119]</td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Mean β</th>
<th>Median β</th>
<th>S.E.</th>
<th>Lower</th>
<th>Upper</th>
<th>Pr(β > 0)</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>4.2251</td>
<td>4.0271</td>
<td>2.1028</td>
<td>0.3645</td>
<td>8.5187</td>
<td>0.9918</td>
<td>1.31</td>
</tr>
<tr>
<td>sex=male</td>
<td>-1.1483</td>
<td>-1.1348</td>
<td>1.0752</td>
<td>-3.2582</td>
<td>0.9551</td>
<td>0.1412</td>
<td>0.97</td>
</tr>
<tr>
<td>pclass=2nd</td>
<td>6.8178</td>
<td>6.3852</td>
<td>4.2035</td>
<td>-0.6757</td>
<td>15.5954</td>
<td>0.9704</td>
<td>1.33</td>
</tr>
<tr>
<td>pclass=3rd</td>
<td>-2.1311</td>
<td>-1.9283</td>
<td>2.0807</td>
<td>-6.3349</td>
<td>1.7351</td>
<td>0.1411</td>
<td>0.78</td>
</tr>
<tr>
<td>age</td>
<td>0.0380</td>
<td>0.0474</td>
<td>0.1467</td>
<td>-0.2514</td>
<td>0.3196</td>
<td>0.6282</td>
<td>0.83</td>
</tr>
<tr>
<td>age'</td>
<td>-0.5689</td>
<td>-0.5807</td>
<td>0.7146</td>
<td>-1.9333</td>
<td>0.8583</td>
<td>0.2098</td>
<td>1.05</td>
</tr>
<tr>
<td>age"</td>
<td>3.8450</td>
<td>3.8366</td>
<td>4.1029</td>
<td>-4.0133</td>
<td>12.0105</td>
<td>0.8270</td>
<td>1.00</td>
</tr>
<tr>
<td>age"'</td>
<td>-5.4485</td>
<td>-5.4036</td>
<td>5.6846</td>
<td>-16.4766</td>
<td>5.8044</td>
<td>0.1676</td>
<td>0.99</td>
</tr>
<tr>
<td>sibsp</td>
<td>-1.2766</td>
<td>-1.2608</td>
<td>0.3520</td>
<td>-0.9766</td>
<td>-0.5998</td>
<td>0.0000</td>
<td>0.89</td>
</tr>
<tr>
<td>sex=male × pclass=2nd</td>
<td>-0.5159</td>
<td>-0.5305</td>
<td>0.7291</td>
<td>-1.9297</td>
<td>0.9332</td>
<td>0.2349</td>
<td>1.07</td>
</tr>
<tr>
<td>sex=male × pclass=3rd</td>
<td>2.2193</td>
<td>2.1910</td>
<td>0.6360</td>
<td>0.9948</td>
<td>3.4821</td>
<td>0.9999</td>
<td>1.14</td>
</tr>
<tr>
<td>sex=male × age</td>
<td>-0.2224</td>
<td>-0.2216</td>
<td>0.0682</td>
<td>-0.3558</td>
<td>-0.0874</td>
<td>0.0006</td>
<td>1.00</td>
</tr>
<tr>
<td>sex=male × age'</td>
<td>1.0582</td>
<td>1.0563</td>
<td>0.3918</td>
<td>0.2956</td>
<td>1.8277</td>
<td>0.9967</td>
<td>1.02</td>
</tr>
<tr>
<td>sex=male × age"</td>
<td>-5.7933</td>
<td>-5.7831</td>
<td>2.5904</td>
<td>-10.9011</td>
<td>-0.7983</td>
<td>0.0115</td>
<td>0.99</td>
</tr>
<tr>
<td>sex=male × age"'</td>
<td>7.2944</td>
<td>7.2764</td>
<td>3.9646</td>
<td>-0.4396</td>
<td>15.0405</td>
<td>0.9678</td>
<td>1.01</td>
</tr>
<tr>
<td>pclass=2nd × age</td>
<td>-0.5464</td>
<td>-0.5230</td>
<td>0.2736</td>
<td>-1.0998</td>
<td>-0.0413</td>
<td>0.0108</td>
<td>0.78</td>
</tr>
<tr>
<td>pclass=3rd × age</td>
<td>-0.1309</td>
<td>-0.1399</td>
<td>0.1437</td>
<td>-0.4029</td>
<td>0.1554</td>
<td>0.1737</td>
<td>1.21</td>
</tr>
</tbody>
</table>
• Note that fit indexes have HPD uncertainty intervals

• Everthing above accounts for imputation

• Look at diagnostics

\[
\text{stanDx(bt)}
\]

Diagnostics for each of 10 imputations

Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size
and Rhat is the potential scale reduction factor on split chains
(at convergence, Rhat=1)
Imputation 1: pclass=2nd * age'' 1277 1.001
Imputation 1: pclass=3rd * age'' 4487 1.000
Imputation 1: pclass=2nd * age'''' 2308 1.001
Imputation 1: pclass=3rd * age'''' 4550 0.999
Imputation 1: age * sibsp 4935 1.000
Imputation 1: age' * sibsp 5548 1.000
Imputation 1: age'' * sibsp 4588 1.000
Imputation 1: age''' * sibsp 4865 1.000
Imputation 1: Intercept 2170 1.001
Imputation 2: sex=male 2872 1.000
Imputation 2: pclass=2nd 1094 1.005
Imputation 2: pclass=3rd 2969 0.999
Imputation 2: age 1107 1.005
Imputation 2: age' 982 1.004
Imputation 2: age'' 1060 1.004
Imputation 2: age''' 2261 1.001
Imputation 2: sibsp 2292 1.001
Imputation 2: sex=male * pclass=2nd 2625 1.001
Imputation 2: sex=male * pclass=3rd 2911 1.000
Imputation 2: sex=male * age 3312 1.001
Imputation 2: sex=male * age' 3058 1.000
Imputation 2: sex=male * age'' 3855 0.999
Imputation 2: sex=male * age''' 3757 1.000
Imputation 2: pclass=2nd * age 936 1.006
Imputation 2: pclass=3rd * age 1665 1.003
Imputation 2: pclass=2nd * age' 803 1.006
Imputation 2: pclass=3rd * age' 2710 0.999
Imputation 2: pclass=2nd * age'' 873 1.006
Imputation 2: pclass=3rd * age'' 3663 1.001
Imputation 2: pclass=2nd * age'''' 1844 1.002
Imputation 2: pclass=3rd * age'''' 4283 1.000
Imputation 2: age * sibsp 3800 1.000
Imputation 2: age' * sibsp 4230 1.000
Imputation 2: age'' * sibsp 3498 1.000
Imputation 2: age''' * sibsp 4123 1.001
Imputation 3: Intercept 2027 1.000
Imputation 3: sex=male 2420 1.001
Imputation 3: pclass=2nd 1623 1.002
Imputation 3: pclass=3rd 2632 1.001
Imputation 3: age 1461 1.002
Imputation 3: age' 1369 1.002
Imputation 3: age'' 1363 1.004
Imputation 3: age''' 2674 1.001
Imputation 3: sibsp 3061 1.001
Imputation 3: sex=male * pclass=2nd 2689 1.000
Imputation 3: sex=male * pclass=3rd 2655 1.000
Imputation 3: sex=male * age 3937 0.999
Imputation 3: sex=male * age' 3925 1.000
Imputation 3: sex=male * age'' 4361 1.000
Imputation 3: sex=male * age''' 4415 1.000
Imputation 3: pclass=2nd * age 1232 1.002
Imputation 3: pclass=3rd * age 2022 1.002
Imputation 3: pclass=2nd * age' 1177 1.002
Imputation 3: pclass=3rd * age' 3244 1.001
Imputation 3: pclass=2nd * age'' 1241 1.002
Imputation 3: pclass=3rd * age'' 3758 1.000
Imputation 3: pclass=2nd * age''' 2459 1.000
Imputation 3: pclass=3rd * age'''	4596 1.000
Imputation 3: age * sibsp	4393 1.000
Imputation 3: age' * sibsp	4592 1.000
Imputation 3: age''' * sibsp	4516 1.001
Imputation 3: age''' * sibsp	3958 1.001
Imputation 4: Intercept	2560 1.000
Imputation 4: sex=male	2852 1.000
Imputation 4: pclass=2nd	1907 1.000
Imputation 4: pclass=3rd	2984 1.001
Imputation 4: age	1707 1.000
Imputation 4: age'	1577 1.001
Imputation 4: age''	1745 1.000
Imputation 4: age'''	2850 1.000
Imputation 4: sibsp	2530 1.000
Imputation 4: sex=male * pclass=2nd	3067 1.001
Imputation 4: sex=male * pclass=3rd	2926 1.001
Imputation 4: sex=male * age	4335 1.002
Imputation 4: sex=male * age'	4144 0.999
Imputation 4: sex=male * age''	4150 0.999
Imputation 4: sex=male * age''	3714 1.000
Imputation 4: pclass=2nd * age	1331 1.001
Imputation 4: pclass=3rd * age	2872 1.001
Imputation 4: pclass=2nd * age'	1315 1.001
Imputation 4: pclass=3rd * age'	2910 1.000
Imputation 4: pclass=2nd * age''	1448 1.001
Imputation 4: pclass=3rd * age''	3777 1.001
Imputation 4: pclass=2nd * age'''	2425 1.000
Imputation 4: pclass=3rd * age'''	4556 1.000
Imputation 4: age * sibsp	4148 1.000
Imputation 4: age' * sibsp	4568 1.001
Imputation 4: age''' * sibsp	3716 0.999
Imputation 4: age'''' * sibsp	4133 0.999
Imputation 5: Intercept	2064 1.000
Imputation 5: sex=male	2836 1.001
Imputation 5: pclass=2nd	1699 1.002
Imputation 5: pclass=3rd	3059 1.002
Imputation 5: age	1397 1.001
Imputation 5: age'	1466 1.001
Imputation 5: age''	1446 1.001
Imputation 5: age'''	2722 1.000
Imputation 5: sibsp	2651 1.000
Imputation 5: sex=male * pclass=2nd	3073 1.000
Imputation 5: sex=male * pclass=3rd	2734 1.001
Imputation 5: sex=male * age	3571 1.001
Imputation 5: sex=male * age'	3261 1.000
Imputation 5: sex=male * age''	4032 1.000
Imputation 5: sex=male * age''	3770 1.001
Imputation 5: pclass=2nd * age	1099 1.001
Imputation 5: pclass=3rd * age	2226 1.000
Imputation 5: pclass=2nd * age'	1212 1.000
Imputation 5: pclass=3rd * age'	2706 1.000
Imputation 5: pclass=2nd * age''	1287 1.000
Imputation 5: pclass=3rd * age''	3603 1.000
Imputation 5: pclass=3rd * age'''	4262 1.000
Imputation 5: age * sibsp	4096 1.000
Imputation 5: age' * sibsp	4242 0.999
Imputation 5: age'' * sibsp	4035 0.999
Imputation 5: age''' * sibsp	4017 1.000
Imputation 6: Intercept	1996 1.000
Imputation 6: sex= male	2782 1.001
Imputation 6: pclass=2nd	1433 1.001
Imputation 6: pclass=3rd	3017 1.000
Imputation 6: age	1258 1.003
Imputation 6: age'	1142 1.001
Imputation 6: age''	1284 1.002
Imputation 6: age'''	2214 1.001
Imputation 6: sibsp	2086 1.001
Imputation 6: sex= male * pclass=2nd	3138 1.001
Imputation 6: sex= male * pclass=3rd	2913 1.000
Imputation 6: sex= male * age	3825 1.000
Imputation 6: sex= male * age'	3781 1.000
Imputation 6: sex= male * age''	3165 1.001
Imputation 6: sex= male * age'''	3738 1.001
Imputation 6: pclass=2nd * age	991 1.003
Imputation 6: pclass=3rd * age	1987 1.000
Imputation 6: pclass=2nd * age'	987 1.003
Imputation 6: pclass=3rd * age'	2994 1.001
Imputation 6: pclass=2nd * age''	1054 1.002
Imputation 6: pclass=3rd * age''	3967 1.000
Imputation 6: pclass=2nd * age'''	1731 1.002
Imputation 6: pclass=3rd * age'''	4709 1.000
Imputation 6: age * sibsp	5053 1.000
Imputation 6: age' * sibsp	4852 1.000
Imputation 6: age''' * sibsp	4735 1.000
Imputation 6: age'''' * sibsp	4711 1.000
Imputation 7: Intercept	1968 1.001
Imputation 7: sex= male	2724 1.000
Imputation 7: pclass=2nd	1497 1.004
Imputation 7: pclass=3rd	2662 1.000
Imputation 7: age	1355 1.006
Imputation 7: age'	1278 1.006
Imputation 7: age''	1425 1.002
Imputation 7: age'''	2861 1.004
Imputation 7: sibsp	2699 1.001
Imputation 7: sex= male * pclass=2nd	3133 1.000
Imputation 7: sex= male * pclass=3rd	2521 1.000
Imputation 7: sex= male * age	3915 1.000
Imputation 7: sex= male * age'	3167 1.001
Imputation 7: sex= male * age''	3304 1.000
Imputation 7: sex= male * age'''	3024 1.002
Imputation 7: pclass=2nd * age	1188 1.006
Imputation 7: pclass=3rd * age	2365 1.001
Imputation 7: pclass=2nd * age'	1035 1.007
Imputation 7: pclass=3rd * age'	2710 1.000
Imputation 7: pclass=2nd * age''	1198 1.004
Imputation 7: pclass=3rd * age''	3147 1.001
Imputation 7: pclass=2nd * age'''	2180 1.003
Imputation 7: pclass=3rd * age'''	3449 1.000
Imputation 7: age * sibsp	4234 1.000
Imputation 7: age' * sibsp	3661 1.000
Imputation 7: age''' * sibsp	3362 1.000
Imputation 7: age'''' * sibsp	3659 0.999
Imputation 8: Intercept	2460 1.000
Imputation 8: sex = male 2775 1.000
Imputation 8: pclass = 2nd 1678 1.002
Imputation 8: pclass = 3rd 2777 1.000
Imputation 8: age 1384 1.001
Imputation 8: age 1 1284 1.002
Imputation 8: age 1 1 1608 1.000
Imputation 8: age 1 1 1 2648 1.001
Imputation 8: sibsp 3020 1.000
Imputation 8: sex = male * pclass = 2nd 3135 1.000
Imputation 8: sex = male * pclass = 3rd 2573 1.000
Imputation 8: sex = male * age 3565 1.000
Imputation 8: sex = male * age 1 3626 0.999
Imputation 8: sex = male * age 1 1 3767 1.000
Imputation 8: sex = male * age 1 1 1 3888 1.000
Imputation 8: pclass = 2nd * age 1095 1.002
Imputation 8: pclass = 3rd * age 2777 1.002
Imputation 8: pclass = 2nd * age 1 1261 1.003
Imputation 8: pclass = 3rd * age 1 1 1 3043 1.000
Imputation 8: pclass = 2nd * age 1 1 1 1234 1.002
Imputation 8: pclass = 3rd * age 1 1 1 3881 1.000
Imputation 8: pclass = 2nd * age 1 1 1 1 2436 1.001
Imputation 8: pclass = 3rd * age 1 1 1 1 4068 1.000
Imputation 8: age * sibsp 3500 1.000
Imputation 8: age 1 * sibsp 4543 1.000
Imputation 8: age 1 1 * sibsp 3692 1.000
Imputation 8: age 1 1 1 * sibsp 4209 1.000
Imputation 9: Intercept 2329 1.000
Imputation 9: sex = male 3018 1.000
Imputation 9: pclass = 2nd 1411 1.003
Imputation 9: pclass = 3rd 2836 1.001
Imputation 9: age 1216 1.004
Imputation 9: age 1 1178 1.003
Imputation 9: age 1 1 1 1280 1.004
Imputation 9: age 1 1 1 1 2887 1.000
Imputation 9: sibsp 2491 1.001
Imputation 9: sex = male * pclass = 2nd 3036 1.001
Imputation 9: sex = male * pclass = 3rd 2505 1.001
Imputation 9: sex = male * age 3263 1.000
Imputation 9: sex = male * age 1 3763 1.000
Imputation 9: sex = male * age 1 1 1 4284 0.999
Imputation 9: sex = male * age 1 1 1 1 3377 1.000
Imputation 9: pclass = 2nd * age 1006 1.004
Imputation 9: pclass = 3rd * age 2261 1.000
Imputation 9: pclass = 2nd * age 1 959 1.005
Imputation 9: pclass = 3rd * age 1 1 3096 1.001
Imputation 9: pclass = 2nd * age 1 1 1 1 1064 1.004
Imputation 9: pclass = 3rd * age 1 1 1 1 4543 1.000
Imputation 9: pclass = 2nd * age 1 1 1 1 1 1898 1.002
Imputation 9: pclass = 3rd * age 1 1 1 1 4256 1.000
Imputation 9: age * sibsp 4510 1.000
Imputation 9: age 1 * sibsp 4832 1.000
Imputation 9: age 1 1 * sibsp 4267 0.999
Imputation 9: age 1 1 1 * sibsp 4354 1.000
Imputation 10: Intercept 2948 0.999
Imputation 10: sex = male 2730 1.000
Imputation 10: pclass = 2nd 3332 1.000
Imputation 10: pclass = 3rd 2646 1.000
CHAPTER 9. LOGISTIC MODEL CASE STUDY: SURVIVAL OF TITANIC PASSENGERS

Imputation 10: age	2859 1.000
Imputation 10: age'	2881 1.000
Imputation 10: age''	3492 0.999
Imputation 10: age'''	4258 1.000
Imputation 10: sibsp	3399 1.000
Imputation 10: sex=male * pclass=2nd	3436 1.000
Imputation 10: sex=male * pclass=3rd	2566 1.000
Imputation 10: sex=male * age	2772 1.000
Imputation 10: sex=male * age'	2633 1.001
Imputation 10: sex=male * age''	3435 1.000
Imputation 10: sex=male * age'''	3772 1.000
Imputation 10: pclass=2nd * age	2373 1.001
Imputation 10: pclass=3rd * age	2457 1.000
Imputation 10: pclass=2nd * age'	2602 1.000
Imputation 10: pclass=3rd * age'	2282 1.000
Imputation 10: pclass=2nd * age''	3161 1.001
Imputation 10: pclass=3rd * age''	2826 1.002
Imputation 10: pclass=2nd * age'''	4128 0.999
Imputation 10: pclass=3rd * age'''	3824 1.000
Imputation 10: age * sibsp	4195 0.999
Imputation 10: age' * sibsp	3988 0.999
Imputation 10: age'' * sibsp	3830 1.000
Imputation 10: age''' * sibsp	3636 1.000

Look at convergence of only 2 parameters

stanDxplot(bt, c('sex=male', 'pclass=3rd', 'age'), rev=TRUE)
- Difficult to see but there are 40 traces (10 imputations \times 4 chains)

- Diagnostics look good; posterior samples can be trusted

- Plot posterior densities for select parameters
- Also shows the 10 densities before stacking

\[
\text{plot(bt, c('sex=male', 'pclass=3rd', 'age'), nrow=2)}
\]

- Plot partial effect plots with 0.95 highest posterior density intervals

\[
p \leftarrow \text{Predict(bt, age, sex, pclass, sibsp=0, fun=plogis, funint=FALSE)}
\]
\[
\text{ggplot(p)}
\]
- Compute approximate measure of explained outcome variation for predictors

```
plot(anova(bt))
```
• Contrast second class males and females, both at 5 years and 30 years of age, all other things being equal

• Compute 0.95 HPD interval for the contrast and a joint uncertainty region

• Compute \(P(\text{both contrasts < 0}), \text{both < -2, and } P(\text{either one < 0}) \)

\[
k \leftarrow \text{contrast(bt, list(sex='male', age=c(5, 30), pclass='2nd'), list(sex='female', age=c(5, 30), pclass='2nd'), cnames = c('age 5 M-F', 'age 30 M-F'))}
\]

<table>
<thead>
<tr>
<th>age</th>
<th>Contrast</th>
<th>S.E.</th>
<th>Lower</th>
<th>Upper</th>
<th>Pr(Contrast >0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>age 5 M-F</td>
<td>5</td>
<td>-2.7761</td>
<td>0.7820</td>
<td>-4.3300</td>
<td>-1.2508</td>
</tr>
<tr>
<td>age 30 M-F</td>
<td>30</td>
<td>-4.1501</td>
<td>0.5168</td>
<td>-5.1807</td>
<td>-3.1610</td>
</tr>
</tbody>
</table>

Intervals are 0.95 highest posterior density intervals
Contrast is the posterior mean

\[
\text{plot}(k)
\]

\[
\text{plot}(k, \text{bivar}=\text{TRUE}) \quad \# \text{assumes an ellipse}
\]
\[
\text{plot}(k, \text{bivar}=\text{TRUE}, \text{bivarmethod}='\text{kernel}') \quad \# \text{doesn't}
\]
\[
\text{P} \leftarrow \text{PostF}(k, \text{pr}=\text{TRUE})
\]
CHAPTER 9. LOGISTIC MODEL CASE STUDY: SURVIVAL OF TITANIC PASSENGERS

Contrast names: age 5 M-F, age 30 M-F

\[P('age 5 M-F' < 0 \& 'age 30 M-F' < 0) \] # note backticks

[1] 0.99962

\[P('age 5 M-F' < -2 \& 'age 30 M-F' < -2) \]

[1] 0.8414

\[P('age 5 M-F' < 0 \mid 'age 30 M-F' < 0) \]

[1] 1

R Software Used

<table>
<thead>
<tr>
<th>Package</th>
<th>Purpose</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hmisc</td>
<td>Miscellaneous functions</td>
<td>summary,plsmo,naclus,llist,latex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>summarize,Dotplot,describe</td>
</tr>
<tr>
<td>Hmisc</td>
<td>Imputation</td>
<td>transcan,impute,fit.mult.impute,aregImpute,stackMI</td>
</tr>
<tr>
<td>rms</td>
<td>Modeling</td>
<td>datadist,lrn,blrm,rcs</td>
</tr>
<tr>
<td></td>
<td>Model presentation</td>
<td>plot,summary,nomogram,Function,anova</td>
</tr>
<tr>
<td></td>
<td>Estimation</td>
<td>Predict,summary,contrast</td>
</tr>
<tr>
<td></td>
<td>Model validation</td>
<td>validate,calibrate</td>
</tr>
<tr>
<td></td>
<td>Misc. Bayesian</td>
<td>stanDx,stanDxplot,plot</td>
</tr>
<tr>
<td>rpart</td>
<td>Recursive partitioning</td>
<td>rpart</td>
</tr>
</tbody>
</table>

Written by Atkinson & Therneau
Chapter 10

Ordinal Logistic Regression

10.1 Background

• Levels of Y are ordered; no spacing assumed

• If no model assumed, one can still assess association between X and Y

• Example: $Y = 0, 1, 2$ corresponds to no event, heart attack, death. Test of association between race (3 levels) and outcome (3 levels) can be obtained from a 2×2 d.f. χ^2 test for a contingency table

• If willing to assuming an ordering of Y and a model, can test for association using 2×1 d.f.

• Proportional odds model: generalization of Wilcoxon-Mann-Whitney-Kruskal-Wallis-Spearman
• Can have n categories for n observations!

• Continuation ratio model: discrete proportional hazards model
10.2 Ordinality Assumption

- Assume X is linearly related to some appropriate log odds.
- Estimate mean $X \mid Y$ with and without assuming the model holds.
- For simplicity assume X discrete.

Let $P_{jx} = \Pr(Y = j \mid X = x, \text{model})$

\[
\Pr(X = x \mid Y = j) = \Pr(Y = j \mid X = x) \frac{\Pr(X = x)}{\Pr(Y = j)}
\]

\[
E(X \mid Y = j) = \sum_x x P_{jx} \frac{\Pr(X = x)}{\Pr(Y = j)},
\]

and the expectation can be estimated by

\[
\hat{E}(X \mid Y = j) = \sum_x x \hat{P}_{jx} \hat{f}_x / g_j,
\]

where $\hat{P}_{jx} =$ estimate of P_{jx} from the 1-predictor model

\[
\hat{E}(X \mid Y = j) = \sum_{i=1}^n x_i \hat{P}_{jx_i} / g_j.
\]
10.3 Proportional Odds Model

Model

• Walker & Duncan [207] — most popular ordinal response model

• For convenience $Y = 0, 1, 2, \ldots, k$

$$\Pr[Y \geq j | X] = \frac{1}{1 + \exp[-(\alpha_j + X\beta)]},$$

where $j = 1, 2, \ldots, k$.

• α_j is the logit of $\text{Prob}[Y \geq j]$ when all Xs are zero

• $\text{Odds}[Y \geq j | X] = \exp(\alpha_j + X\beta)$

• $\text{Odds}[Y \geq j | X_m = a + 1] / \text{Odds}[Y \geq j | X_m = a] = e^{\beta_m}$

• Same odds ratio e^{β_m} for any $j = 1, 2, \ldots, k$

• $\text{Odds}[Y \geq j | X] / \text{Odds}[Y \geq v | X] = \frac{e^{\alpha_j + X\beta}}{e^{\alpha_v + X\beta}} = e^{\alpha_j - \alpha_v}$

• $\text{Odds}[Y \geq j | X] = constant \times \text{Odds}[Y \geq v | X]$

• Assumes OR for 1 unit increase in age is the same when considering the probability of death as when considering the
probability of death or heart attack

- PO model only uses ranks of \(Y \); same \(\hat{\beta} \)s if transform \(Y \); is robust to outliers

Assumptions and Interpretation of Parameters

Estimation

Residuals

- Construct binary events \(Y \geq j, j = 1, 2, \ldots, k \) and use corresponding predicted probabilities

\[
\hat{P}_{ij} = \frac{1}{1 + \exp[-(\hat{\alpha}_j + X_i\hat{\beta})]},
\]

- Score residual for subject \(i \) predictor \(m \):

\[
U_{im} = X_{im}(Y_i \geq j) - \hat{P}_{ij},
\]

- For each column of \(U \) plot mean \(\overline{U}_m \) and C.L. against \(Y \)

- Partial residuals are more useful as they can also estimate
covariable transformations [116, 42]:

\[r_{im} = \hat{\beta}_m X_{im} + \frac{Y_i - \hat{P}_i}{\hat{P}_i(1 - \hat{P}_i)}, \]

where \(\hat{P}_i = \frac{1}{1 + \exp[-(\alpha + X_i\hat{\beta})]} \).

- Smooth \(r_{im} \) vs. \(X_{im} \) to estimate how \(X_m \) relates to the log relative odds that \(Y = 1|X_m \)

- For ordinal \(Y \) compute binary model partial res. for all cut-offs \(j \):

\[r_{im} = \hat{\beta}_m X_{im} + \frac{[Y_i \geq j] - \hat{P}_{ij}}{\hat{P}_{ij}(1 - \hat{P}_{ij})}, \]

Li and Shepherd[124] have a residual for ordinal models that serves for the entire range of \(Y \) without the need to consider cutoffs. Their residual is useful for checking functional form of predictors but not the proportional odds assumption.

Assessment of Model Fit

- Section 10.2

- Stratified proportions \(Y \geq j, j = 1, 2, \ldots, k \), since \(\text{logit}(Y \geq j|X) - \text{logit}(Y \geq i|X) = \alpha_j - \alpha_i \), for any constant \(X \)
getHdata(support)
sfdm ← as.integer(support$sfdm2) - 1
sf ← function(y)
 c(‘Y ≥ 1’=qlogis(mean(y ≥ 1)), ‘Y ≥ 2’=qlogis(mean(y ≥ 2)),
 ‘Y ≥ 3’=qlogis(mean(y ≥ 3)))
s ← summary(sfdm ~ adlsc + sex + age + meanbp, fun=sf, data=support)
plot(s, which=1:3, pch=1:3, xlab='logit’, vnames='names’, main='',
 width.factor=1.5)

Figure 10.1: Checking PO assumption separately for a series of predictors. The circle, triangle, and plus sign correspond to
Y ≥ 1, 2, 3, respectively. PO is checked by examining the vertical constancy of distances between any two of these three symbols.
Response variable is the severe functional disability scale sfdm2 from the 1000-patient SUPPORT dataset, with the last two categories
combined because of low frequency of coma/intubation.

Note that computing ORs for various cutoffs and seeing dis-
agreements among them can cause reviewers to confuse lack
of fit with sampling variation (random chance). For a 4-level Y
having a given vector of probabilities in a control group, let’s
assume PO with a true OR of 3 and simulate 10 experiments
to show variation of observed ORs over all cutoffs of Y. First
do it for a sample size of n=10,000 then for n=200.
A better approach for discrete Y is to show the impact of making the PO assumption:

- Select a set of covariate settings over which to evaluate accuracy of predictions
- Vary at least one of the predictors, i.e., the one for which you want to assess the impact of the PO assumption
- Fit a PO model the usual way
- Fit other models that relax the PO assumption
 - to relax the PO assumption for all predictors fit a multinomial logistic model
– to relax the PO assumption for a subset of predictors
fit a partial PO model[153] (here using the R VGAM vglm function)

- For all the covariate combinations evaluate predicted probabilities for all levels of Y using the PO model and the relaxed assumption models

- Use the bootstrap to compute confidence intervals for the difference in predicted probabilities between a PO and a relaxed model. This guards against over-emphasis of differences when the sample size does not support estimation, especially for the relaxed model with more parameters. Note that the sample problem occurs when comparing predicted unadjusted probabilities to observed proportions, as observed proportions can be noisy.

Example: re-do the assessment above

```r
require(rms)

# Need source() until impactPO is in an rms update on CRAN
# source('https://raw.githubusercontent.com/harrelfe/rms/master/R/impactPO.r')
# One headache: since using a non-rms fitting function need to hard
# code knots in splines
kq ← seq(0.05, 0.95, length=4)
kage ← quantile(support$age, kq, na.rm=TRUE)
kbp ← quantile(support$meanbp, kq, na.rm=TRUE)

d ← expand.grid(adlsc=0:6, sex='male', age=65, meanbp=78)

# Because of very low frequency (7) of sfdm=3, combine categories 3, 4
support$sfdm3 ← pmin(sfdm, 3)

done.impact ← FALSE
if(done.impact) w ← readRDS('impactPO.rds') else {
  set.seed(1)
  w ← impactPO(sfdm3 ~ pol(adlsc, 2) + sex + rcs(age, kage) +
                  rcs(meanbp, kbp), nonpo =~ pol(adlsc, 2),
                  newdata=d, B=300, data=support)
```
```r
saveRDS(w, 'impactPO.rds')
```

<table>
<thead>
<tr>
<th></th>
<th>PO</th>
<th>PPO</th>
<th>Multinomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>1871.70</td>
<td>1824.79</td>
<td>1795.93</td>
</tr>
<tr>
<td>d.f.</td>
<td>12</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>AIC</td>
<td>1895.70</td>
<td>1856.79</td>
<td>1855.93</td>
</tr>
<tr>
<td>p</td>
<td>9</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>LR chi^2</td>
<td>124.11</td>
<td>171.02</td>
<td>199.89</td>
</tr>
<tr>
<td>LR - p</td>
<td>115.11</td>
<td>158.02</td>
<td>172.89</td>
</tr>
<tr>
<td>LR chi^2 test for PO</td>
<td>46.91</td>
<td>75.77</td>
<td></td>
</tr>
<tr>
<td>d.f.</td>
<td>4</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Pr(>chi^2)</td>
<td><0.0001</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>MCS R2</td>
<td>0.137</td>
<td>0.184</td>
<td>0.212</td>
</tr>
<tr>
<td>MCS R2 adj</td>
<td>0.128</td>
<td>0.171</td>
<td>0.186</td>
</tr>
<tr>
<td>McFadden R2</td>
<td>0.062</td>
<td>0.086</td>
<td>0.100</td>
</tr>
<tr>
<td>McFadden R2 adj</td>
<td>0.053</td>
<td>0.073</td>
<td>0.073</td>
</tr>
<tr>
<td>Mean</td>
<td>difference</td>
<td>from PO</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Covariate combination-specific mean |difference| in predicted probabilities

<table>
<thead>
<tr>
<th>method adlsc</th>
<th>sex</th>
<th>age</th>
<th>meanbp</th>
<th>Mean</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PO0</td>
<td>0</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>PPO</td>
<td>1</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>PPO</td>
<td>2</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>PPO</td>
<td>3</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>PPO</td>
<td>4</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>PPO</td>
<td>5</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>PPO</td>
<td>6</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>Multinomial</td>
<td>0</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>Multinomial</td>
<td>1</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>31</td>
<td>Multinomial</td>
<td>2</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>41</td>
<td>Multinomial</td>
<td>3</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>51</td>
<td>Multinomial</td>
<td>4</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>61</td>
<td>Multinomial</td>
<td>5</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>71</td>
<td>Multinomial</td>
<td>6</td>
<td>male</td>
<td>65</td>
<td>78</td>
</tr>
</tbody>
</table>

Bootstrap 0.95 confidence intervals for differences in model predicted probabilities based on 253 bootstraps

<table>
<thead>
<tr>
<th>adlsc</th>
<th>sex</th>
<th>age</th>
<th>meanbp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>male</td>
<td>65</td>
</tr>
</tbody>
</table>

PO - PPO probability estimates

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>-0.020</td>
<td>-0.013</td>
<td>-0.001</td>
<td>-0.034</td>
</tr>
<tr>
<td>Upper</td>
<td>0.007</td>
<td>0.036</td>
<td>0.030</td>
<td>-0.001</td>
</tr>
</tbody>
</table>

PO - Multinomial probability estimates

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>-0.051</td>
<td>-0.038</td>
<td>-0.010</td>
<td>-0.041</td>
</tr>
<tr>
<td>Upper</td>
<td>0.031</td>
<td>0.061</td>
<td>0.035</td>
<td>-0.004</td>
</tr>
</tbody>
</table>
shoulder.1

adlsc **sex** **age** **meanbp**
2 1 male 65 78

PO - PPO probability estimates

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>-0.038</td>
<td>0.033</td>
<td>-0.015</td>
<td>-0.027</td>
</tr>
<tr>
<td>Upper</td>
<td>-0.014</td>
<td>0.074</td>
<td>-0.004</td>
<td>-0.008</td>
</tr>
</tbody>
</table>

PO - Multinomial probability estimates

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>-0.083</td>
<td>0.018</td>
<td>-0.027</td>
<td>-0.033</td>
</tr>
<tr>
<td>Upper</td>
<td>-0.009</td>
<td>0.091</td>
<td>0.025</td>
<td>0.003</td>
</tr>
</tbody>
</table>

adlsc **sex** **age** **meanbp**
3 2 male 65 78

PO - PPO probability estimates

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>-0.045</td>
<td>0.037</td>
<td>-0.043</td>
<td>-0.024</td>
</tr>
<tr>
<td>Upper</td>
<td>-0.006</td>
<td>0.090</td>
<td>-0.013</td>
<td>0.001</td>
</tr>
</tbody>
</table>

PO - Multinomial probability estimates

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>-0.085</td>
<td>0.028</td>
<td>-0.061</td>
<td>-0.032</td>
</tr>
<tr>
<td>Upper</td>
<td>-0.009</td>
<td>0.100</td>
<td>0.018</td>
<td>0.014</td>
</tr>
</tbody>
</table>

adlsc **sex** **age** **meanbp**
4 3 male 65 78

PO - PPO probability estimates

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>0.006</td>
<td>-0.052</td>
<td>-0.049</td>
<td>-0.005</td>
</tr>
<tr>
<td>Upper</td>
<td>0.057</td>
<td>0.015</td>
<td>-0.003</td>
<td>0.028</td>
</tr>
</tbody>
</table>

PO - Multinomial probability estimates

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>-0.060</td>
<td>0.012</td>
<td>-0.079</td>
<td>-0.035</td>
</tr>
<tr>
<td>Upper</td>
<td>0.014</td>
<td>0.093</td>
<td>0.018</td>
<td>0.020</td>
</tr>
</tbody>
</table>

adlsc **sex** **age** **meanbp**
5 4 male 65 78

PO - PPO probability estimates

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>0.006</td>
<td>-0.052</td>
<td>-0.049</td>
<td>-0.005</td>
</tr>
<tr>
<td>Upper</td>
<td>0.057</td>
<td>0.015</td>
<td>-0.003</td>
<td>0.028</td>
</tr>
</tbody>
</table>

PO - Multinomial probability estimates
AIC indicates that a model assuming PO nowhere is better than one that assumes PO everywhere. The PPO model with far fewer parameters is just as good, and is also better than the PO model, indicating non-PO with respect to \texttt{adlsc}. The fit of the PO model is such that cell probabilities become more inaccurate for higher level outcomes. This can also be seen by the
Figure 10.2: Checking the impact of the PO assumption by comparing predicted probabilities of all outcome categories from a PO model with a multinomial logistic model that assumes PO for no variables and a partial proportional odds model that does not assume PO for a key variable of interest.
increasing mean absolute differences with probability estimates from the PO model. Bootstrap nonparametric percentile confidence intervals (300 resamples, not all of which converged) for differences in predicted cell probabilities between the PO model and a relaxed model are also found above. Some of these intervals exclude 0, in line with the other evidence for non-PO.

See fharrell.com/post/impactpo for a similar example but with proportional odds clearly violated.

When Y is continuous or almost continuous and X is discrete, the PO model assumes that the logit of the cumulative distribution function of Y is parallel across categories of X. The corresponding, more rigid, assumptions of the ordinary linear model (here, parametric ANOVA) are parallelism and linearity of the normal inverse cumulative distribution function across categories of X. As an example consider the web site’s diabetes dataset, where we consider the distribution of log glycohemoglobin across subjects’ body frames.

```r
getHdata(diabetes)
a <- Ecdf(~ log(glyhb), group=frame, fun=qnorm, xlab='log(HbA1c)',
  label.curves=FALSE, data=diabetes,
  ylab=expression(paste(Phi^-1, (F[n](x)))) )
# Figure 10.3
b <- Ecdf(~ log(glyhb), group=frame, fun=qlogis, xlab='log(HbA1c)',
  label.curves=list(keys='lines'), data=diabetes,
  ylab=expression(logit(F[n](x))))
print(a, more=TRUE, split=c(1,1,2,1))
print(b, split=c(2,1,2,1))
```
10.3.6 Quantifying Predictive Ability

10.3.7 Describing the Model

For PO models there are four and sometimes five types of relevant predictions:

1. $\text{logit}[Y \geq j | X]$, i.e., the linear predictor
2. $\text{Prob}[Y \geq j | X]$
3. $\text{Prob}[Y = j | X]$
4. Quantiles of $Y | X$ (e.g., the median\(^a\))
5. $E(Y | X)$ if Y is interval scaled.

\(^a\)If Y does not have very many levels, the median will be a discontinuous function of X and may not be satisfactory.
Graphics:

1. Partial effect plot (prob. scale or mean)
2. Odds ratio chart
3. Nomogram (possibly including the mean)

Validating the Fitted Model

R Functions

The `rms` package’s `lrm` and `orm` functions fit the PO model directly, assuming that the levels of the response variable (e.g., the levels of a factor variable) are listed in the proper order. `predict` computes all types of estimates except for quantiles. `orm` allows for more link functions than the logistic and is intended to efficiently handle hundreds of intercepts as happens when Y is continuous.

The R functions `popower` and `posamsize` (in the Hmisc package) compute power and sample size estimates for ordinal responses using the proportional odds model.

The function `plot.xmean.ordinaly` in `rms` computes and graphs the quantities described in Section 10.2. It plots simple Y-stratified means overlaid with $\hat{E}(X|Y = j)$, with j on the x-axis. The \hat{E}'s are computed for both PO and continuation
ratio ordinal logistic models.

The `Hmisc` package’s `summary.formula` function is also useful for assessing the PO assumption.

Generic `rms` functions such as `validate`, `calibrate`, and `nomogram` work with PO model fits from `lrm` as long as the analyst specifies which intercept(s) to use.

`rms` has a special function generator `Mean` for constructing an easy-to-use function for getting the predicted mean Y from a PO model. This is handy with `plot` and `nomogram`. If the fit has been run through `bootcov`, it is easy to use the `Predict` function to estimate bootstrap confidence limits for predicted means.
10.4 Continuation Ratio Model

10.4.1 Model

Unlike the PO model, which is based on cumulative probabilities, the continuation ratio (CR) model is based on conditional probabilities. The (forward) CR model [70, 6, 20] is stated as follows for $Y = 0, \ldots, k$:

$$
\Pr(Y = j|Y \geq j, X) = \frac{1}{1 + \exp[-(\theta_j + X\gamma)]}
$$

$$
\logit(Y = 0|Y \geq 0, X) = \logit(Y = 0|X) = \theta_0 + X\gamma
$$

$$
\logit(Y = 1|Y \geq 1, X) = \theta_1 + X\gamma
$$

$$
\cdots
$$

$$
\logit(Y = k - 1|Y \geq k - 1, X) = \theta_{k-1} + X\gamma.
$$

The CR model has been said to be likely to fit ordinal responses when subjects have to “pass through” one category to get to the next. The CR model is a discrete version of the Cox proportional hazards model. The discrete hazard function is defined as $\Pr(Y = j|Y \geq j)$.

Advantage of CR model: easy to allow unequal slopes across
To check CR model assumptions, binary logistic model partial residuals are again valuable. We separately fit a sequence of binary logistic models using a series of binary events and the corresponding applicable (increasingly small) subsets of subjects, and plot smoothed partial residuals against X for all of the binary events. Parallelism in these plots indicates that the CR model’s constant γ assumptions are satisfied.
10.4.5 Assessment of Model Fit

10.4.6 Extended CR Model

10.4.7 Role of Penalization in Extended CR Model

10.4.8 Validating the Fitted Model

10.4.9 R Functions

The `cr.setup` function in `rms` returns a list of vectors useful in constructing a dataset used to trick a binary logistic function such as `lrm` into fitting CR models.
Chapter 11

Regression Models for Continuous Y and Case Study in Ordinal Regression

This chapter concerns univariate continuous Y. There are many multivariable models for predicting such response variables.

- linear models with assumed normal residuals, fitted with ordinary least squares
- generalized linear models and other parametric models based on special distributions such as the gamma
- generalized additive models (GAMs)
- generalization of GAMs to also nonparametrically transform Y
- quantile regression (see Section 11.3)
- other robust regression models that, like quantile regres-
sion, use an objective different from minimizing the sum of squared errors [198]

- semiparametric models based on the ranks of Y, such as the Cox proportional hazards model and the proportional odds ordinal logistic model

- cumulative probability models (often called *cumulative link models*) which are semiparametric models from a wider class of families than the logistic

Semiparametric models that treat Y as ordinal but not interval-scaled have many advantages including robustness and freedom of distributional assumptions for Y conditional on any given set of predictors.

Advantages are demonstrated in a case study of a cumulative probability ordinal model. Some of the results are compared to quantile regression and OLS. Many of the methods used in the case study also apply to ordinary linear models.
11.1 Dataset and Descriptive Statistics

- Diabetes Mellitus (DM) type II (adult onset diabetes) is strongly associated with obesity

- Primary laboratory test for diabetes: glycated hemoglobin (HbA$_{1c}$), also called glycated hemoglobin, glycohemoglobin, or hemoglobin A_{1c}.

- HbA$_{1c}$ reflects average blood glucose for the preceding 60 to 90 days

- HbA$_{1c} > 7.0$ usually taken as a positive diagnosis of diabetes

- Goal of analysis:
 - better understand effects of body size measurements on risk of DM
 - enhance screening for DM

- Best way to develop a model for DM screening is **not** to fit binary logistic model with HbA$_{1c} > 7$ as the response variable
 - All cutpoints are arbitrary; no justification for any putative cut
- HbA$_{1c}$ 2=6.9, 7.1=10

- Larger standard errors of $\hat{\beta}$, lower power, wider confidence bands

- Better: predict continuous HbA$_{1c}$ using continuous response model, then convert to probability HbA$_{1c}$ exceeds any cutoff or estimate 0.9 quantile of HbA$_{1c}$

- Data: U.S. National Health and Nutrition Examination Survey (NHANES) from National Center for Health Statistics/CDC: [http://www.cdc.gov/nchs/nhanes.htm][34]

- age \geq 80 coded as 80 by CDC

- Subset with age \geq 21, neither diagnosed nor treated for DM

```
require(rms)

options(prType='latex')  # for print, summary,anova
gethdata(nhgh)
w <- subset(nhgh, age $\geq$ 21 & dx==0 & tx==0, select=-c(dx,tx))
lap(x(describe(w), file=''))
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Missing</th>
<th>Distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>seqn</td>
<td></td>
<td>0</td>
<td>4629</td>
<td>1</td>
<td>56902</td>
<td>3501</td>
<td>52136</td>
<td>52633</td>
<td>54284</td>
<td>56930</td>
<td>59495</td>
<td>61079</td>
<td>61641</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td>0</td>
<td>4629</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td></td>
<td>0</td>
<td>703</td>
<td>1</td>
<td>48.57</td>
<td>19.85</td>
<td>23.33</td>
<td>26.08</td>
<td>33.92</td>
<td>46.83</td>
<td>61.83</td>
<td>74.83</td>
<td>80.00</td>
</tr>
<tr>
<td>lowest</td>
<td></td>
<td>51624</td>
<td>51629</td>
<td>51630</td>
<td>51645</td>
<td>51647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td></td>
<td>62152</td>
<td>62153</td>
<td>62155</td>
<td>62157</td>
<td>62158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Value male female
 Frequency 2259 2370
 Proportion 0.488 0.512

- age: Age [years]
CHAPTER 11. REGRESSION MODELS FOR CONTINUOUS Y AND CASE STUDY IN ORDINAL REGRESSION

re: Race/Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>Mexican American</td>
<td>4629</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>highest</td>
<td>Mexican American</td>
<td>4629</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

- Mexican American (832, 0.180), Other Hispanic (474, 0.102), Non-Hispanic White (2318, 0.501), Non-Hispanic Black (756, 0.163), Other Race Including Multi-Racial (249, 0.054)

income: Family Income

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>0-5000</td>
<td>162</td>
<td>0.037</td>
<td>80.49</td>
<td>52.44</td>
<td>66.10</td>
<td>77.70</td>
<td>91.46</td>
<td>106.52</td>
<td>118.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>> 20000</td>
<td>52</td>
<td>0.012</td>
<td>97.62</td>
<td>74.88</td>
<td>86.90</td>
<td>96.30</td>
<td>107.00</td>
<td>117.80</td>
<td>125.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 0-5000 (162, 0.037), 5000-10000 (216, 0.049), 10000-15000 (371, 0.085), 15000-20000 (535, 0.122), 20000-25000 (421, 0.096), > 20000 (149, 0.034), < 20000 (52, 0.012), 75000-100000 (399, 0.091), > 100000 (619, 0.141)

wt: Weight [kg]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>33.2</td>
<td>36.1</td>
<td>37.9</td>
<td>38.5 38.7</td>
<td>184.3</td>
<td>186.9</td>
<td>193.6</td>
<td>196.6</td>
<td>203.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>61.2</td>
<td>62.81</td>
<td>65.3</td>
<td>67.1</td>
<td>84.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ht: Standing Height [cm]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>123.3</td>
<td>135.4</td>
<td>137.5</td>
<td>139.4</td>
<td>139.8</td>
<td>199.2</td>
<td>199.3</td>
<td>201.7</td>
<td>202.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>184.3</td>
<td>186.9</td>
<td>193.6</td>
<td>196.6</td>
<td>203.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bmi: Body Mass Index [kg/m²]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>13.18</td>
<td>14.59</td>
<td>15.02</td>
<td>15.40</td>
<td>15.49</td>
<td>49.0</td>
<td>49.5</td>
<td>50.0</td>
<td>50.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>61.2</td>
<td>62.81</td>
<td>65.3</td>
<td>67.1</td>
<td>84.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

leg: Upper Leg Length [cm]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>20.4</td>
<td>24.9</td>
<td>25.0</td>
<td>25.1</td>
<td>26.4</td>
<td>49.0</td>
<td>49.5</td>
<td>50.0</td>
<td>50.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>45.2</td>
<td>45.6</td>
<td>46.0</td>
<td>47.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

arm: Upper Arm Length [cm]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>24.8</td>
<td>27.0</td>
<td>27.5</td>
<td>29.2</td>
<td>29.5</td>
<td>45.2</td>
<td>45.5</td>
<td>45.6</td>
<td>46.0</td>
<td>47.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>65.2</td>
<td>54.9</td>
<td>55.3</td>
<td>56.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

armc: Arm Circumference [cm]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>17.9</td>
<td>19.0</td>
<td>19.3</td>
<td>19.5</td>
<td>19.9</td>
<td>54.2</td>
<td>54.9</td>
<td>55.3</td>
<td>56.0</td>
<td>61.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>65.2</td>
<td>54.9</td>
<td>55.3</td>
<td>56.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

waist: Waist Circumference [cm]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>59.7</td>
<td>60.0</td>
<td>61.5</td>
<td>62.0</td>
<td>62.4</td>
<td>160.0</td>
<td>160.6</td>
<td>162.2</td>
<td>162.7</td>
<td>168.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>65.2</td>
<td>54.9</td>
<td>55.3</td>
<td>56.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

tri: Triceps Skinfold [mm]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>2.6</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
<td>3.4</td>
<td>39.6</td>
<td>39.8</td>
<td>40.0</td>
<td>40.2</td>
<td>40.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>45.2</td>
<td>45.6</td>
<td>46.0</td>
<td>47.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sub: Subscapular Skinfold [mm]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td>3.8</td>
<td>4.2</td>
<td>4.6</td>
<td>4.8</td>
<td>4.9</td>
<td>40.0</td>
<td>40.1</td>
<td>40.2</td>
<td>40.3</td>
<td>40.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highest</td>
<td>45.2</td>
<td>45.6</td>
<td>46.0</td>
<td>47.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 11. REGRESSION MODELS FOR CONTINUOUS Y AND CASE STUDY IN ORDINAL REGRESSION

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>gh</td>
<td>Glycohemoglobin [%]</td>
<td>4629</td>
<td>0</td>
<td>63</td>
<td>0.994</td>
<td>5.533</td>
<td>0.541</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>5.5</td>
<td>5.8</td>
<td>6.0</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
<td>4.0</td>
<td>4.1</td>
<td>4.2</td>
<td>4.3</td>
<td>4.4</td>
<td>4.5</td>
<td>4.6</td>
<td>4.7</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>highest</td>
<td>11.9</td>
<td>12.0</td>
<td>12.1</td>
<td>12.3</td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>albumin</td>
<td>Albumin [g/dL]</td>
<td>4576</td>
<td>53</td>
<td>26</td>
<td>0.99</td>
<td>4.261</td>
<td>0.352</td>
<td>3.7</td>
<td>3.9</td>
<td>4.1</td>
<td>4.3</td>
<td>4.5</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
<td>2.6</td>
<td>2.7</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>highest</td>
<td>4.9</td>
<td>5.0</td>
<td>5.1</td>
<td>5.2</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bun</td>
<td>Blood urea nitrogen [mg/dL]</td>
<td>4576</td>
<td>53</td>
<td>50</td>
<td>0.995</td>
<td>13.03</td>
<td>5.309</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>highest</td>
<td>49</td>
<td>53</td>
<td>55</td>
<td>56</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCr</td>
<td>Creatinine [mg/dL]</td>
<td>4576</td>
<td>53</td>
<td>167</td>
<td>1</td>
<td>0.8887</td>
<td>0.2697</td>
<td>0.58</td>
<td>0.62</td>
<td>0.72</td>
<td>0.84</td>
<td>0.99</td>
<td>1.14</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
<td>0.34</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
<td>0.42</td>
<td>0.43</td>
<td>0.44</td>
<td>0.45</td>
<td>0.46</td>
<td>0.47</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>highest</td>
<td>5.98</td>
<td>6.34</td>
<td>9.13</td>
<td>10.98</td>
<td>15.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```r
dd <- datadist(w); options(datadist='dd')
```
11.2 The Linear Model

The most popular multivariable model for analyzing a univariate continuous Y is the linear model

$$E(Y|X) = X\beta,$$

where β is estimated using ordinary least squares, that is, by solving for $\hat{\beta}$ to minimize $\sum(Y_i - X\hat{\beta})^2$.

- To compute P-values and confidence limits using parametric methods (and for least squares estimates to coincide with maximum likelihood estimates) we would have to assume that $Y|X$ is normal with mean $X\beta$ and constant variance σ^2.

11.2.1 Checking Assumptions of OLS and Other Models

- First see if g_h would make a Gaussian residuals model fit
- Use ordinary regression on 4 key variables to collapse into one variable (predicted mean from OLS model)
- Stratify predicted mean into 6 quantile groups
- Apply the normal inverse ECDF of g_h to these strata and

The latter assumption may be dispensed with if we use a robust Huber-White or bootstrap covariance matrix estimate. Normality may sometimes be dispensed with by using bootstrap confidence intervals, but this would not fix inefficiency problems with OLS when residuals are non-normal.
check for normality and constant σ^2

- **ECDF** is for $\text{Prob}[Y \leq y | X]$ but for ordinal modeling we want to state models in terms of $\text{Prob}[Y \geq y | X]$ so take $1 - \text{ECDF}$ before inverse transforming

```r
f ← ols(gh ~ rcs(age,5) + sex + re + rcs(bmi, 3), data=w)
pgh ← fitted(f)
p ← function(fun, row, col) {
  f ← substitute(fun); g ← function(F) eval(f)
  z ← Ecdf(~ gh, groups=cut2(pgh, g=6),
            fun=function(F) g(1 - F),
            ylab=as.expression(f), xlim=c(4.5, 7.75), data=w,
            label.curve=FALSE)
  print(z, split=c(col, row, 2, 2), more=row < 2 | col < 2)
}
p(log(F/(1-F)), 1, 1)
p(qnorm(F), 1, 2)
p(-log(-log(F)), 2, 1)
p(log(-log(1-F)), 2, 2)
# Get slopes of pgh for some cutoffs of Y
# Use glm complementary log-log link on Prob(Y < cutoff) to
# get log-log link on Prob(Y \geq cutoff)
r ← NULL
for(link in c('logit', 'probit', 'cloglog'))
  for(k in c(5, 5.5, 6)) {
    co ← coef(glm(gh < k ~ pgh, data=w, family=binomial(link)))
    r ← rbind(r, data.frame(link=link, cutoff=k,
                         slope=round(co[2],2)))
  }
print(r, row.names=FALSE)
```

<table>
<thead>
<tr>
<th>link</th>
<th>cutoff</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>logit</td>
<td>5.0</td>
<td>-3.39</td>
</tr>
<tr>
<td>logit</td>
<td>5.5</td>
<td>-4.33</td>
</tr>
<tr>
<td>logit</td>
<td>6.0</td>
<td>-5.62</td>
</tr>
<tr>
<td>probit</td>
<td>5.0</td>
<td>-1.69</td>
</tr>
<tr>
<td>probit</td>
<td>5.5</td>
<td>-2.61</td>
</tr>
<tr>
<td>probit</td>
<td>6.0</td>
<td>-3.07</td>
</tr>
<tr>
<td>cloglog</td>
<td>5.0</td>
<td>-3.18</td>
</tr>
<tr>
<td>cloglog</td>
<td>5.5</td>
<td>-2.97</td>
</tr>
<tr>
<td>cloglog</td>
<td>6.0</td>
<td>-2.51</td>
</tr>
</tbody>
</table>

- Upper right curves are not linear, implying that a normal conditional distribution cannot work for gh^b
Figure 11.1: Examination of normality and constant variance assumption, and assumptions for various ordinal models
There is non-parallelism for the logit model

Other graphs will be used to guide selection of an ordinal model below
11.3 Quantile Regression

- Ruled out OLS and semiparametric proportional odds model
- Quantile regression [112, 111] is a different approach to modeling Y
- No distributional assumptions other than continuity of Y
- All the usual right hand side assumptions
- When there is a single predictor that is categorical, quantile regression coincides with ordinary sample quantiles stratified by that predictor
- Is transformation invariant - pre-transforming Y not important

Let $\rho_\tau(y) = y(\tau - [y < 0])$. The τ^{th} sample quantile is the minimizer q of $\sum_{i=1}^{n} \rho_\tau(y_i - q)$. For a conditional τ^{th} quantile of $Y|X$ the corresponding quantile regression estimator $\hat{\beta}_\tau$ minimizes $\sum_{i=1}^{n} \rho_\tau(Y_i - X\beta)$.

Quantile regression is not as efficient at estimating quantiles as is ordinary least squares at estimating the mean, if the latter’s assumptions hold.

Koenker’s `quantreg` package in R [113] implements quantile re-
gression, and the \texttt{rms} package’s \texttt{Rq} function provides a front-end that gives rise to various graphics and inference tools.

If we model the median g_h as a function of covariates, only the $X\beta$ structure need be correct. Other quantiles (e.g., 90th percentile) can be directly modeled but standard errors will be much larger as it is more difficult to precisely estimate outer quantiles.
11.4 Ordinal Regression Models for Continuous Y

- Advantages of semiparametric models (e.g., quantile regression and cumulative probability ordinal models)

- For ordinal cumulative probability models, there is no distributional assumption for Y given a setting of X

- Assume only a connection between distributions of Y for different X

- Applying an increasing 1–1 transformation to Y results in no change to regression coefficient estimates\(^c\)

- Regression coefficient estimates are completely robust to extreme Y values\(^d\)

- Estimates of quantiles of Y are exactly transformation-preserving, e.g., estimate of median of $\log Y$ is exactly the log of the estimate of median Y

- Manuguerra [134] developed an ordinal model for continuous Y which they incorrectly labeled semi-parametric and is actually a lower-dimensional flexible parametric model that instead of having intercepts has a spline function of y.

\(^c\)For symmetric distributions applying a decreasing transformation will negate the coefficients. For asymmetric distributions (e.g., Gumbel), reversing the order of Y will do more than change signs.

\(^d\)Only an estimate of mean Y from these βs is non-robust.
For a general continuous distribution function $F(y)$, an ordinal regression model based on cumulative probabilities may be stated as follows. Let the ordered unique values of Y be denoted by y_1, y_2, \ldots, y_k and let the intercepts associated with y_1, \ldots, y_k be $\alpha_1, \alpha_2, \ldots, \alpha_k$, where $\alpha_1 = \infty$ because $\Prob[Y \geq y_1] = 1$. Let $\alpha_y = \alpha_i, i : y_i = y$. Then

$$\Prob[Y \geq y_i | X] = F(\alpha_i + X\beta) = F(\alpha_y + X\beta)$$

For the OLS fully parametric case, the model may be restated

$$\Prob[Y \geq y | X] = \Prob\left[\frac{Y - X\beta}{\sigma} \geq \frac{y - X\beta}{\sigma}\right]$$

$$= 1 - \Phi\left(\frac{y - X\beta}{\sigma}\right) = \Phi\left(-\frac{y}{\sigma} + \frac{X\beta}{\sigma}\right)$$

so that to within an additive constant $\alpha_y = \frac{-y}{\sigma}$ (intercepts α are linear in y whereas they are arbitrarily descending in the ordinal model), and σ is absorbed in β to put the OLS model into the new notation.

The general ordinal regression model assumes that for fixed X_1, X_2,

$$F^{-1}(\Prob[Y \geq y | X_2]) - F^{-1}(\Prob[Y \geq y | X_1]) = (X_2 - X_1)\beta$$

independent of the αs (parallelism assumption). If $F = [1 + \exp(-y)]^{-1}$, this is the proportional odds assumption.

*It is more traditional to state the model in terms of $\Prob[Y \leq y | X]$ but we use $\Prob[Y \geq y | X]$ so that higher predicted values are associated with higher Y.

f\alpha_y$ are unchanged if a constant is added to all y.

Table 11.1: Distribution families used in ordinal cumulative probability models. Φ denotes the Gaussian cumulative distribution function. For the Connection column, \(P_1 = \text{Prob}[Y \geq y|X_1], P_2 = \text{Prob}[Y \geq y|X_2], \Delta = (X_2 - X_1)\beta. \) The connection specifies the only distributional assumption if the model is fitted semiparametrically, i.e., contains an intercept for every unique \(Y \) value less one. For parametric models, \(P_1 \) must be specified absolutely instead of just requiring a relationship between \(P_1 \) and \(P_2 \). For example, the traditional Gaussian parametric model specifies that \(\text{Prob}[Y \geq y|X] = 1 - \Phi\left(\frac{y - X\beta}{\sigma}\right) = \Phi\left(-\frac{y + X\beta}{\sigma}\right). \)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(F)</th>
<th>Inverse (Link Function)</th>
<th>Link Name</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic</td>
<td>(1 + \exp(-y)) (^{-1})</td>
<td>log(\frac{y}{1-y})</td>
<td>logit</td>
<td>(P_2 = P_1 \exp(\Delta))</td>
</tr>
<tr>
<td>Gaussian</td>
<td>(\Phi(y))</td>
<td>(\Phi^{-1}(y))</td>
<td>probit</td>
<td>(P_2 = \Phi(\Phi^{-1}(P_1) + \Delta))</td>
</tr>
<tr>
<td>Gumbel maximum value</td>
<td>(\exp(-\exp(-y)))</td>
<td>log(-\log(y))</td>
<td>log - log</td>
<td>(P_2 = P_1^{\exp(\Delta)})</td>
</tr>
<tr>
<td>Gumbel minimum value</td>
<td>(1 - \exp(-\exp(y)))</td>
<td>log(-\log(1 - y))</td>
<td>complementary</td>
<td>(1 - P_2 = (1 - P_1)^{\exp(\Delta)})</td>
</tr>
<tr>
<td>Cauchy</td>
<td>(\frac{1}{2} \tan^{-1}(y) + \frac{1}{2})</td>
<td>(\tan[\pi(y - \frac{1}{2})])</td>
<td>cauchit</td>
<td></td>
</tr>
</tbody>
</table>

Common choices of \(F \), implemented in the \texttt{rms orm} function, are shown in Table 11.1.

The Gumbel maximum value distribution is also called the extreme value type I distribution. This distribution (\(\log - \log \) link) also represents a continuous time proportional hazards model. The hazard ratio when \(X \) changes from \(X_1 \) to \(X_2 \) is \(\exp(-(X_2 - X_1)\beta) \).

The mean of \(Y|X \) is easily estimated by computing

\[
\sum_{i=1}^{k} y_i \hat{\text{Prob}}[Y = y_i|X]
\]

and the \(q^{\text{th}} \) quantile of \(Y|X \) is \(y \) such that

\[
F^{-1}(1 - q) - X\hat{\beta} = \hat{\alpha}_y.\]

The \texttt{orm} function in the \texttt{rms} package takes advantage of the information matrix being of a sparse tri-band diagonal form for the intercept parameters. This makes the computations

\footnote{The intercepts have to be shifted to the left one position in solving this equation because the quantile is such that \(\text{Prob}[Y \leq y] = q \) whereas the model is stated in terms of \(\text{Prob}[Y \geq y] \).}
efficient even for hundreds of intercepts (i.e., unique values of Y). orm is made to handle continuous Y.

Ordinal regression has nice properties in addition to those listed above, allowing for

- estimation of quantiles as efficiently as quantile regression if the parallel slopes assumptions hold

- efficient estimation of mean Y

- direct estimation of $\text{Prob}[Y \geq y | X]$

- arbitrary clumping of values of Y, while still estimating β and mean Y efficiently\(^1\)

- solutions for $\hat{\beta}$ using ordinary Newton-Raphson or other popular optimization techniques

- being based on a standard likelihood function, penalized estimation can be straightforward

- Wald, score, and likelihood ratio χ^2 tests that are more powerful than tests from quantile regression

To summarize how assumptions of parametric models compare to assumptions of semiparametric models, consider the ordinary linear model or its special case the equal variance two-sample

\(^1\)But it is not sensible to estimate quantiles of Y when there are heavy ties in Y in the area containing the quantile.
t-test, vs. the probit or logit (proportional odds) ordinal model or their special cases the Van der Waerden (normal-scores) two-sample test or the Wilcoxon test. All the assumptions of the linear model other than independence of residuals are captured in the following (written in traditional $Y \leq y$ form):

$$F(y|X) = \text{Prob}[Y \leq y|X] = \Phi\left(\frac{y - X\beta}{\sigma}\right)$$

$$\Phi^{-1}(F(y|X)) = \frac{y - X\beta}{\sigma}$$

On the other hand, ordinal models assume the following:

$$\Phi^{-1}(F(y|X)) = -\Delta X\beta / \sigma$$

Figure 11.2: Assumptions of the linear model (left panel) and semiparametric ordinal probit or logit (proportional odds) models (right panel). Ordinal models do not assume any shape for the distribution of Y for a given X; they only assume parallelism.

$$\text{Prob}[Y \leq y|X] = F(g(y) - X\beta),$$

where g is unknown and may be discontinuous.

From this point we revert back to $Y \geq y$ notation so that Y increases as $X\beta$ increases.
Global Modeling Implications

- Ordinal regression invariant to choice of transformation of Y
- Y needs to be ordinal
- Difference in two ordinal variables is not necessarily ordinal
- \rightarrow Never analyze differences in regression
- $Y =$ final value, adjust for baseline values as covariates
11.5

Ordinal Regression Applied to HbA$_{1c}$

- In Figure 11.1, logit inverse curves are not parallel so proportional odds assumption does not hold.

- log-log link yields highest degree of parallelism and most constant regression coefficients across cutoffs of gh so use this link in an ordinal regression model (linearity of the curves is not required).

11.5.1

Checking Fit for Various Models Using Age

Another way to examine model fit is to flexibly fit the single most important predictor (age) using a variety of methods, and comparing predictions to sample quantiles and means based on overlapping subsets on age, each subset being subjects having age < 5 years away from the point being predicted by the models. Here we predict the 0.5, 0.75, and 0.9 quantiles and the mean. For quantiles we can compare to quantile regression (discussed below) and for means we compare to OLS.

```r
ag ← 25:75
lag ← length(ag)
q2 ← q3 ← p90 ← means ← numeric(lag)
for(i in 1:lag) {
  s ← which(abs(w$age - ag[i]) < 5)
  y ← w$gh[s]
  a ← quantile(y, probs=c(.5, .75, .9))
  q2[i] ← a[1]
  q3[i] ← a[2]
  p90[i] ← a[3]
  means[i] ← mean(y)
}```
It can be seen in Figure 11.3 that models dedicated to a specific task (quantile regression for quantiles and OLS for means) were best for those tasks. Although the log-log ordinal cumulative
Figure 11.3: Three estimated quantiles and estimated mean using 6 methods, compared against caliper-matched sample quantiles/means (circles). Numbers are mean absolute differences between predicted and sample quantities using overlapping intervals of age and caliper matching. QR: quantile regression.
probability model did not estimate the median as accurately as some other methods, it does well for the 0.75 and 0.9 quantiles and is the best compromise overall because of its ability to also directly predict the mean as well as quantiles such as \( \text{Prob}[\text{HbA}_{1c} > 7 | X] \).

For here on we focus on the log-log ordinal model.

Going back to the bottom left of figure 11.1, let’s look at quantile groups of predicted \( \text{HbA}_{1c} \) by OLS and plot predicted distributions of actual \( \text{HbA}_{1c} \) against empirical distributions.

```r
w$pghg <- cut2(pgh, g=6)
f <- orm(gh ~ pghg, family=loglog, data=w)
lp <- predict(f, newdata=data.frame(pghg=levels(w$pghg)))
ep <- ExProb(f) # Exceedance prob. functn. generator in rms
z <- ep(lp)
j <- order(w$pghg) # puts in order of lp (levels of pghg)
plot(z, xlim=c(4, 7.5), data=w[j,c('pghg', 'gh')]) # Fig. 11.4
```

![Figure 11.4](image)

Figure 11.4: Observed (dashed lines, open circles) and predicted (solid lines, closed circles) exceedance probability distributions from a model using 6-tiles of OLS-predicted \( \text{HbA}_{1c} \). Key shows quantile group intervals of predicted mean \( \text{HbA}_{1c} \).
Agreement between predicted and observed exceedance probability distributions is excellent in Figure 11.4.

To return to the initial look at a linear model with assumed Gaussian residuals, fit a probit ordinal model and compare the estimated intercepts to the linear relationship with \( gh \) that is assumed by the normal distribution.

\[
f \leftarrow \text{orm}(gh \sim \text{rcs(age,6)}, \text{family} = \text{probit}, \text{data} = w) \\
g \leftarrow \text{ols}(gh \sim \text{rcs(age,6)}, \text{data} = w) \\
s \leftarrow g$\text{stats}$['\text{Sigma}'] \\
yu \leftarrow f$\text{yunique}$[-1] \\
r \leftarrow \text{quantile}(w$gh$, c(.005, .995)) \\
alphas \leftarrow \text{coef}(f)[1:\text{num.intercepts}(f)]
\]

\[
\text{plot}(-yu / s, alphas, \text{type}='l', \text{xlim} = \text{rev}(-r / s), \text{xlab} = \text{expression}(-y/\hat{\sigma}), \text{ylab} = \text{expression}(\alpha_y))
\]

Figure 11.5: Estimated intercepts from probit model

Figure 11.5 depicts a significant departure from that implied by Gaussian residuals.
**Examination of BMI**

Using the log-log model, we first check the adequacy of BMI as a summary of height and weight for estimating median $gh$.  

- Adjust for age (without assuming linearity) in every case
- Look at ratio of coefficients of log height and log weight
- Use AIC to judge whether BMI is an adequate summary of height and weight

```r
f ← orm(gh ~ rcs(age,5) + log(ht) + log(wt),
 family=loglog, data=w)
```

**-log-log Ordinal Regression Model**

```r
orm(formula = gh ~ rcs(age, 5) + log(ht) + log(wt), data = w,
 family = loglog)
```

Obs	4629		
Distinct Y	63		
$Y_{0.5}$	5.5		
$\max	\frac{\partial \log L}{\partial \beta}	\times 10^{-6}$	1 $\times 10^{-6}$

<table>
<thead>
<tr>
<th>Model Likelihood Ratio Test</th>
<th>Discrimination Indexes</th>
<th>Rank Discrim. Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR $\chi^2$</td>
<td>1126.94</td>
<td>0.217</td>
</tr>
<tr>
<td>d.f.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Pr($&gt; \chi^2$)</td>
<td>&lt;0.0001</td>
<td></td>
</tr>
<tr>
<td>Score $\chi^2$</td>
<td>1262.81</td>
<td></td>
</tr>
<tr>
<td>Pr($&gt; \chi^2$)</td>
<td>&lt;0.0001</td>
<td></td>
</tr>
</tbody>
</table>

| $\beta$ | S.E. | Wald $Z$ | Pr($>|Z|)$ |
|---------|------|--------|------------|
| age | 0.0398 | 0.0055 | 7.29 | <0.0001 |
| age' | -0.0158 | 0.0275 | -0.57 | 0.5657 |
| age'' | -0.0072 | 0.0866 | -0.08 | 0.9333 |
| age''' | 0.0309 | 0.1135 | 0.27 | 0.7853 |
| ht | -3.0680 | 0.2789 | -11.00 | <0.0001 |
| wt | 1.2748 | 0.0704 | 18.10 | <0.0001 |

``aic ← NULL```
for (mod in list(gh ~ rcs(age,5) + rcs(log(bmi),5),
gh ~ rcs(age,5) + rcs(log(ht),5) + rcs(log(wt),5),
gh ~ rcs(age,5) + rcs(log(ht),4) * rcs(log(wt),4)))
aic ← c(aic, AIC(orm(mod, family=loglog, data=w)))
print(aic)

[1] 25910.77 25910.17 25906.03

The ratio of the coefficient of log height to the coefficient of log weight is -2.4, which is between what BMI uses and the more dimensionally reasonable weight / height\(^3\). By AIC, a spline interaction surface between height and weight does slightly better than BMI in predicting HbA\(_{1c}\), but a nonlinear function of BMI is barely worse. It will require other body size measures to displace BMI as a predictor.

As an aside, compare this model fit to that from the Cox proportional hazards model. The Cox model uses a conditioning argument to obtain a partial likelihood free of the intercepts \(\alpha\) (and requires a second step to estimate these log discrete hazard components) whereas we are using a full marginal likelihood of the ranks of \(Y\) \([105]\).

\[
\text{print(cph(Surv(gh) ~ rcs(age,5) + log(ht) + log(wt), data=w))}
\]

Cox Proportional Hazards Model

\[
cph(formula = Surv(gh) ~ rcs(age, 5) + log(ht) + log(wt), data = w)
\]

<table>
<thead>
<tr>
<th>Obs 4629</th>
<th>Events 4629</th>
<th>Center 8.3792</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR (\chi^2) 1120.20</td>
<td>d.f. 6</td>
<td>Pr(&gt; (\chi^2)) 0.0000</td>
</tr>
<tr>
<td>Score (\chi^2) 1258.07</td>
<td>Pr(&gt; (\chi^2)) 0.0000</td>
<td></td>
</tr>
<tr>
<td>(R^2) 0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2_{6,4629}) 0.214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D_{xy}) 0.359</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| \(\hat{\beta}\) | S.E. | Wald Z | Pr(> |Z|) |
|-------|----|--------|--------|
| age  | -0.0392 | 0.0054 | -7.24 | <0.0001 |
| age' | 0.0148 | 0.0274 | 0.54 | 0.5888 |
Back up and look at all body size measures, and examine their redundancies.

\[
\begin{array}{cccc}
\beta & \text{S.E.} & \text{Wald Z} & \text{Pr}(>|Z|) \\
age' & 0.0093 & 0.0862 & 0.11 & 0.9144 \\
age'' & -0.0321 & 0.1131 & -0.28 & 0.7767 \\
ht & 3.0477 & 0.2779 & 10.97 & <0.0001 \\
wt & -1.2653 & 0.0701 & -18.04 & <0.0001 \\
\end{array}
\]

Redundancy Analysis

\[
\text{redun(formula = } \sim \text{ht + bmi + leg + arml + armc + waist + tri + sub, data = } w, r^2 = 0.75)
\]

Transformation of target variables forced to be linear

\[
R^2 \text{ cutoff: 0.75 \hspace{1cm} Type: ordinary}
\]

\[
R^2 \text{ with which each variable can be predicted from all other variables:}
\]

\[
\begin{array}{cccccccc}
\text{ht} & \text{bmi} & \text{leg} & \text{arml} & \text{armc} & \text{waist} & \text{tri} & \text{sub} \\
0.829 & 0.924 & 0.682 & 0.748 & 0.843 & 0.864 & 0.531 & 0.594 \\
\end{array}
\]

Redundant variables:

- bmi
- ht

Six size measures adequately capture the entire set. Height and
Figure 11.6: Variable clustering for all potential predictors
BMI are removed.

An advantage of removing height is that it is age-dependent in the elderly:

\[
f \leftarrow \text{orm}(ht \sim \text{rcs}(\text{age},4) \times \text{sex}, \text{data}=w) \quad \# \text{Prop. odds model}
\]

\[
\text{qu} \leftarrow \text{Quantile}(f); \quad \text{med} \leftarrow \text{function}(x) \quad \text{qu}(.5, x)
\]

\[
\text{ggplot(Predict(f, age, sex, fun=med, conf.int=FALSE),}
\]

\[
\text{ylab='Predicted Median Height, cm')}
\]

![Graph showing predicted median height as a smooth function of age, allowing age to interact with sex, from a proportional odds model.]

Figure 11.7: Estimated median height as a smooth function of age, allowing age to interact with sex, from a proportional odds model

But also see a change in leg length:

\[
f \leftarrow \text{orm}(\text{leg} \sim \text{rcs}(\text{age},4) \times \text{sex}, \text{data}=w)
\]

\[
\text{qu} \leftarrow \text{Quantile}(f); \quad \text{med} \leftarrow \text{function}(x) \quad \text{qu}(.5, x)
\]

\[
\text{ggplot(Predict(f, age, sex, fun=med, conf.int=FALSE),}
\]

\[
\text{ylab='Predicted Median Upper Leg Length, cm')}
\]

Next allocate d.f. according to generalized Spearman \(\rho^2_i\).

\[
s \leftarrow \text{spearman2}(gh \sim \text{age} + \text{sex} + \text{re} + \text{wt} + \text{leg} + \text{arml} + \text{armc} + \text{waist} + \text{tri} + \text{sub}, \text{data}=w, p=2)
\]

\[
\text{plot(s)}
\]

Parameters will be allocated in descending order of \(\rho^2_i\). But note that subscapular skinfold has a large number of NAs.

\(^1\text{Competition between collinear size measures hurts interpretation of partial tests of association in a saturated additive model.}\)
Figure 11.8: Estimated median upper leg length as a smooth function of age, allowing age to interact with sex, from a proportional odds model.

Figure 11.9: Generalized squared rank correlations.
other predictors also have NAs. Suboptimal casewise deletion will be used until the final model is fitted.

Because there are many competing body measures, we use backwards stepdown to arrive at a set of predictors. The bootstrap will be used to penalize predictive ability for variable selection. First the full model is fit using casewise deletion, then we do a composite test to assess whether any of the frequently-missing predictors is important.

\[
f \leftarrow \text{orm(gh} \sim \text{rcs(age,5) + sex + re + rcs(wt,3) + rcs(leg,3) + arml + rcs(armc,3) + rcs(waist,4) + tri + rcs(sub,3), family=loglog, data=w, x=TRUE, y=TRUE)}
\]

print(f, coefs=FALSE)

-log-log Ordinal Regression Model

\[
\text{orm(formula = gh} \sim \text{rcs(age, 5) + sex + re + rcs(wt, 3) + rcs(leg, 3) + arml + rcs(armc, 3) + rcs(waist, 4) + tri + rcs(sub, 3), data = w, x = TRUE, y = TRUE, family = loglog)}
\]

Frequencies of Missing Values Due to Each Variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>sub</td>
<td>655</td>
</tr>
<tr>
<td>tri</td>
<td>334</td>
</tr>
<tr>
<td>waist</td>
<td>155</td>
</tr>
<tr>
<td>leg</td>
<td>127</td>
</tr>
<tr>
<td>armc</td>
<td>120</td>
</tr>
<tr>
<td>arml</td>
<td>117</td>
</tr>
<tr>
<td>gh</td>
<td>115</td>
</tr>
<tr>
<td>sex</td>
<td>120</td>
</tr>
<tr>
<td>re</td>
<td>90</td>
</tr>
<tr>
<td>wt</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>3853</th>
<th>Distinct ( Y )</th>
<th>60</th>
<th>( Y_{0.5} )</th>
<th>5.5</th>
<th>max</th>
<th>3 \times 10^{-5}</th>
<th>Model Likelihood Ratio Test</th>
<th>Discrimination Indexes</th>
<th>Rank Discrim. Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>\chi^2</td>
<td>1180.13</td>
<td>d.f.</td>
<td>22</td>
<td>\text{Pr}(\chi^2) &lt; 0.0001</td>
<td>Score \chi^2</td>
<td>1298.88</td>
<td>\text{Pr}(\chi^2) &lt; 0.0001</td>
<td>( R^2 )</td>
<td>0.265</td>
</tr>
<tr>
<td>( R^2 )</td>
<td>0.260</td>
<td>( R^2_{Y_{0.5}} )</td>
<td>0.261</td>
<td>( \text{Pr}(Y \geq Y_{0.5}) - \frac{1}{2} )</td>
<td>0.172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Composite test:
\text{anova(f, leg, arml, armc, waist, tri, sub)}
CHAPTER 11. REGRESSION MODELS FOR CONTINUOUS $Y$ AND CASE STUDY IN ORDINAL REGRESSION

Wald Statistics for $gh$

<table>
<thead>
<tr>
<th></th>
<th>$\chi^2$</th>
<th>d.f.</th>
<th>$P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>leg</td>
<td>8.30</td>
<td>2</td>
<td>0.0158</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>3.32</td>
<td>1</td>
<td>0.0685</td>
</tr>
<tr>
<td>arml</td>
<td>0.16</td>
<td>1</td>
<td>0.6924</td>
</tr>
<tr>
<td>armc</td>
<td>6.66</td>
<td>2</td>
<td>0.0358</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>3.29</td>
<td>1</td>
<td>0.0695</td>
</tr>
<tr>
<td>waist</td>
<td>29.40</td>
<td>3</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>4.29</td>
<td>2</td>
<td>0.1171</td>
</tr>
<tr>
<td>tri</td>
<td>16.62</td>
<td>1</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>sub</td>
<td>40.75</td>
<td>2</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>4.50</td>
<td>1</td>
<td>0.0340</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>14.95</td>
<td>5</td>
<td>0.0106</td>
</tr>
<tr>
<td>TOTAL</td>
<td>128.29</td>
<td>11</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

The model yields Spearman $\rho = 0.52$, the rank correlation between predicted and observed HbA$_{1c}$.

Show predicted mean and median HbA$_{1c}$ as a function of age, adjusting other variables to median/mode. Compare the estimate of the median with that from quantile regression (discussed below).

```r
M ← Mean(f)
qu ← Quantile(f)
med ← function(x) q(x, .5)
p90 ← function(x) q(x, .9)
fq ← Rq(formula(f), data=w)
fq90 ← Rq(formula(f), data=w, tau=.9)
pmean ← Predict(f, age, fun=M, conf.int=FALSE)
pmed ← Predict(f, age, fun=med, conf.int=FALSE)
p90 ← Predict(f, age, fun=p90, conf.int=FALSE)
pmedqr ← Predict(fq, age, conf.int=FALSE)
p90qr ← Predict(fq90, age, conf.int=FALSE)
z ← rbind('orm mean'=pmean, 'orm median'=pmed, 'orm P90'=p90,
 'QR median'=pmedqr, 'QR P90'=p90qr)
ggplot(z, groups='.set.',
 adj.subtitle=FALSE, legend.label=FALSE)
```

Next do fast backward step-down in an attempt to get a model without so much competition among variables. The stepwise selection will be penalized for in the model validation.
CHAPTER 11. REGRESSION MODELS FOR CONTINUOUS Y AND CASE STUDY IN ORDINAL REGRESSION

Figure 11.10: Estimated mean and 0.5 and 0.9 quantiles from the log-log ordinal model using casewise deletion, along with predictions of 0.5 and 0.9 quantiles from quantile regression (QR). Age is varied and other predictors are held constant to medians/modes.

`print(fastbw(f, rule='p'), estimates=FALSE)`

<table>
<thead>
<tr>
<th>Deleted</th>
<th>Chi-Sq</th>
<th>d.f.</th>
<th>P</th>
<th>Residual d.f.</th>
<th>P</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>arml</td>
<td>0.16</td>
<td>1</td>
<td>0.6924</td>
<td>0.16</td>
<td>1</td>
<td>0.6924</td>
</tr>
<tr>
<td>sex</td>
<td>0.45</td>
<td>1</td>
<td>0.5019</td>
<td>0.61</td>
<td>2</td>
<td>0.7381</td>
</tr>
<tr>
<td>wt</td>
<td>5.72</td>
<td>2</td>
<td>0.0572</td>
<td>6.33</td>
<td>4</td>
<td>0.1759</td>
</tr>
<tr>
<td>armc</td>
<td>3.32</td>
<td>2</td>
<td>0.1897</td>
<td>9.65</td>
<td>6</td>
<td>0.1400</td>
</tr>
</tbody>
</table>

Factors in Final Model

[1] age, re, leg, waist, tri, sub

Validate the model, properly penalizing for variable selection

```r
set.seed(13) # so can reproduce results
v ← validate(f, B=100, bw=TRUE, estimates=FALSE, rule='p')
```

Backwards Step-down - Original Model

<table>
<thead>
<tr>
<th>Deleted</th>
<th>Chi-Sq</th>
<th>d.f.</th>
<th>P</th>
<th>Residual d.f.</th>
<th>P</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>arml</td>
<td>0.16</td>
<td>1</td>
<td>0.6924</td>
<td>0.16</td>
<td>1</td>
<td>0.6924</td>
</tr>
<tr>
<td>sex</td>
<td>0.45</td>
<td>1</td>
<td>0.5019</td>
<td>0.61</td>
<td>2</td>
<td>0.7381</td>
</tr>
<tr>
<td>wt</td>
<td>5.72</td>
<td>2</td>
<td>0.0572</td>
<td>6.33</td>
<td>4</td>
<td>0.1759</td>
</tr>
<tr>
<td>armc</td>
<td>3.32</td>
<td>2</td>
<td>0.1897</td>
<td>9.65</td>
<td>6</td>
<td>0.1400</td>
</tr>
</tbody>
</table>
Factors in Final Model

Factors Retained in Backwards Elimination

Frequencies of Numbers of Factors Retained

<table>
<thead>
<tr>
<th>Index</th>
<th>Original Sample</th>
<th>Training Sample</th>
<th>Test Sample</th>
<th>Optimism</th>
<th>Corrected Index</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho$</td>
<td>0.5225</td>
<td>0.5279</td>
<td>0.5204</td>
<td>0.0076</td>
<td>0.5149</td>
<td>100</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.2712</td>
<td>0.2778</td>
<td>0.2689</td>
<td>0.0089</td>
<td>0.2623</td>
<td>100</td>
</tr>
<tr>
<td>Slope</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9790</td>
<td>0.0210</td>
<td>0.9790</td>
<td>100</td>
</tr>
<tr>
<td>$g$</td>
<td>1.2276</td>
<td>1.2483</td>
<td>1.2196</td>
<td>0.0287</td>
<td>1.1989</td>
<td>100</td>
</tr>
<tr>
<td>$[\Pr(Y \geq Y_{0.5}) - \frac{1}{2}]$</td>
<td>0.2007</td>
<td>0.2058</td>
<td>0.1988</td>
<td>0.0070</td>
<td>0.1937</td>
<td>100</td>
</tr>
</tbody>
</table>

Factors Retained in Backwards Elimination

First 30 Resamples
Next fit the reduced model. Use multiple imputation to impute missing predictors.

Do an ANOVA for the reduced model, taking imputation into account.

```r
a ← aregImpute(~ gh + wt + ht + bmi + leg + arml + armc + waist + tri + sub + age + re, data=w, n.impute=5, pr=FALSE)
g ← fit.mult.impute(gh ~ rcs(age,5) + re + rcs(leg,3) + rcs(waist,4) + tri + rcs(sub,4), orm, a, family=loglog, data=w, pr=FALSE)
print(g, needspace='1.5in')
```

-log-log Ordinal Regression Model

```r
fit.mult.impute(formula = gh ~ rcs(age, 5) + re + rcs(leg, 3) + rcs(waist, 4) + tri + rcs(sub, 4), fitter = orm, xtrans = a, data = w, pr = FALSE, family = loglog)
```

<table>
<thead>
<tr>
<th>Model Likelihood</th>
<th>Discrimination</th>
<th>Rank Discrim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs 4629</td>
<td>LR $\chi^2$ 1445.23</td>
<td>$R^2$ 0.269</td>
</tr>
<tr>
<td>Distinct $Y$ 63</td>
<td>d.f. 17</td>
<td>$R^2_{17,4629}$ 0.265</td>
</tr>
<tr>
<td>$Y_{0.5}$ 5.5</td>
<td>Pr($&gt;\chi^2$) &lt;0.0001</td>
<td>$R^2_{17,4629}$ 0.267</td>
</tr>
<tr>
<td>$\max</td>
<td>\frac{\partial \log L}{\partial \beta}</td>
<td>1 \times 10^{-5}$</td>
</tr>
</tbody>
</table>

| $\hat{\beta}$ | S.E. | Wald $Z$ | $\Pr(>|Z|)$ |
|----------------|------|----------|---------------|
| age            | 0.0405 | 0.0055   | 7.36          | <0.0001      |
| age'           | -0.0228 | 0.0277   | -0.82         | 0.4094       |
| age''          | 0.0123 | 0.0871   | 0.14          | 0.8880       |
| age'''         | 0.0428 | 0.1143   | 0.37          | 0.7082       |
| re=Other Hispanic | -0.0795 | 0.0592   | -1.34         | 0.1794       |
| re=Non-Hispanic White | -0.4119 | 0.0451   | -9.14         | <0.0001      |
| re=Non-Hispanic Black | 0.0662 | 0.0563   | 1.18          | 0.2396       |
| re=Other Race Including Multi-Racial | -0.0509 | 0.0749   | -0.68         | 0.4964       |
| leg            | -0.0344 | 0.0092   | -3.75         | 0.0002       |
| leg'           | 0.0160 | 0.0106   | 1.51          | 0.1298       |
| waist          | 0.0071 | 0.0051   | 1.40          | 0.1618       |
| waist'         | 0.0318 | 0.0160   | 1.99          | 0.0469       |
| waist''        | -0.0950 | 0.0512   | -1.86         | 0.0634       |
| tri            | -0.0160 | 0.0027   | -5.86         | <0.0001      |
| sub            | -0.0023 | 0.0103   | -0.22         | 0.8220       |
| sub'           | 0.0655 | 0.0314   | 2.08          | 0.0372       |
| sub''          | -0.1838 | 0.1038   | -1.77         | 0.0766       |
an <- anova(g)
print(an, caption='ANOVA for reduced model after multiple imputation, with
addition of a combined effect for four size variables')

ANOVA for reduced model after multiple imputation, with addition of a combined effect for
four size variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>$\chi^2$</th>
<th>d.f.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>698.03</td>
<td>4</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>re</td>
<td>29.54</td>
<td>3</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>leg</td>
<td>163.54</td>
<td>4</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>waist</td>
<td>24.19</td>
<td>2</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>tri</td>
<td>2.29</td>
<td>1</td>
<td>0.1298</td>
</tr>
<tr>
<td>sub</td>
<td>128.33</td>
<td>3</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>tri</td>
<td>4.23</td>
<td>2</td>
<td>0.1208</td>
</tr>
<tr>
<td>tri</td>
<td>34.29</td>
<td>1</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>tri</td>
<td>41.27</td>
<td>3</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>tri</td>
<td>6.37</td>
<td>2</td>
<td>0.0414</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>46.91</td>
<td>8</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1457.15</td>
<td>17</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

b <- anova(g, leg, waist, tri, sub)
# Add new lines to the plot with combined effect of 4 size var.
s <- rbind(an, size=b["TOTAL", ])
class(s) <- 'anova.rms'
plot(s)

ggplot(Predict(g), abbrev=TRUE, ylab=NULL)  # Figure 11.11
M <- Mean(g)
ggplot(Predict(g, fun=M), abbrev=TRUE, ylab=NULL)  # Figure 11.12
Figure 11.11: Partial effects (log hazard or log-log cumulative probability scale) of all predictors in reduced model, after multiple imputation.
Figure 11.12: Partial effects (mean scale) of all predictors in reduced model, after multiple imputation
Compare the estimated age partial effects and confidence intervals with those from a model using casewise deletion, and with bootstrap nonparametric confidence intervals (also with casewise deletion).

```r
gc ← orm(gh ~ rcs(age,5) + re + rcs(leg,3) + rcs(waist,4) + tri + rcs(sub,4), family=loglog, data=w, x=TRUE, y=TRUE)
gb ← bootcov(gc, B=300)
```

```r
bootclb ← Predict(gb, age, boot.type='basic')
bootclp ← Predict(gb, age, boot.type='percentile')
multimp ← Predict(g, age)
plot(Predict(gc, age), addpanel=function(...) {
 with(bootclb, {llines(age, lower, col='blue')
 llines(age, upper, col='blue')})
 with(bootclp, {llines(age, lower, col='blue', lty=2)
 llines(age, upper, col='blue', lty=2)})
 with(multimp, {llines(age, lower, col='red')
 llines(age, upper, col='red')
 llines(age, yhat, col='red')}) },
 col.fill=gray(.9), adj.subtitle=FALSE) # Figure 11.13
```

![Figure 11.13](image.png)

Figure 11.13: Partial effect for age from multiple imputation (center red line) and casewise deletion (center blue line) with symmetric Wald 0.95 confidence bands using casewise deletion (gray shaded area), basic bootstrap confidence bands using casewise deletion (blue lines), percentile bootstrap confidence bands using casewise deletion (dashed blue lines), and symmetric Wald confidence bands accounting for multiple imputation (red lines).
In OLS the mean equals the median and both are linearly related to any other quantiles. Semiparametric models are not this restrictive:

```
M ← Mean(g)
qu ← Quantile(g)
med ← function(lp) qu(.5, lp)
q90 ← function(lp) qu(.9, lp)
lp ← predict(g)
lpr ← quantile(predict(g), c(.002, .998), na.rm=TRUE)
lps ← seq(lpr[1], lpr[2], length=200)
pmn ← M(lps)
pme ← med(lps)
p90 ← q90(lps)
plot(pmn, pme, # Figure 11.14
 xlab=expression(paste('Predicted Mean ', HbA["1c"])),
ylab='Median and 0.9 Quantile', type='l',
xlim=c(4.75, 8.0), ylim=c(4.75, 8.0), bty='n')
box(col=gray(.8))
lines(pmn, p90, col='blue')
abline(a=0, b=1, col=gray(.8))
text(6.5, 5.5, 'Median')
text(5.5, 6.3, '0.9', col='blue')
nint ← 350
scat1d(M(lp), nint=nint)
scat1d(med(lp), side=2, nint=nint)
scat1d(q90(lp), side=4, col='blue', nint=nint)
```

Figure 11.14: Predicted mean HbA$_{1c}$ vs. predicted median and 0.9 quantile along with their marginal distributions
Draw a nomogram to compute 7 different predicted values for each subject.

```r
Draw a nomogram to compute 7 different predicted values for each subject.

g ← Newlevels(g, list(re=abbreviate(levels(w$re))))
exprob ← ExProb(g)
nom ← nomogram(g, fun=list(Mean=M,
 'Median Glycohemoglobin' = med,
 '0.9 Quantile' = q90,
 'Prob(HbA1c ≥ 6.5)'= function(x) exprob(x, y=6.5),
 'Prob(HbA1c ≥ 7.0)'= function(x) exprob(x, y=7),
 'Prob(HbA1c ≥ 7.5)'= function(x) exprob(x, y=7.5)),
 fun.at=list(seq(5, 8, by=.5),
 c(5,5.25,5.5,5.75,6,6.25),
 c(5.5,6,6.5,7,8,10,12,14),
 c(.01,.05,.1,.2,.3,.4),
 c(.01,.05,.1,.2,.3,.4),
 c(.01,.05,.1,.2,.3,.4)))
plot(nom, lmgp=.28) # Figure 11.15
```
Figure 11.15: Nomogram for predicting median, mean, and 0.9 quantile of glycohemoglobin, along with the estimated probability that HbA1c $\geq 6.5$, 7, or 7.5, all from the log-log ordinal model.
Chapter 12

Case Study in Parametric Survival Modeling and Model Approximation

Data source: Random sample of 1000 patients from Phases I & II of SUPPORT (Study to Understand Prognoses Preferences Outcomes and Risks of Treatment, funded by the Robert Wood Johnson Foundation). See [109]. The dataset is available from https://hbiostat.org/data.

- Analyze acute disease subset of SUPPORT (acute respiratory failure, multiple organ system failure, coma) — the shape of the survival curves is different between acute and chronic disease categories

- Patients had to survive until day 3 of the study to qualify

- Baseline physiologic variables measured during day 3
12.1 Descriptive Statistics

Create a variable `acute` to flag categories of interest; print univariate descriptive statistics.

```r
require(rms)
options(prType='latex') # for print, summary, anova
getHdata(support) # Get data frame from web site
acute <- support$dzclass %in% c('ARF/MOSF','Coma')
latex(describe(support[acute,]), file='')
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>n missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>357</td>
<td>529</td>
<td>1</td>
<td>60.7</td>
<td>19.98</td>
<td>28.49</td>
<td>35.22</td>
<td>47.93</td>
<td>63.67</td>
<td>74.49</td>
<td>81.54</td>
<td>85.56</td>
</tr>
<tr>
<td>death</td>
<td>537</td>
<td>0</td>
<td>2</td>
<td>0.67</td>
<td>0.6629</td>
<td>0.4477</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sex</td>
<td>537</td>
<td>2</td>
<td></td>
<td>0.467</td>
<td>0.533</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hospdead</td>
<td>537</td>
<td>2</td>
<td>0.703</td>
<td>0.3743</td>
<td>0.4693</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slos</td>
<td>537</td>
<td>85</td>
<td>0.999</td>
<td>23.44</td>
<td>22.24</td>
<td>4.0</td>
<td>5.0</td>
<td>9.0</td>
<td>15.0</td>
<td>27.0</td>
<td>47.4</td>
<td>68.2</td>
</tr>
<tr>
<td>d.time</td>
<td>537</td>
<td>340</td>
<td>1</td>
<td>446.1</td>
<td>566.1</td>
<td>.05</td>
<td>.10</td>
<td>.25</td>
<td>.50</td>
<td>.75</td>
<td>.90</td>
<td>.95</td>
</tr>
<tr>
<td>dzgroup</td>
<td>537</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>dzclass</td>
<td>537</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Values:
- **acute**
  - Value: ARF/MOSF w/Sepsis, Coma, MOSF w/Malig
  - Frequency: 391, 60, 88
  - Proportion: 0.728, 0.112, 0.160
- **death**
  - Value: ARF/MOSF, Coma
  - Frequency: 477, 60
  - Proportion: 0.888, 0.112
# Chapter 12. Parametric Survival Modeling and Model Approximation

### Table 1: Summary Statistics for Various Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>n</th>
<th>Mean</th>
<th>Gmd</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>num.co</td>
<td>Number of comorbidities</td>
<td>537</td>
<td>5.926</td>
<td>1.525</td>
<td>0.090</td>
</tr>
<tr>
<td>edu</td>
<td>Years of Education</td>
<td>411</td>
<td>12.03</td>
<td>3.581</td>
<td>0.050</td>
</tr>
<tr>
<td>income</td>
<td>Income</td>
<td>335</td>
<td>202</td>
<td></td>
<td>0.004</td>
</tr>
<tr>
<td>scoma</td>
<td>Support Coma Score based on Glasgow D3</td>
<td>537</td>
<td>12.22</td>
<td>27.07</td>
<td>0.015</td>
</tr>
<tr>
<td>charges</td>
<td>Hospital Charges</td>
<td>517</td>
<td>205</td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>totcst</td>
<td>Total RCC Cost</td>
<td>471</td>
<td>205</td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>avtiss</td>
<td>Average TISS, Days 3-25</td>
<td>536</td>
<td>205</td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>race</td>
<td>Race</td>
<td>535</td>
<td>2</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>meanbp</td>
<td>Mean Arterial Blood Pressure Day 3</td>
<td>537</td>
<td>10</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>wblc</td>
<td>White Blood Cell Count Day 3</td>
<td>532</td>
<td>2</td>
<td></td>
<td>0.000</td>
</tr>
</tbody>
</table>

### Table 2: Frequency and Proportion for Various Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>n</th>
<th>Frequency</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>num.co</td>
<td>Number of comorbidities</td>
<td>537</td>
<td>111</td>
<td>0.207</td>
</tr>
<tr>
<td>edu</td>
<td>Years of Education</td>
<td>411</td>
<td>126</td>
<td>0.365</td>
</tr>
<tr>
<td>income</td>
<td>Income</td>
<td>335</td>
<td>220</td>
<td>0.632</td>
</tr>
<tr>
<td>scoma</td>
<td>Support Coma Score based on Glasgow D3</td>
<td>537</td>
<td>301</td>
<td>0.561</td>
</tr>
<tr>
<td>charges</td>
<td>Hospital Charges</td>
<td>517</td>
<td>206</td>
<td>0.402</td>
</tr>
<tr>
<td>totcst</td>
<td>Total RCC Cost</td>
<td>471</td>
<td>206</td>
<td>0.435</td>
</tr>
<tr>
<td>avtiss</td>
<td>Average TISS, Days 3-25</td>
<td>536</td>
<td>205</td>
<td>0.382</td>
</tr>
<tr>
<td>race</td>
<td>Race</td>
<td>535</td>
<td>2</td>
<td>0.037</td>
</tr>
<tr>
<td>meanbp</td>
<td>Mean Arterial Blood Pressure Day 3</td>
<td>537</td>
<td>109</td>
<td>0.207</td>
</tr>
<tr>
<td>wblc</td>
<td>White Blood Cell Count Day 3</td>
<td>532</td>
<td>241</td>
<td>0.446</td>
</tr>
</tbody>
</table>

### Table 3: Additional Descriptive Statistics

- **num.co**: Number of comorbidities
- **edu**: Years of Education
- **income**: Income
- **scoma**: Support Coma Score based on Glasgow D3
- **charges**: Hospital Charges
- **totcst**: Total RCC Cost
- **avtiss**: Average TISS, Days 3-25
- **race**: Race
- **meanbp**: Mean Arterial Blood Pressure Day 3
- **wblc**: White Blood Cell Count Day 3
### hrt: Heart Rate Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>537</td>
<td>0</td>
<td>111</td>
<td>0.999</td>
<td>105</td>
<td>38.59</td>
<td>51</td>
<td>60</td>
<td>75</td>
<td>111</td>
<td>126</td>
</tr>
</tbody>
</table>

Lowest: 0 11 30 36 40, highest: 189 193 199 232 300

### resp: Respiration Rate Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>537</td>
<td>0</td>
<td>45</td>
<td>0.997</td>
<td>23.72</td>
<td>12.65</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>

Lowest: 0 4 6 7, highest: 48 49 52 60 64

### temp: Temperature (celsius) Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>537</td>
<td>0</td>
<td>61</td>
<td>0.999</td>
<td>37.52</td>
<td>1.505</td>
<td>35.50</td>
<td>35.80</td>
<td>36.40</td>
<td>37.80</td>
<td>38.50</td>
</tr>
</tbody>
</table>

Lowest: 32.500000 34.000000 34.09375 34.89844 35.000000, highest: 40.19531 40.59375 40.89844 41.000000 41.19531

### pafi: PaO2/(0.01*FiO2) Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>37</td>
<td>357</td>
<td>1</td>
<td>227.2</td>
<td>125</td>
<td>86.99</td>
<td>105.08</td>
<td>137.88</td>
<td>202.56</td>
<td>290.00</td>
</tr>
</tbody>
</table>

Lowest: 45.00000 48.00000 53.32812 54.00000 55.00000, highest: 574.30000 595.12500 640.00000 660.00000 680.00000

### alb: Serum Albumin Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>346</td>
<td>191</td>
<td>34</td>
<td>0.997</td>
<td>2.668</td>
<td>0.7219</td>
<td>1.700</td>
<td>1.900</td>
<td>2.225</td>
<td>2.600</td>
<td>3.100</td>
</tr>
</tbody>
</table>


### bili: Bilirubin Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>386</td>
<td>151</td>
<td>88</td>
<td>0.997</td>
<td>2.7678</td>
<td>3.507</td>
<td>0.3000</td>
<td>0.4000</td>
<td>0.6000</td>
<td>0.8999</td>
<td></td>
</tr>
</tbody>
</table>

Lowest: 0.09999084 0.19998169 0.29998779 0.39996338 0.50000000, highest: 22.59765620 30.00000000 31.50000000 35.00000000 39.29687500

### crea: Serum creatinine Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>537</td>
<td>0</td>
<td>84</td>
<td>0.998</td>
<td>2.232</td>
<td>1.997</td>
<td>0.6000</td>
<td>0.7000</td>
<td>0.8999</td>
<td>1.3999</td>
<td>2.5996</td>
</tr>
</tbody>
</table>

Lowest: 0.2999787 0.3999634 0.5000000 0.5999778 0.6999812, highest: 10.3994785 10.5996094 11.5996288 11.7988281

### sod: Serum sodium Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>537</td>
<td>0</td>
<td>38</td>
<td>0.997</td>
<td>138.1</td>
<td>7.471</td>
<td>129</td>
<td>131</td>
<td>134</td>
<td>137</td>
<td>142</td>
</tr>
</tbody>
</table>

Lowest: 118 120 121 126 127, highest: 156 157 158 168 175

### ph: Serum pH (arterial) Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>37</td>
<td>49</td>
<td>0.996</td>
<td>7.418</td>
<td>0.06775</td>
<td>7.170</td>
<td>7.319</td>
<td>7.380</td>
<td>7.426</td>
<td>7.470</td>
</tr>
</tbody>
</table>


### glucose: Glucose Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>297</td>
<td>240</td>
<td>179</td>
<td>1</td>
<td>167.7</td>
<td>92.13</td>
<td>76.0</td>
<td>89.0</td>
<td>106.0</td>
<td>141.0</td>
<td>200.0</td>
</tr>
</tbody>
</table>

Lowest: 30 42 52 55 68, highest: 446 468 492 576 598

### bun: BUN Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td>233</td>
<td>100</td>
<td>1</td>
<td>38.91</td>
<td>31.12</td>
<td>8.00</td>
<td>11.00</td>
<td>16.75</td>
<td>30.00</td>
<td>56.00</td>
</tr>
</tbody>
</table>

Lowest: 1 3 4 5 6, highest: 123 124 125 128 146

### urine: Urine Output Day 3

<table>
<thead>
<tr>
<th>n missing</th>
<th>distinct Info</th>
<th>Mean</th>
<th>Gmd</th>
<th>.05</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>234</td>
<td>262</td>
<td>1</td>
<td>2099</td>
<td>1579</td>
<td>20.3</td>
<td>364.0</td>
<td>1156.5</td>
<td>1670.0</td>
<td>2790.9</td>
</tr>
</tbody>
</table>

Lowest: 0 5 8 15 20, highest: 6886 6920 7360 7560 7750
12. PARAMETRIC SURVIVAL MODELING AND MODEL APPROXIMATION

adlp: ADL Patient Day 3

<table>
<thead>
<tr>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>433</td>
<td>8</td>
<td>0.875</td>
<td>1.577</td>
<td>2.152</td>
</tr>
</tbody>
</table>

lowest: 0 1 2 3 4, highest: 3 4 5 6 7

Value 0 1 2 3 4 5 6 7
Frequency 51 19 7 6 4 7 8 2
Proportion 0.490 0.183 0.067 0.058 0.038 0.067 0.077 0.019

adls: ADL Surrogate Day 3

<table>
<thead>
<tr>
<th>n</th>
<th>missing</th>
<th>distinct</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
</tr>
</thead>
<tbody>
<tr>
<td>392</td>
<td>145</td>
<td>8</td>
<td>0.888</td>
<td>1.86</td>
<td>2.466</td>
</tr>
</tbody>
</table>

lowest: 0 1 2 3 4, highest: 3 4 5 6 7

Value 0 1 2 3 4 5 6 7
Frequency 185 68 22 18 17 20 39 23
Proportion 0.472 0.173 0.056 0.046 0.043 0.051 0.099 0.059

sfdm2

<table>
<thead>
<tr>
<th>n</th>
<th>missing</th>
<th>distinct</th>
</tr>
</thead>
<tbody>
<tr>
<td>468</td>
<td>69</td>
<td>5</td>
</tr>
</tbody>
</table>

lowest: no(M2 and SIP pres) adl>=4 (>5 if sur) SIP>=30 Coma or Intub <2 mo. follow-up
highest: no(M2 and SIP pres) adl>=4 (>5 if sur) SIP>=30 Coma or Intub <2 mo. follow-up

Value no(M2 and SIP pres) adl>=4 (>5 if sur) SIP>=30 Coma or Intub
Frequency 134 78 30 5
Proportion 0.286 0.167 0.064 0.011

Value <2 mo. follow-up
Frequency 221
Proportion 0.472

adlsc: Imputed ADL Calibrated to Surrogate

<table>
<thead>
<tr>
<th>n</th>
<th>missing</th>
<th>distinct</th>
</tr>
</thead>
<tbody>
<tr>
<td>537</td>
<td>0</td>
<td>144</td>
</tr>
</tbody>
</table>

lowest: 0.0000000 0.4947510 0.4947999 1.0000000 1.1667481
highest: 1.7632031 6.0000000 6.3398438 6.4658203 7.0000000

# Show patterns of missing data
plot(naclus(support[acute,]))

Show associations between predictors using a general non-monotonic measure of dependence (Hoeffding $D$).

ac <- support[acute,]
ac$dzgroup <- ac$dzgroup[drop=TRUE]
attach(ac)
v <- varclus(~ age+sex+dzgroup+num.co+edu+income+scoma+race+
               meanbp+wblc+hrt+resp+temp+pafi+alb+bili+crea+sod+
               ph+glucose+bun+urine+adlsc, sim='hoeffding')
plot(v)

B
Figure 12.1: Cluster analysis showing which predictors tend to be missing on the same patients

Figure 12.2: Hierarchical clustering of potential predictors using Hoeffding $D$ as a similarity measure. Categorical predictors are automatically expanded into dummy variables.
12.2

Checking Adequacy of Log-Normal Accelerated Failure Time Model

```r
dd ← datadist(ac)
describe distributions of variables to rms
options(datadist='dd')

Generate right-censored survival time variable
years ← d.time/365.25
units(years) ← 'Year'
S ← Surv(years, death)

Show normal inverse Kaplan-Meier estimates
stratified by dzgroup
survplot(npsurv(S ∼ dzgroup), conf='none',
 fun=qnorm, logt=TRUE) # Figure 12.3
```

Figure 12.3: $\Phi^{-1}(S_{KM}(t))$ stratified by dzgroup. Linearity and semi-parallelism indicate a reasonable fit to the log-normal accelerated failure time model with respect to one predictor.

More stringent assessment of log-normal assumptions: check distribution of residuals from an adjusted model:

```r
f ← psm(S ∼ dzgroup + rcs(age,5) + rcs(meanbp,5),
 dist='lognormal', y=TRUE) # dist='gaussian' for S +
r ← resid(f)
survplot(r, dzgroup, label.curve=FALSE)
survplot(r, age, label.curve=FALSE)
survplot(r, meanbp, label.curve=FALSE)
random.number ← runif(length(age))
```
survplot(r, random.number, label.curve=FALSE)  # Figure 12.4

Figure 12.4: Kaplan-Meier estimates of distributions of normalized, right-censored residuals from the fitted log-normal survival model. Residuals are stratified by important variables in the model (by quartiles of continuous variables), plus a random variable to depict the natural variability (in the lower right plot). Theoretical standard Gaussian distributions of residuals are shown with a thick solid line. The upper left plot is with respect to disease group.

The fit for dzgroup is not great but overall fit is good.

Remove from consideration predictors that are missing in $> 0.2$ of the patients. Many of these were only collected for the second phase of SUPPORT.

Of those variables to be included in the model, find which ones have enough potential predictive power to justify allowing for nonlinear relationships or multiple categories, which spend more d.f. For each variable compute Spearman $\rho^2$ based on multiple
linear regression of rank($x$), rank($x$)$^2$ and the survival time, truncating survival time at the shortest follow-up for survivors (356 days). This rids the data of censoring but creates many ties at 356 days.

```
shortest.follow.up ← min(d.time[death==0], na.rm=TRUE)
d.timet ← pmin(d.time, shortest.follow.up)

w ← spearman2(d.timet ~ age + num.co + scoma + meanbp +
 hrt + resp + temp + crea + sod + adlsc +
 wblc + pafi + ph + dzgroup + race, p=2)
plot(w, main='') # Figure 12.5
```

![Figure 12.5: Generalized Spearman $\rho^2$ rank correlation between predictors and truncated survival time](image)

A better approach is to use the complete information in the failure and censoring times by computing Somers' $D_{xy}$ rank correlation allowing for censoring.

```
w ← rcorrcens(S ~ age + num.co + scoma + meanbp + hrt + resp +
 temp + crea + sod + adlsc + wblc + pafi + ph +
 dzgroup + race)
plot(w, main='') # Figure 12.6
```

# Compute number of missing values per variable
sapply(llist(age, num.co, scoma, meanbp, hrt, resp, temp, crea, sod, adlsc,
   wblc, pafi, ph), function(x) sum(is.na(x)))

| age num.co scoma meanbp hrt resp temp crea sod adlsc wblc pafi ph |
|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 0 0 0 0 0 0 0 0 0 0 0 5 |
| 37 37 |

**Figure 12.5: Generalized Spearman $\rho^2$ rank correlation between predictors and truncated survival time**
Do a formal redundancy analysis using more than pairwise associations, and allow for non-monotonic transformations in predicting each predictor from all other predictors. This analysis requires missing values to be imputed so as to not greatly reduce the sample size.

```
redun(~ crea + age + sex + dzgroup + num.co + scoma + adlsc + race2 + meanbp + hrt + resp + temp + sod + wblc.i + pafi.i + ph.i, nk=4)
```

Redundancy Analysis

```
redun(formula = ~crea + age + sex + dzgroup + num.co + scoma + adlsc + race2 + meanbp + hrt + resp + temp + sod + wblc.i + pafi.i + ph.i, nk = 4)
```
n: 537  p: 16  nk: 4

Number of NAs: 0

Transformation of target variables forced to be linear

$R^2$ cutoff: 0.9  Type: ordinary

$R^2$ with which each variable can be predicted from all other variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>age</th>
<th>sex</th>
<th>dzgroup</th>
<th>num.co</th>
<th>scoma</th>
<th>adlsc</th>
<th>race2</th>
<th>meanbp</th>
<th>hrt</th>
<th>resp</th>
<th>temp</th>
<th>sod</th>
<th>wblc.i</th>
<th>pafi.i</th>
<th>ph.i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.133</td>
<td>0.246</td>
<td>0.132</td>
<td>0.451</td>
<td>0.147</td>
<td>0.418</td>
<td>0.153</td>
<td>0.151</td>
<td>0.178</td>
<td>0.258</td>
<td>0.131</td>
<td>0.197</td>
<td>0.135</td>
<td>0.093</td>
<td>0.143</td>
</tr>
</tbody>
</table>

No redundant variables

Better approach to gauging predictive potential and allocating d.f.:

- Allow all continuous variables to have a the maximum number of knots entertained, in a log-normal survival model
- Must use imputation to avoid losing data
- Fit a “saturated” main effects model
- Makes full use of censored data
- Had to limit to 4 knots, force scoma to be linear, and omit ph.i to avoid singularity

```
k ← 4
f ← psm(S ~ rcs(age,k)+sex+dzgroup+pol(num.co,2)+scoma+
pol(adlsc,2)+race+rcs(meanbp,k)+rcs(hrt,k)+rcs(resp,k)+
rcs(temp,k)+rcs(crea,k)+rcs(sod,k)+rcs(wblc.i,k)+
rcs(pafi.i,k), dist='lognormal')
plot(anova(f)) # Figure 12.7
```

- Figure 12.7 properly blinds the analyst to the form of effects
Figure 12.7: Partial \( \chi^2 \) statistics for association of each predictor with response from saturated main effects model, penalized for d.f.

(tests of linearity).

- Fit a log-normal survival model with number of parameters corresponding to nonlinear effects determined from Figure 12.7. For the most promising predictors, five knots can be allocated, as there are fewer singularity problems once less promising predictors are simplified.

\[
f \leftarrow \text{psm}(S \sim \text{rcs}(\text{age},5) + \text{sex} + \text{dzgroup} + \text{num.co} + \text{scoma} + \text{pol(adrsc,2)} + \text{race2} + \text{rcs(\text{meanbp},5)} + \text{rcs(\text{hrt},3)} + \text{rcs(\text{resp},3)} + \text{temp} + \text{rcs(\text{crea},4)} + \text{sod} + \text{rcs(\text{wblc.i},3)} + \text{rcs(\text{pafi.i},4)}), \text{dist} = \text{'lognormal'})
\]

```r
f \leftarrow \text{psm}(S \sim \text{rcs}(\text{age},5) + \text{sex} + \text{dzgroup} + \text{num.co} + \text{scoma} + \text{pol(adrsc,2)} + \text{race2} + \text{rcs(\text{meanbp},5)} + \text{rcs(\text{hrt},3)} + \text{rcs(\text{resp},3)} + \text{temp} + \text{rcs(\text{crea},4)} + \text{sod} + \text{rcs(\text{wblc.i},3)} + \text{rcs(\text{pafi.i},4)}), \text{dist} = \text{\'lognormal\'})$
```

**Note:** Since the audio was recorded, a bug in `psm` was fixed on 2017-03-12. Discrimination indexes shown in the table below are correct but the audio is incorrect for \( g \) and \( g_r \).

```r
\text{print}(f)$
```

**Parametric Survival Model: Log Normal Distribution**

```r
\text{psm(formula} = S \sim \text{rcs(\text{age}, 5)} + \text{sex} + \text{dzgroup} + \text{num.co} + \text{scoma} + \text{pol(adrsc, 2)} + \text{race2} + \text{rcs(\text{meanbp}, 5)} + \text{rcs(\text{hrt}, 3)} + \text{rcs(\text{resp}, 3)} + \text{temp} + \text{rcs(\text{crea}, 4)} + \text{sod} + \text{rcs(\text{wblc.i}, 3)} + \text{rcs(\text{pafi.i}, 4)}, \text{dist} = \text{\'lognormal\')}$
```

```r
\text{print}(f)$
```
### Model Likelihood Ratio Test

<table>
<thead>
<tr>
<th></th>
<th>LR</th>
<th>$\chi^2$</th>
<th>d.f.</th>
<th>$Pr(\chi^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td></td>
<td>236.83</td>
<td>30</td>
<td>$&lt;0.0001$</td>
</tr>
<tr>
<td>Events</td>
<td></td>
<td>356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma$</td>
<td></td>
<td>2.230782</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Discrimination Indexes

<table>
<thead>
<tr>
<th></th>
<th>$R^2$</th>
<th>$R^2_{30,357}$</th>
<th>$R^2_{30,356}$</th>
<th>$D_{xy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.594</td>
<td>0.320</td>
<td>0.441</td>
<td>0.485</td>
</tr>
</tbody>
</table>

### Parameter Estimates

| Parameter   | $\hat{\beta}$ | S.E. | Wald Z | Pr(>|Z|) |
|-------------|----------------|------|--------|----------|
| (Intercept) | -5.6883        | 3.7851 | -1.50  | 0.1329   |
| age         | -0.0148        | 0.0309 | -0.48  | 0.6322   |
| age'        | -0.0412        | 0.1078 | -0.38  | 0.7024   |
| age''       | 0.1670         | 0.5594 | 0.30   | 0.7653   |
| age''''     | -0.2099        | 1.3707 | -0.15  | 0.8783   |
| sex=male    | -0.0737        | 0.2181 | -0.34  | 0.7354   |
| dzgroup=Coma| -2.0676        | 0.4062 | -5.09  | <0.0001  |
| dzgroup=MOSF w/Malig | -1.4664 | 0.3112 | -4.71  | <0.0001  |
| num.co      | -0.1917        | 0.0858 | -2.23  | 0.0255   |
| scoma       | -0.0142        | 0.0044 | -3.25  | 0.0011   |
| adlsc       | -0.3735        | 0.1520 | -2.46  | 0.0140   |
| adlsc$^2$   | 0.0442         | 0.0243 | 1.82   | 0.0691   |
| race2=other | 0.2979         | 0.2658 | 1.12   | 0.2624   |
| meanbp      | 0.0702         | 0.0210 | 3.34   | 0.0008   |
| meanbp'     | -0.3080        | 0.2261 | -1.36  | 0.1732   |
| meanbp''    | 0.8438         | 0.8556 | 0.99   | 0.3241   |
| meanbp'''   | -0.5715        | 0.7707 | -0.74  | 0.4584   |
| hrt         | -0.0171        | 0.0069 | -2.46  | 0.0140   |
| hrt'        | 0.0064         | 0.0063 | 1.02   | 0.3090   |
| resp        | 0.0454         | 0.0230 | 1.97   | 0.0483   |
| resp'       | -0.0851        | 0.0291 | -2.93  | 0.0034   |
| temp        | 0.0523         | 0.0834 | 0.63   | 0.5308   |
| crea        | -0.4585        | 0.6727 | -0.68  | 0.4955   |
| crea'       | -11.5176       | 19.0027 | -0.61  | 0.5444   |
| crea''      | 21.9840        | 31.0113 | 0.71  | 0.4784   |
| sod         | 0.0044         | 0.0157 | 0.28   | 0.7792   |
| wbblc.i     | 0.0746         | 0.0331 | 2.25   | 0.0242   |
| wbblc.i'    | -0.0880        | 0.0377 | -2.34  | 0.0195   |
| pafi.i      | 0.0169         | 0.0055 | 3.07   | 0.0021   |
| pafi.i'     | -0.0569        | 0.0239 | -2.38  | 0.0173   |
| pafi.i''    | 0.1088         | 0.0482 | 2.26   | 0.0239   |
| Log(scale)  | 0.8024         | 0.0401 | 19.99  | <0.0001  |

\[ a \leftarrow \text{anova}(f) \]
12.3 Summarizing the Fitted Model

- Plot the shape of the effect of each predictor on log survival time.
- All effects centered: can be placed on common scale
- Wald $\chi^2$ statistics, penalized for d.f., plotted in descending order

```r
ggplot(Predict(f, ref.zero=TRUE), vnames='names', sepdiscrete='vertical', anova=a) # Figure 12.8
print(a, size='tsz')
```

Wald Statistics for $S$
Figure 12.8: Effect of each predictor on log survival time. Predicted values have been centered so that predictions at predictor reference values are zero. Pointwise 0.95 confidence bands are also shown. As all Y-axes have the same scale, it is easy to see which predictors are strongest.
<table>
<thead>
<tr>
<th>Variable</th>
<th>$\chi^2$</th>
<th>d.f.</th>
<th>$P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>15.99</td>
<td>4</td>
<td>0.0030</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>0.23</td>
<td>3</td>
<td>0.9722</td>
</tr>
<tr>
<td>sex</td>
<td>0.11</td>
<td>1</td>
<td>0.7354</td>
</tr>
<tr>
<td>dzgroup</td>
<td>45.69</td>
<td>2</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>num.co</td>
<td>4.99</td>
<td>1</td>
<td>0.0255</td>
</tr>
<tr>
<td>scoma</td>
<td>10.58</td>
<td>1</td>
<td>0.0011</td>
</tr>
<tr>
<td>adlsc</td>
<td>8.28</td>
<td>2</td>
<td>0.0159</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>3.31</td>
<td>1</td>
<td>0.0691</td>
</tr>
<tr>
<td>race2</td>
<td>1.26</td>
<td>1</td>
<td>0.2624</td>
</tr>
<tr>
<td>meanbp</td>
<td>27.62</td>
<td>4</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>10.51</td>
<td>3</td>
<td>0.0147</td>
</tr>
<tr>
<td>hrt</td>
<td>11.83</td>
<td>2</td>
<td>0.0027</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>1.04</td>
<td>1</td>
<td>0.3090</td>
</tr>
<tr>
<td>resp</td>
<td>11.10</td>
<td>2</td>
<td>0.0039</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>8.56</td>
<td>1</td>
<td>0.0034</td>
</tr>
<tr>
<td>temp</td>
<td>0.39</td>
<td>1</td>
<td>0.5308</td>
</tr>
<tr>
<td>crea</td>
<td>33.63</td>
<td>3</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>21.27</td>
<td>2</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>sod</td>
<td>0.08</td>
<td>1</td>
<td>0.7792</td>
</tr>
<tr>
<td>wblc.i</td>
<td>5.47</td>
<td>2</td>
<td>0.0649</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>5.46</td>
<td>1</td>
<td>0.0195</td>
</tr>
<tr>
<td>pafi.i</td>
<td>15.37</td>
<td>3</td>
<td>0.0015</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>6.97</td>
<td>2</td>
<td>0.0307</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>60.48</td>
<td>14</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>TOTAL</td>
<td>261.47</td>
<td>30</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

```r
plot(a) # Figure 12.9
options(digits=3)
plot(summary(f), log=TRUE, main='') # Figure 12.10
```
Figure 12.9: Contribution of variables in predicting survival time in log-normal model

Figure 12.10: Estimated survival time ratios for default settings of predictors. For example, when age changes from its lower quartile to the upper quartile (47.9y to 74.5y), median survival time decreases by more than half. Different shaded areas of bars indicate different confidence levels (0.9, 0.95, 0.99).
12.4 Internal Validation of the Fitted Model Using the Bootstrap

Validate indexes describing the fitted model.

```
First add data to model fit so bootstrap can resample
from the data
g ← update(f, x=TRUE, y=TRUE)
set.seed(717)
latex(validate(g, B=120, dxy=TRUE), digits=2, size='Ssize')
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Original Sample</th>
<th>Training Sample</th>
<th>Test Sample</th>
<th>Optimism</th>
<th>Corrected Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{xy}$</td>
<td>0.49</td>
<td>0.51</td>
<td>0.46</td>
<td>0.05</td>
<td>0.44</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.59</td>
<td>0.66</td>
<td>0.54</td>
<td>0.12</td>
<td>0.47</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.03</td>
<td>-0.03</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>0.90</td>
<td>0.10</td>
<td>0.90</td>
</tr>
<tr>
<td>$D$</td>
<td>0.48</td>
<td>0.55</td>
<td>0.42</td>
<td>0.13</td>
<td>0.35</td>
</tr>
<tr>
<td>$U$</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>$Q$</td>
<td>0.48</td>
<td>0.55</td>
<td>0.43</td>
<td>0.12</td>
<td>0.36</td>
</tr>
<tr>
<td>$g$</td>
<td>1.96</td>
<td>2.04</td>
<td>1.86</td>
<td>0.18</td>
<td>1.78</td>
</tr>
</tbody>
</table>

- From $D_{xy}$ and $R^2$ there is a moderate amount of overfitting.
- Slope shrinkage factor (0.90) is not troublesome
- Almost unbiased estimate of future predictive discrimination on similar patients is the corrected $D_{xy}$ of 0.43.

Validate predicted 1-year survival probabilities. Use a smooth approach that does not require binning [114] and use less precise Kaplan-Meier estimates obtained by stratifying patients by the predicted probability, with at least 60 patients per group.

```
set.seed(717)
cal ← calibrate(g, u=1, B=120)
```
plot(cal, subtitles=FALSE)
cal ← calibrate(g, cmethod='KM', u=1, m=60, B=120, pr=FALSE)
plot(cal, add=TRUE)  # Figure 12.11

Figure 12.11: Bootstrap validation of calibration curve. Dots represent apparent calibration accuracy; \( \times \) are bootstrap estimates corrected for overfitting, based on binning predicted survival probabilities and computing Kaplan-Meier estimates. Black curve is the estimated observed relationship using \texttt{hare} and the blue curve is the overfitting-corrected \texttt{hare} estimate. The gray-scale line depicts the ideal relationship.
Approximating the Full Model

The fitted log-normal model is perhaps too complex for routine use and for routine data collection. Let us develop a simplified model that can predict the predicted values of the full model with high accuracy ($R^2 = 0.96$). The simplification is done using a fast backward stepdown against the full model predicted values.

\[
Z \leftarrow \text{predict}(f) \quad \# \; x*\hat{\beta} \\
a \leftarrow \text{ols}(Z \sim \text{rcs}(age, 5) + \text{sex} + \text{dzgroup} + \text{num.co} + \\
\quad \text{scoma} + \text{pol(adlsc, 2)} + \text{race2} + \\
\quad \text{rcs(meanbp, 5)} + \text{rcs(hrt, 3)} + \text{rcs(resp, 3)} + \\
\quad \text{temp} + \text{rcs(crea, 4)} + \text{sod} + \text{rcs(wblc.i, 3)} + \\
\quad \text{rcs(pafi.i, 4)}, \; \sigma = 1) \quad \# \; \sigma = 1 \text{ is used to prevent } \hat{\sigma} \text{ from being zero when } \quad \# \; R^2 = 1.0 \text{ since we start out by approximating } Z \text{ with all } \\
\quad \# \; \text{component variables} \quad \text{fastbw}(a, \; \text{aics}=10000) \quad \# \; \text{fast backward stepdown}
\]

<table>
<thead>
<tr>
<th>Deleted</th>
<th>Chi-Sq</th>
<th>d.f.</th>
<th>P</th>
<th>Residual d.f.</th>
<th>P</th>
<th>AIC</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>sod</td>
<td>0.43</td>
<td>1</td>
<td>0.512</td>
<td>0.43</td>
<td>1</td>
<td>0.5117</td>
<td>-1.57</td>
</tr>
<tr>
<td>sex</td>
<td>0.57</td>
<td>1</td>
<td>0.451</td>
<td>1.00</td>
<td>2</td>
<td>0.6073</td>
<td>-3.00</td>
</tr>
<tr>
<td>temp</td>
<td>2.20</td>
<td>1</td>
<td>0.138</td>
<td>3.20</td>
<td>3</td>
<td>0.3621</td>
<td>-2.80</td>
</tr>
<tr>
<td>race2</td>
<td>6.81</td>
<td>1</td>
<td>0.009</td>
<td>10.01</td>
<td>4</td>
<td>0.0402</td>
<td>2.01</td>
</tr>
<tr>
<td>wblc.i</td>
<td>29.52</td>
<td>2</td>
<td>0.000</td>
<td>39.53</td>
<td>6</td>
<td>0.0000</td>
<td>27.53</td>
</tr>
<tr>
<td>num.co</td>
<td>30.84</td>
<td>1</td>
<td>0.000</td>
<td>70.36</td>
<td>7</td>
<td>0.0000</td>
<td>56.36</td>
</tr>
<tr>
<td>resp</td>
<td>54.18</td>
<td>2</td>
<td>0.000</td>
<td>124.55</td>
<td>9</td>
<td>0.0000</td>
<td>106.55</td>
</tr>
<tr>
<td>adlsc</td>
<td>52.46</td>
<td>2</td>
<td>0.000</td>
<td>177.00</td>
<td>11</td>
<td>0.0000</td>
<td>155.00</td>
</tr>
<tr>
<td>pafi.i</td>
<td>66.78</td>
<td>3</td>
<td>0.000</td>
<td>243.79</td>
<td>14</td>
<td>0.0000</td>
<td>215.79</td>
</tr>
<tr>
<td>scoma</td>
<td>78.07</td>
<td>1</td>
<td>0.000</td>
<td>321.86</td>
<td>15</td>
<td>0.0000</td>
<td>291.86</td>
</tr>
<tr>
<td>hrt</td>
<td>83.17</td>
<td>2</td>
<td>0.000</td>
<td>405.02</td>
<td>17</td>
<td>0.0000</td>
<td>371.02</td>
</tr>
<tr>
<td>age</td>
<td>68.08</td>
<td>4</td>
<td>0.000</td>
<td>473.10</td>
<td>21</td>
<td>0.0000</td>
<td>431.10</td>
</tr>
<tr>
<td>crea</td>
<td>314.47</td>
<td>3</td>
<td>0.000</td>
<td>787.57</td>
<td>24</td>
<td>0.0000</td>
<td>739.57</td>
</tr>
<tr>
<td>meanbp</td>
<td>403.04</td>
<td>4</td>
<td>0.000</td>
<td>1190.61</td>
<td>28</td>
<td>0.0000</td>
<td>1134.61</td>
</tr>
<tr>
<td>dzgroup</td>
<td>441.28</td>
<td>2</td>
<td>0.000</td>
<td>1631.89</td>
<td>30</td>
<td>0.0000</td>
<td>1571.89</td>
</tr>
</tbody>
</table>

Approximate Estimates after Deleting Factors

\[
\begin{array}{ccccc}
\text{Coef} & \text{S.E.} & \text{Wald} & \text{Z} & \text{P} \\
\hline
[1,] & -0.5928 & 0.04315 & -13.74 & 0
\end{array}
\]

Factors in Final Model

None
f.approx ← ols(Z ~ dzgroup + rcs(meanbp,5) + rcs(crea,4) + rcs(age,5) +
rcs(hrt,3) + scoma + rcs(pafi.i,4) + pol(adlsc,2)+
rcs(resp,3), x=TRUE)
f.approx$stats

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Model L.R.</th>
<th>d.f.</th>
<th>R2</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>537</td>
<td>1688.225</td>
<td>23.000</td>
<td>0.957</td>
<td>1.915</td>
</tr>
</tbody>
</table>

Sigma 0.370

• Estimate variance–covariance matrix of the coefficients of reduced model

• This covariance matrix does not include the scale parameter

V ← vcov(f, regcoef.only=TRUE)  # var(full model)
X ← cbind(Intercept=1, g$x)  # full model design
x ← cbind(Intercept=1, f.approx$x)  # approx. model design
w ← solve(t(x) %*% x, t(x)) %*% X  # contrast matrix
v ← w %*% V %*% t(w)

Compare variance estimates (diagonals of v) with variance estimates from a reduced model that is fitted against the actual outcomes.

f.sub ← psm(S ~ dzgroup + rcs(meanbp,5) + rcs(crea,4) + rcs(age,5) +
rcs(hrt,3) + scoma + rcs(pafi.i,4) + pol(adlsc,2)+
rcs(resp,3), dist='lognormal')  # 'gaussian' for S
r ← diag(v)/diag(vcov(f.sub, regcoef.only=TRUE))
r[c(which.min(r), which.max(r))]

hrt’ age
0.976 0.982

f.approx$var ← v
print(anova(f.approx, test='Chisq', ss=FALSE), size='tsz')
Wald Statistics for $Z$

<table>
<thead>
<tr>
<th>Variable</th>
<th>$\chi^2$</th>
<th>d.f.</th>
<th>$P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dzgroup</td>
<td>55.94</td>
<td>2</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>meanbp</td>
<td>29.87</td>
<td>4</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>9.84</td>
<td>3</td>
<td>0.0200</td>
</tr>
<tr>
<td>crea</td>
<td>39.04</td>
<td>3</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>24.37</td>
<td>2</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>age</td>
<td>18.12</td>
<td>4</td>
<td>0.0012</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>0.34</td>
<td>3</td>
<td>0.9517</td>
</tr>
<tr>
<td>hrt</td>
<td>9.87</td>
<td>2</td>
<td>0.0072</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>0.40</td>
<td>1</td>
<td>0.5289</td>
</tr>
<tr>
<td>scoma</td>
<td>9.85</td>
<td>1</td>
<td>0.0017</td>
</tr>
<tr>
<td>pafi.i</td>
<td>14.01</td>
<td>3</td>
<td>0.0029</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>6.66</td>
<td>2</td>
<td>0.0357</td>
</tr>
<tr>
<td>adlsc</td>
<td>9.71</td>
<td>2</td>
<td>0.0078</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>2.87</td>
<td>1</td>
<td>0.0904</td>
</tr>
<tr>
<td>resp</td>
<td>9.65</td>
<td>2</td>
<td>0.0080</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>7.13</td>
<td>1</td>
<td>0.0076</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>58.08</td>
<td>13</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>TOTAL</td>
<td>252.32</td>
<td>23</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

Equation for simplified model:

$$E(Z) = X\hat{\beta}, \quad \text{where}$$

$$X\hat{\beta} =$$

-2.51 
-1.94[Coma] – 1.75[MOSF w/Malig]
+0.068meanbp – 3.08\times10^{-5}(meanbp – 41.8)_3^+ + 7.9\times10^{-5}(meanbp – 61)_3^+
-4.91\times10^{-5}(meanbp – 73)_3^+ + 2.61\times10^{-6}(meanbp – 109)_3^+ – 1.7\times10^{-6}(meanbp – 135)_3^+
-0.553crea – 0.229(crea – 0.6)_3^+ + 0.45(crea – 1.1)_3^+ – 0.233(crea – 1.94)_3^+
+0.0131(crea – 7.32)_3^+
-0.0165age – 1.13\times10^{-5}(age – 28.5)_3^+ + 4.05\times10^{-5}(age – 49.5)_3^+
-2.15\times10^{-5}(age – 63.7)_3^+ – 2.68\times10^{-5}(age – 72.7)_3^+ + 1.9\times10^{-5}(age – 85.6)_3^+
-0.0136hrt + 6.09\times10^{-7}(hrt – 60)_3^+ – 1.68\times10^{-6}(hrt – 111)_3^+ + 1.07\times10^{-6}(hrt – 140)_3^+
-0.0135 scoma
+0.0161pafi.i - 4.77 \times 10^{-7}(pafi.i - 88)^{3} + 9.11 \times 10^{-7}(pafi.i - 167)^{3}
-5.02 \times 10^{-7}(pafi.i - 276)^{3} + 6.76 \times 10^{-8}(pafi.i - 426)^{3} - 0.369 adlsc + 0.0409 adlsc^2
+0.0394resp - 9.11 \times 10^{-5}(resp - 10)^{3} + 0.000176(resp - 24)^{3} - 8.5 \times 10^{-5}(resp - 39)^{3}

and \([c] = 1\) if subject is in group \(c\), 0 otherwise; \((x)_+ = x\) if \(x > 0\), 0 otherwise

Nomogram for predicting median and mean survival time, based on approximate model:

```r
Derive S functions that express mean and quantiles of survival time for specific linear predictors
analytically
expected.surv ← Mean(f)
quantile.surv ← Quantile(f)
lx(t(expected.surv, file='', type='Sinput')

expected.surv ← function (lp = NULL, parms = 0.802352037606488) {
 names(parms) ← NULL
 exp(lm + exp(2 * parms)/2)
}
lx(t(quantile.surv, file='', type='Sinput')

quantile.surv ← function (q = 0.5, lp = NULL, parms = 0.802352037606488) {
 names(parms) ← NULL
 f ← function(lm, q, parms) lm + exp(parms) * qnorm(q)
 names(q) ← format(q)
 drop(exp(outer(lp, q, FUN = f, parms = parms)))
}

median.surv ← function(x) quantile.surv(lm=x)

Improve variable labels for the nomogram
f.approx ← Newlabels(f.approx, c('Disease Group','Mean Arterial BP','Creatinine','Age','Heart Rate','SUPPORT Coma Score','PaO2/(.01*FiO2)','ADL','Resp. Rate'))
nom ← nomogram(f.approx, pafi.i=c(0, 50, 100, 200, 300, 500, 600, 700, 800, 900),
 fun=list('Median Survival Time'=median.surv,
 'Mean Survival Time' =expected.surv),
 fun.at=c(.1,.25,.5,1,2,5,10,20,40))
plot(nom, cex.var=1, cex.axis=.75, lmgp=.25)
```

_Figure 12.12_
Figure 12.12: Nomogram for predicting median and mean survival time, based on approximation of full model
### S Packages and Functions Used

<table>
<thead>
<tr>
<th>Packages</th>
<th>Purpose</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hmisc</td>
<td>Miscellaneous functions</td>
<td>describe, ecdf, naclus, varclus, llist, spearman2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>describe, impute, latex</td>
</tr>
<tr>
<td>rms</td>
<td>Modeling</td>
<td>datadist, psm, rcs, ols, fastbw</td>
</tr>
<tr>
<td></td>
<td>Model presentation</td>
<td>survplot, Newlabels, Function, Mean, Quantile, nomogram</td>
</tr>
<tr>
<td></td>
<td>Model validation</td>
<td>validate, calibrate</td>
</tr>
</tbody>
</table>

Note: All packages are available from CRAN.
Chapter 13

Case Study in Cox Regression

13.1 Choosing the Number of Parameters and Fitting the Model

- Clinical trial of estrogen for prostate cancer
- Response is time to death, all causes
- Base analysis on Cox proportional hazards model [49]
- \( S(t|X) = \) probability of surviving at least to time \( t \) given set of predictor values \( X \)
- \( S(t|X) = S_0(t)^{\exp(X\beta)} \)
- Censor time to death at time of last follow-up for patients still alive at end of study (treat survival time for pt. censored at 24m as 24m+)
• Use simple, partial approaches to data reduction

• Use *transcan* for single imputation

• Again combine last 2 categories for ekg,pf

• See if we can use a full additive model (4 knots for continuous $X$)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Name</th>
<th>d.f.</th>
<th>Original Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose of estrogen</td>
<td>rx</td>
<td>3</td>
<td>placebo, 0.2, 1.0, 5.0 mg estrogen</td>
</tr>
<tr>
<td>Age in years</td>
<td>age</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Weight index: $wt(kg)-ht(cm)+200$</td>
<td>wt</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Performance rating</td>
<td>pf</td>
<td>2</td>
<td>normal, in bed $&lt;50%$ of time, in bed $&gt;50%$, in bed always</td>
</tr>
<tr>
<td>History of cardiovascular disease</td>
<td>hx</td>
<td>1</td>
<td>present/absent</td>
</tr>
<tr>
<td>Systolic blood pressure/10</td>
<td>sbp</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Diastolic blood pressure/10</td>
<td>dbp</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electrocardiogram code</td>
<td>ekg</td>
<td>5</td>
<td>normal, benign, rhythm disturb., block, strain, old myocardial infarction, new MI</td>
</tr>
<tr>
<td>Serum hemoglobin (g/100ml)</td>
<td>hg</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tumor size (cm$^2$)</td>
<td>sz</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Stage/histologic grade combination</td>
<td>sg</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Serum prostatic acid phosphatase</td>
<td>ap</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bone metastasis</td>
<td>bm</td>
<td>1</td>
<td>present/absent</td>
</tr>
</tbody>
</table>

• Total of 36 candidate d.f.

• Impute missings and estimate shrinkage

```r
require(rms)
options(prType='latex') # for print, summary, anova
getHdata(prostate)
levels(prostate$ekg)[levels(prostate$ekg) %in%
c('old MI','recent MI')] <- 'MI'
combines last 2 levels and uses a new name, MI
```
```r
prostate$pf.coded ← as.integer(prostate$pf)
save original pf, re-code to 1-4
levels(prostate$pf) ← c(levels(prostate$pf)[1:3],
 levels(prostate$pf)[3])
combine last 2 levels
w ← transcan(~ sz + sg + ap + sbp + dbp + age +
 wt + hg + ekg + pf + bm + hx,
 imputed=TRUE, data=prostate, pl=FALSE, pr=FALSE)
attach(prostate)
sz ← impute(w, sz, data=prostate)
sg ← impute(w, sg, data=prostate)
age ← impute(w, age, data=prostate)
wt ← impute(w, wt, data=prostate)
ekg ← impute(w, ekg, data=prostate)

dd ← datadist(prostate)
options(datadist='dd')

units(dtime) ← 'Month'
S ← Surv(dtime, status!='alive')

f ← cph(S ~ rx + rcs(age,4) + rcs(wt,4) + pf + hx +
 rcs(sbp,4) + rcs(dbp,4) + ekg + rcs(hg,4) +
 rcs(sg,4) + rcs(sz,4) + rcs(log(ap),4) + bm)

print(f, coefs=FALSE)
```

**Cox Proportional Hazards Model**

```r
cph(formula = S ~ rx + rcs(age, 4) + rcs(wt, 4) + pf + hx + rcs(sbp, 4) + rcs(dbp, 4) + ekg + rcs(hg, 4) + rcs(sg, 4) + rcs(sz, 4) + rcs(log(ap), 4) + bm)
```

<table>
<thead>
<tr>
<th></th>
<th>Model Tests</th>
<th>Discrimination Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Obs</strong></td>
<td>502</td>
<td><strong>R^2</strong> 0.238</td>
</tr>
<tr>
<td><strong>Events</strong></td>
<td>354</td>
<td><strong>R^2</strong> 0.181</td>
</tr>
<tr>
<td><strong>Center</strong></td>
<td>-2.9933</td>
<td><strong>R^2</strong> 0.247</td>
</tr>
<tr>
<td><strong>Center</strong></td>
<td>-2.9933</td>
<td><strong>D_{xy}</strong> 0.333</td>
</tr>
</tbody>
</table>

- Global LR $\chi^2$ is 135 and very significant → modeling warranted
• AIC on $\chi^2$ scale $= 136.2 - 2 \times 36 = 64.2$

• Rough shrinkage: $0.74 \left(\frac{136.2-36}{136.2}\right)$

• Informal data reduction (increase for $\text{ap}$)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Reductions</th>
<th>d.f. Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{wt}$</td>
<td>Assume variable not important enough for 4 knots; use 3 knots</td>
<td>1</td>
</tr>
<tr>
<td>$\text{pf}$</td>
<td>Assume linearity</td>
<td>1</td>
</tr>
<tr>
<td>$\text{hx,ekg}$</td>
<td>Make new 0,1,2 variable and assume linearity: $2=\text{hx}$ and $\text{ekg}$ not normal or benign, $1=\text{either}$, $0=\text{none}$</td>
<td>5</td>
</tr>
<tr>
<td>$\text{sbp,dbp}$</td>
<td>Combine into mean arterial bp and use 3 knots: $\text{map} = \frac{2}{3} \text{dbp} + \frac{1}{3} \text{sbp}$</td>
<td>4</td>
</tr>
<tr>
<td>$\text{sg}$</td>
<td>Use 3 knots</td>
<td>1</td>
</tr>
<tr>
<td>$\text{sz}$</td>
<td>Use 3 knots</td>
<td>1</td>
</tr>
<tr>
<td>$\text{ap}$</td>
<td>Look at shape of effect of $\text{ap}$ in detail, and take log before expanding as spline to achieve numerical stability: add 1 knot</td>
<td>-1</td>
</tr>
</tbody>
</table>
heart ← hx + ekg %nin% c('normal','benign')
label(heart) ← 'Heart Disease Code'
map ← (2*dbp + sbp)/3
label(map) ← 'Mean Arterial Pressure/10'
dd ← datadist(dd, heart, map)

f ← cph(S ~ rx + rcs(age, 4) + rcs(wt, 3) + pf.coded +
        heart + rcs(map, 3) + rcs(hg, 4) +
        rcs(sg, 3) + rcs(sz, 3) + rcs(log(ap), 5) + bm, 
        x=TRUE, y=TRUE, surv=TRUE, time.inc=5*12)
print(f, coefs=FALSE)

Cox Proportional Hazards Model

cph(formula = S ~ rx + rcs(age, 4) + rcs(wt, 3) + pf.coded +
        heart + rcs(map, 3) + rcs(hg, 4) + rcs(sg, 3) + rcs(sz, 3) +
        rcs(log(ap), 5) + bm, x = TRUE, y = TRUE, surv = TRUE, time.inc = 5*12)

Obs	LR $\chi^2$ 118.37		
Events	d.f. 24	$R^2$ 0.210	
Center	Pr($>\chi^2$) 0.0000	$R^2_{24,502}$ 0.171	
	Score $\chi^2$ 125.58	$R^2_{24,354}$ 0.234	
	Pr($>\chi^2$) 0.0000	$D_{xy}$ 0.321	

# x, y for predict, validate, calibrate;
# surv, time.inc for calibrate
anova(f)

Wald Statistics for S
<table>
<thead>
<tr>
<th></th>
<th>$\chi^2$</th>
<th>d.f.</th>
<th>$P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>rx</td>
<td>8.01</td>
<td>3</td>
<td>0.0459</td>
</tr>
<tr>
<td>age</td>
<td>13.84</td>
<td>3</td>
<td>0.0031</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>9.06</td>
<td>2</td>
</tr>
<tr>
<td>wt</td>
<td>8.21</td>
<td>2</td>
<td>0.0165</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>2.54</td>
<td>1</td>
</tr>
<tr>
<td>pf.coded</td>
<td>3.79</td>
<td>1</td>
<td>0.0517</td>
</tr>
<tr>
<td>heart</td>
<td>23.51</td>
<td>1</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>map</td>
<td>0.04</td>
<td>2</td>
<td>0.9779</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>hg</td>
<td>12.52</td>
<td>3</td>
<td>0.0058</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>8.25</td>
<td>2</td>
</tr>
<tr>
<td>sg</td>
<td>1.64</td>
<td>2</td>
<td>0.4406</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>sz</td>
<td>12.73</td>
<td>2</td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>ap</td>
<td>6.51</td>
<td>4</td>
<td>0.1639</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>6.22</td>
<td>3</td>
</tr>
<tr>
<td>bm</td>
<td>0.03</td>
<td>1</td>
<td>0.8670</td>
</tr>
<tr>
<td>TOTAL NONLINEAR</td>
<td>23.81</td>
<td>11</td>
<td>0.0136</td>
</tr>
<tr>
<td>TOTAL</td>
<td>119.09</td>
<td>24</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

- Savings of 12 d.f.
- AIC=70, shrinkage 0.80
13.2 Checking Proportional Hazards

- This is our tentative model
- Examine distributional assumptions using scaled Schoenfeld residuals
- Complication arising from predictors using multiple d.f.
- Transform to 1 d.f. empirically using $X\hat{\beta}$
- `cox.zph` does this automatically

Following analysis approx. since internal coefficients estimated

```
z ← predict(f, type='terms')
required x=T above to store design matrix
f.short ← cph(S ~ z, x=TRUE, y=TRUE)
store raw x, y so can get residuals
```

- Fit `f.short` has same LR $\chi^2$ of 118 as the fit $f$, but with falsely low d.f.
- All $\beta = 1$

```
ptest ← cox.zph(f, transform='identity')
ptest
```

<table>
<thead>
<tr>
<th></th>
<th>chisq</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>rx</td>
<td>4.07e+00</td>
<td>3</td>
<td>0.25</td>
</tr>
<tr>
<td>rcs(age, 4)</td>
<td>4.27e+00</td>
<td>3</td>
<td>0.23</td>
</tr>
<tr>
<td>rcs(wt, 3)</td>
<td>2.22e-01</td>
<td>2</td>
<td>0.89</td>
</tr>
<tr>
<td>pf.code</td>
<td>5.34e-02</td>
<td>1</td>
<td>0.82</td>
</tr>
<tr>
<td>heart</td>
<td>4.95e-01</td>
<td>1</td>
<td>0.48</td>
</tr>
<tr>
<td>rcs(map, 3)</td>
<td>3.20e+00</td>
<td>2</td>
<td>0.20</td>
</tr>
</tbody>
</table>
**None of the effects significantly change over time**

**Global test of PH** $P = 0.52$
Testing Interactions

- Will ignore non-PH for dose even though it makes sense
- More accurate predictions could be obtained using stratification or time dep. cov.
- Test all interactions with dose
  Reduce to 1 d.f. as before

```
z.dose ← z[, "rx"] # same as saying z[,1] - get first column
z.other ← z[, -1] # all but the first column of z
f.ia ← cph(S ∼ z.dose * z.other)
print(anova(f.ia), size = 'tsz')
```

<table>
<thead>
<tr>
<th></th>
<th>( \chi^2 )</th>
<th>d.f.</th>
<th>( P )</th>
</tr>
</thead>
<tbody>
<tr>
<td>z.dose (Factor+Higher Order Factors)</td>
<td>18.74</td>
<td>11</td>
<td>0.0660</td>
</tr>
<tr>
<td>All Interactions</td>
<td>12.17</td>
<td>10</td>
<td>0.2738</td>
</tr>
<tr>
<td>z.other (Factor+Higher Order Factors)</td>
<td>125.89</td>
<td>20</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>All Interactions</td>
<td>12.17</td>
<td>10</td>
<td>0.2738</td>
</tr>
<tr>
<td>z.dose × z.other (Factor+Higher Order Factors)</td>
<td>12.17</td>
<td>10</td>
<td>0.2738</td>
</tr>
<tr>
<td>TOTAL</td>
<td>129.10</td>
<td>21</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>
13.4 Describing Predictor Effects

- Plot relationship between each predictor and $\log \lambda$

```r
ggplot(Predict(f), sepdiscrete='vertical', nlevels=4, vnames='names') # Figure 13.2
```

Figure 13.2: Shape of each predictor on log hazard of death. Y-axis shows $X\hat{\beta}$, but the predictors not plotted are set to reference values. Note the highly non-monotonic relationship with $ap$, and the increased slope after age 70 which has been found in outcome models for various diseases.
Validating the Model

- Validate for $D_{xy}$ and slope shrinkage

```r
set.seed(1) # so can reproduce results
v <- validate(f, B=300)
latex(v, file='')
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Original Sample</th>
<th>Training Sample</th>
<th>Test Sample</th>
<th>Optimism</th>
<th>Corrected Index</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{xy}$</td>
<td>0.3208</td>
<td>0.3494</td>
<td>0.2953</td>
<td>0.0541</td>
<td>0.2667</td>
<td>300</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.2101</td>
<td>0.2481</td>
<td>0.1756</td>
<td>0.0724</td>
<td>0.1377</td>
<td>300</td>
</tr>
<tr>
<td>Slope</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.7863</td>
<td>0.2137</td>
<td>0.7863</td>
<td>300</td>
</tr>
<tr>
<td>$D$</td>
<td>0.0292</td>
<td>0.0354</td>
<td>0.0239</td>
<td>0.0116</td>
<td>0.0176</td>
<td>300</td>
</tr>
<tr>
<td>$U$</td>
<td>-0.0005</td>
<td>-0.0005</td>
<td>0.0024</td>
<td>-0.0029</td>
<td>0.0024</td>
<td>300</td>
</tr>
<tr>
<td>$Q$</td>
<td>0.0297</td>
<td>0.0359</td>
<td>0.0215</td>
<td>0.0144</td>
<td>0.0153</td>
<td>300</td>
</tr>
<tr>
<td>$g$</td>
<td>0.7174</td>
<td>0.7999</td>
<td>0.6290</td>
<td>0.1708</td>
<td>0.5466</td>
<td>300</td>
</tr>
</tbody>
</table>

- Shrinkage surprisingly close to heuristic estimate of 0.79

- Now validate 5-year survival probability estimates

```r
cal <- calibrate(f, B=300, u=5*12, maxdim=3)

Using Cox survival estimates at 60 Months
```

```r
plot(cal)
```
Figure 13.3: Bootstrap estimate of calibration accuracy for 5-year estimates from the final Cox model, using adaptive linear spline hazard regression. Line nearer the ideal line corresponds to apparent predictive accuracy. The blue curve corresponds to bootstrap-corrected estimates.
### Presenting the Model

- **Display hazard ratios, overriding default for \( ap \)**

```r
plot(summary(f, ap=c(1,20)), log=TRUE, main='')
```

![Figure 13.4: Hazard ratios and multi-level confidence bars for effects of predictors in model, using default ranges except for \( ap \)](image)

- **Draw nomogram, with predictions stated 4 ways**

```r
surv ← Survival(f)
surv3 ← function(x) surv(3*12,lp=x)
surv5 ← function(x) surv(5*12,lp=x)
quan ← Quantile(f)
med ← function(x) quan(lp=x)/12
ss ← c(.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,.95)

nom ← nomogram(f, ap=c(.1,.5,1,2,3,4,5,10,20,30,40),
 fun=list(surv3, surv5, med),
 funlabel=c('3-year Survival','5-year Survival','Median Survival Time (years)'),
 fun.at=list(ss, ss, c(.5,1:6)))
plot(nom, xfrac=.65, lmgp=.35)
```
Figure 13.5: Nomogram for predicting death in prostate cancer trial
Chapter 14

Semiparametric Ordinal Longitudinal Models

14.1 Longitudinal Ordinal Models as Unifying Concepts

This material in this section is taken from hbiostat.org/talks/rcteff.html. See also hbiostat.org/proj/covid19/ordmarkov.html

14.1.1 General Outcome Attributes

- Timing and severity of outcomes

- Handle
  - terminal events (death)
  - non-terminal events (MI, stroke)
– recurrent events (hospitalization)

• Break the ties; the more levels of Y the better: fharrell.com/post/ordinal-info
  – Maximum power when there is only one patient at each level (continuous Y)

---

**What is a Fundamental Outcome Assessment?**

• In a given week or day what is the severity of the worst thing that happened to the patient?

• Expert clinician consensus of outcome ranks

• Spacing of outcome categories irrelevant

• Avoids defining additive weights for multiple events on same week

• Events can be graded & can code common co-occurring events as worse event

• Can translate an ordinal longitudinal model to obtain a variety of estimates
  – time until a condition
  – expected time in state
• Bayesian partial proportional odds model can compute the probability that the treatment affects mortality differently than it affects nonfatal outcomes

• Model also elegantly handles partial information: at each day/week the ordinal Y can be left, right, or interval censored when a range of the scale was not measured

---

14.1.3

Examples of Longitudinal Ordinal Outcomes

• 0=alive 1=dead
  – censored at 3w: 000
  – death at 2w: 01
  – longitudinal binary logistic model OR \( \approx \) HR

• 0=at home 1=hospitalized 2=MI 3=dead
  – hospitalized at 3w, rehosp at 7w, MI at 8w & stays in hosp, f/u ends at 10w: 0010001211

• 0-6 QOL excellent–poor, 7=MI 8=stroke 9=dead
  – QOL varies, not assessed in 3w but pt event free, stroke at 8w, death 9w: 12[0-6]334589

  \* MI status unknown at 7w: 12[0-6]334[5-7]89\* 

\*Better: treat the outcome as being in one of two non-contiguous values 5,7 instead of [5-7] but no software is currently available for this\*
– Can make first 200 levels be a continuous response variable and the remaining values represent clinical event overrides

**Statistical Model**

- Proportional odds ordinal logistic model with covariate adjustment
- Patient random effects (intercepts) handle intra-patient correlation
- Better fitting: Markov model
  - handles absorbing states, extremely high day-to-day correlations within subject
  - faster, flexible, uses standard software
  - state transition probabilities
  - after fit translate to unconditional state occupancy probabilities
  - use these to estimate expected time in a set of states (e.g., on ventilator or dead); restricted mean survival time without assuming PH
- Extension of binary logistic model
• Generalization of Wilcoxon-Mann-Whitney Two-Sample Test

• No assumption about Y distribution for a given patient type

• Does not use the numeric Y codes
Case Studies

- Random effects model for continuous Y: Section 7.8.3
- Markov model for continuous Y: Section 7.8.4
- Multiple detailed case studies for discrete ordinal Y: hbiostat.org/proj/covid19.
  - ORCHID: hydroxychloroquine for treatment of COVID-19 with patient assessment on select days
  - VIOLET: vitamin D for serious respiratory illness with assessment on 28 consecutive days
    * Large power gain demonstrated over time to recovery or ordinal status at a given day
    * Loosely speaking serial assessments for each 5 day period had the same statistical information as a new patient assessed once
  - ACTT-1: NIH-NIAID Remdesivir study for treatment of COVID-19 with daily assessment while in hospital, select days after that with interval censoring
    * Assesses time-varying effect of remdesivir
    * Handles death explicitly, unlike per-patient time to re-
covery

– Other: Bayesian and frequentist power simulation, exploration of unequal time gaps, etc.
Case Study For 4-Level Ordinal Longitudinal Outcome

- **VIOLET:** randomized clinical trial of seriously ill adults in ICUs to study the effectiveness of vitamin D vs. placebo
- Daily ordinal outcomes assessed for 28 days with very little missing data
- Original paper: DOI:10.1056/NEJMoa1911124 focused on 1078 patients with confirmed baseline vitamin D deficiency
- Focus on 1352 of the original 1360 randomized patients
- Extensive re-analyses:
  - hbiostat.org/proj/covid19/violet2.html
  - hbiostat.org/proj/covid19/orchid.html
  - hbiostat.org/R/Hmisc/markov/sim.html
- Fitted a frequentist first-order Markov partial proportional odds (PO) model to 1352 VIOLET patients using the R VGAM package to simulate 250,000 patient longitudinal records with daily assessments up to 28d: hbiostat.org/data/repo/simlongord.html
• Simulation inserted an odds ratio of 0.75 for \( t_x=1 : t_x=0 \) (log OR = -0.288)

• Case study uses the first 500 simulated patients
  – 13203 records
  – average of 26.4 records per patient out of a maximum of 28, due to deaths
  – full 250,00 and 500-patient datasets available at hbiostat.org/data

• 4-level outcomes:
  – patient at home
  – in hospital or other health facility
  – on ventilator or diagnosed with acute respiratory distress syndrome (ARDS)
  – dead

• Death is an absorbing state
  – only possible previous states are the first 3
  – at baseline no one was at home
  – a patient who dies has Dead as the status on their final
record, with no “deaths carried forward”

– later we will carry deaths forward just to be able to look at empirical state occupancy probabilities (SOPs) vs. model estimates

• Frequentist modeling using the \texttt{VGAM} package allows us to use the unconstrained partial PO (PPO) model with regard to time, but does not allow us to compute uncertainty intervals for derived parameters (e.g., SOPs and mean time in states)

• Can use the bootstrap to obtain approximate confidence limits (as below)

• Bayesian analysis using the \texttt{rmsb} package provides exact uncertainty intervals for derived parameters but at present \texttt{rmsb} only implements the constrained PPO model when getting predicted values

• PPO for time allows mix of outcomes to change over time (which occurred in the real data)

• Model specification:
  – For day $t$ let $Y(t)$ denote the ordinal outcome for a patient
    $$\Pr(Y \geq y|X, Y(t-1)) = \text{expit}(\alpha_y + X \beta + g(Y(t-1), t))$$
  – $g$ contains regression coefficients for the previous state
$Y(t - 1)$ effect, the absolute time $t$ effect, and any $y$-dependency on the $t$ effect (non-PO for $t$)

- Baseline covariates: age, SOFA score (a measure of organ function), treatment ($tx$)

- Time-dependent covariate: previous state ($y_{prev}$, 3 levels)

- Time trend: linear spline with knot at day 2 (handles exception at day 1 when almost no one was sent home)

- Changing mix of outcomes over time
  
  * effect of time on transition ORs for different cutoffs of $Y$

  * 2 time components (one slope change) $\times$ 3 $Y$ cutoffs $= 6$ parameters related to day

- Reverse coding of $Y$ so that higher levels are worse

---

**Descriptives**

- all state transitions from one day to the next

- SOPs estimated by proportions (need to carry death forward)

```r
require(rms)
```
require(data.table)

require(VGAM)

knitrSet('markov')
getHdata(simlongord500)
d ← simlongord500
setDT(d, key='id')
d[, y := factor(y, levels=rev(levels(y )))]
d[, yprev := factor( yprev , levels=rev(levels( yprev )))]
setnames(d, 'time', 'day')

# Show descriptive statistics for baseline data
latex(describe(d[day == 1, .( yprev , age , sofa , tx)], 'Baseline Variables '), file = '')

Baseline Variables

4 Variables 500 Observations

yprev

<table>
<thead>
<tr>
<th>Value</th>
<th>In Hospital/Facility</th>
<th>Vent/ARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>340</td>
<td>160</td>
</tr>
<tr>
<td>Proportion</td>
<td>0.68</td>
<td>0.32</td>
</tr>
</tbody>
</table>

age

<table>
<thead>
<tr>
<th>Value</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest:</td>
<td>19 20 21 22 23</td>
<td>highest:</td>
<td>89 90 91 92 94</td>
</tr>
<tr>
<td>n</td>
<td>500</td>
<td>0</td>
<td>73</td>
</tr>
<tr>
<td>missing</td>
<td>0</td>
<td>0</td>
<td>0.999</td>
</tr>
<tr>
<td>distinct</td>
<td>18</td>
<td>0</td>
<td>0.992</td>
</tr>
<tr>
<td>n</td>
<td>500</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>missing</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>distinct</td>
<td>16</td>
<td>0</td>
<td>0.05</td>
</tr>
</tbody>
</table>

sofa

<table>
<thead>
<tr>
<th>Value</th>
<th>Info</th>
<th>Mean</th>
<th>Gmd</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest:</td>
<td>0 1 2 3 4</td>
<td>highest:</td>
<td>13 14 15 17 18</td>
</tr>
<tr>
<td>n</td>
<td>500</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>missing</td>
<td>0</td>
<td>0</td>
<td>0.992</td>
</tr>
<tr>
<td>distinct</td>
<td>9</td>
<td>0</td>
<td>0.992</td>
</tr>
<tr>
<td>n</td>
<td>500</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>missing</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>distinct</td>
<td>9</td>
<td>0</td>
<td>0.05</td>
</tr>
</tbody>
</table>

tx

# Check that death can only occur on the last day

d[, .(ddif=if(any(y == 'Dead')) min(day[y == 'Dead']) - max(day) else NA_integer_),
by=id][, table(ddif)]

ddif 0 43

propsTrans(y ~ day + id, data=d, maxsize=4, arrow='->') +
theme(axis.text.x=element_text(angle=90, hjust=1))
Show state occupancy proportions by creating a data table with death carried forward.

```r
w ← d[day < 28 & y == 'Dead',]
w[, if(.N > 1) stop('Error: more than one death record'), by=id]

Empty data.table (0 rows and 1 cols): id

w ← w[, .(day = (day + 1) : 28, y = y, tx=tx), by=id]
u ← rbind(d, w, fill=TRUE)
setkey(u, id)
u[, Tx := paste0('tx=', tx)]
```
Model Fitting

- Fit the PPO first-order Markov model without assuming PO for the time effect

- Also fit a model that has linear splines with more knots to add flexibility in how time and baseline covariates are transformed

- Disregard the terrible statistical practice of using asterisks to denote "significant" results
summary(f)

Call:
vglm(formula = ordered(y) ~ yprev + lsp(day, 2) + age + sofa +
    tx, family = cumulative(reverse = TRUE, parallel = FALSE ~
    lsp(day, 2)), data = d)

Coefficients:
                   Estimate   Std. Error z value  Pr(>|z|)
(Intercept):1 -5.685047 0.586907  -9.686 < 2e-16 ***
(Intercept):2 -13.982588 0.558102 -25.054 < 2e-16 ***
yprevIn Hospital/Facility  9.010046 0.288818   31.196 < 2e-16 ***
yprevVent/ARDS          15.201826 0.336292   45.204 < 2e-16 ***
lsp(day, 2)day:1   -1.119279 0.254831  -4.392  1.12e-05 ***
lsp(day, 2)day:2   -0.268585 0.234568  -1.145   0.252
lsp(day, 2)day:3   1.150635 0.750875   1.532   0.125
lsp(day, 2)day':1  1.170655 0.256770   4.559  5.14e-06 ***
lsp(day, 2)day':2  0.294863 0.236111   1.236   0.217
lsp(day, 2)day':3 -1.141568 0.756102  -1.510   0.131
age               0.010996 0.002814   3.907  9.34e-05 ***
sofa              0.060413 0.012562   4.809  1.52e-06 ***
tx                -0.350262 0.084709  -4.135  3.55e-05 ***

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3]),
    logitlink(P[Y>=4])

Residual deviance: 4534.299 on 39595 degrees of freedom
Log-likelihood:  -2267.15 on 39595 degrees of freedom

Number of Fisher scoring iterations: 9

Warning: Hauck-Donner effect detected in the following estimate(s):
    '(Intercept):3'

Exponentiated coefficients:
                   yprevIn Hospital/Facility yprevVent/ARDS lsp(day, 2)day:1
          8.184899e+03       4.000083e+06          3.265152e-01
lsp(day, 2)day:2 lsp(day, 2)day:3 lsp(day, 2)day':1
    7.644601e-01          3.160199e+00          3.224103e+00
lsp(day, 2)day':2 lsp(day, 2)day':3 age
    1.342943e+00          3.193179e-01         1.011057e+00
sofa   tx
    1.062275e+00          7.045038e-01

# Note: vglm will handle rcs() but not in getting predictions since
# it doesn’t know where to find the computed knot locations
# Linear splines have knots explicitly stated at all times

g <- vglm(ordered(y) ~ yprev + lsp(day, c(2, 4, 8, 15)) +
    lsp(age, c(35, 60, 75)) + lsp(sofa, c(2, 6, 10)) + tx,
    cumulative(reverse=TRUE, parallel=FALSE ~ lsp(day, c(2, 4, 8, 15))),
    data=d)
summary(g)

Call:
vglm(formula = ordered(y) ~ yprev + lsp(day, c(2, 4, 8, 15)) + 
     lsp(age, c(35, 60, 75)) + lsp(sofa, c(2, 6, 10)) + tx, family = cumulative(reverse = 
     FALSE ~ lsp(day, c(2, 4, 8, 15))), data = d)

Coefficients:

|                      | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------------|----------|------------|---------|----------|
| (Intercept):1        | -6.999641| 0.853756   | -8.199  | 2.43e-16 *** |
| (Intercept):2        | -14.999370| 0.831770  | -18.033 | < 2e-16 *** |
| (Intercept):3        | -23.264014| 1.634479  | -14.233 | < 2e-16 *** |
| yprevIn Hospital/Facility | 9.050121 | 0.295104   | 30.668  | < 2e-16 *** |
| yprevVent/ARDS       | 15.272417| 0.342349   | 44.611  | < 2e-16 *** |
| lsp(day, c(2, 4, 8, 15))day:1 | -1.032077 | 0.282930 | -3.648  | 0.000264 *** |
| lsp(day, c(2, 4, 8, 15))day:2 | -0.484565 | 0.277909 | -1.744  | 0.081227 .   |
| lsp(day, c(2, 4, 8, 15))day:3 | 1.549806 | 0.793898  | 1.952   | 0.050921 .   |
| lsp(day, c(2, 4, 8, 15))day':1 | 1.064104 | 0.395777  | 3.134   | 0.001727 **  |
| lsp(day, c(2, 4, 8, 15))day':2 | 0.714003 | 0.374521  | 1.906   | 0.056593 .   |
| lsp(day, c(2, 4, 8, 15))day':3 | -1.713117| 0.925886  | -1.850  | 0.064278 .   |
| lsp(day, c(2, 4, 8, 15))day'':1 | -0.020867| 0.141055  | -0.148  | 0.882394 .   |
| lsp(day, c(2, 4, 8, 15))day'':2 | -0.281249| 0.206644  | -1.361  | 0.173504 .   |
| lsp(day, c(2, 4, 8, 15))day'':3 | -0.032936| 0.424279  | -0.078  | 0.938123 .   |
| lsp(day, c(2, 4, 8, 15))day'''':1 | 0.056257 | 0.075085  | 0.736   | 0.461776 .   |
| lsp(day, c(2, 4, 8, 15))day'''':2 | 0.127460 | 0.116354  | 1.095   | 0.273320 .   |
| lsp(day, c(2, 4, 8, 15))day'''':3 | 0.323703 | 0.273592  | 1.183   | 0.236746 .   |
| lsp(day, c(2, 4, 8, 15))day'''':4 | -0.092095| 0.078118  | -1.179  | 0.238428 .   |
| lsp(day, c(2, 4, 8, 15))day'''':5 | -0.106570| 0.160922  | -0.662  | 0.507815 .   |
| lsp(age, c(35, 60, 75))age | 0.042333 | 0.018820  | 2.249   | 0.024493 *   |
| lsp(age, c(35, 60, 75))age' | -0.038028| 0.023118  | -1.645  | 0.099985 .   |
| lsp(age, c(35, 60, 75))age'' | 0.010658 | 0.015805  | 0.674   | 0.500104 .   |
| lsp(age, c(35, 60, 75))age''' | -0.017427| 0.026048  | -0.669  | 0.503472 .   |
| lsp(sofa, c(2, 6, 10))sofa | 0.199993 | 0.096401  | 2.075   | 0.038025 *   |
| lsp(sofa, c(2, 6, 10))sofa' | -0.132951| 0.122966  | -1.081  | 0.279605 .   |
| lsp(sofa, c(2, 6, 10))sofa'' | -0.045706| 0.069159  | -0.661  | 0.508686 .   |
| lsp(sofa, c(2, 6, 10))sofa''' | 0.043445 | 0.081920  | 0.530   | 0.595880 .   |
| tx                   | -0.357512| 0.085314  | -4.191  | 2.78e-05 *** |

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3]),
logitlink(P[Y>=4])

Residual deviance: 4518.99 on 39580 degrees of freedom

Log-likelihood: -2259.495 on 39580 degrees of freedom

Number of Fisher scoring iterations: 9

Warning: Hauck-Donner effect detected in the following estimate(s): 
'(Intercept):3'

Exponentiated coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>yprevIn Hospital/Facility</td>
<td>1.2057</td>
</tr>
<tr>
<td>yprevVent/ARDS</td>
<td>1.4572</td>
</tr>
</tbody>
</table>
We will use the simpler model, which has the better (smaller) AIC. Check to PO assumption on time by comparing the simpler model’s AIC to the AIC from a fully PO model.

```r
h ← vglm(ordered(y) ~ yprev + lsp(day, 2) + age + sofa + tx, cumulative(reverse=TRUE, parallel=TRUE), data=d)
```

### lrtest(f, h)

```
Likelihood ratio test

Model 1: ordered(y) ~ yprev + lsp(day, 2) + age + sofa + tx
Model 2: ordered(y) ~ yprev + lsp(day, 2) + age + sofa + tx

#Df LogLik Df Chisq Pr(> Chisq)
1 39580 -2259.5
2 39595 -2267.2 15 15.309 0.4294
```

### AIC(f); AIC(g)

```
AIC(f)
[1] 4562.299

AIC(g)
[1] 4576.99
```
Likelihood ratio test

Model 1: ordered(y) ~ yprev + lsp(day, 2) + age + sofa + tx
Model 2: ordered(y) ~ yprev + lsp(day, 2) + age + sofa + tx

#Df LogLik Df Chisq Pr(>Chisq)
1 39595 -2267.2
2 39599 -2275.2 4 16.147 0.002828 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC(f); AIC(h)

[1] 4562.299
[1] 4570.447

The model allowing for non-PO in time is better. Now show Wald tests on the parameters.

wald ← function(f) {
  se ← sqrt(diag(vcov(f)))
  s ← round(cbind(beta=coef(f), SE=se, Z=coef(f) / se), 3)
  a ← c('≥ in hospital/facility', '≥ vent/ARDS', 'dead',
        'previous state in hospital/facility',
        'previous state vent/ARDS',
        'initial slope for day, ≥ hospital/facility',
        'initial slope for day, ≥ vent/ARDS',
        'slope increment, ≥ hospital/facility',
        'slope increment, ≥ vent/ARDS',
        'baseline age linear effect',
        'baseline SOFA score linear effect',
        'treatment log OR')
  rownames(s) ← a
  s
}
wald(f)

<table>
<thead>
<tr>
<th></th>
<th>beta</th>
<th>SE</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ in hospital/facility</td>
<td>-5.685</td>
<td>0.587</td>
<td>-9.686</td>
</tr>
<tr>
<td>≥ vent/ARDS</td>
<td>-13.983</td>
<td>0.558</td>
<td>-25.054</td>
</tr>
<tr>
<td>dead</td>
<td>-21.626</td>
<td>1.495</td>
<td>-14.461</td>
</tr>
<tr>
<td>previous state in hospital/facility</td>
<td>9.010</td>
<td>0.289</td>
<td>31.196</td>
</tr>
<tr>
<td>previous state vent/ARDS</td>
<td>15.202</td>
<td>0.336</td>
<td>45.204</td>
</tr>
<tr>
<td>initial slope for day, ≥ hospital/facility</td>
<td>-1.119</td>
<td>0.255</td>
<td>-4.392</td>
</tr>
<tr>
<td>initial slope for day, ≥ vent/ARDS</td>
<td>-0.269</td>
<td>0.235</td>
<td>-1.145</td>
</tr>
<tr>
<td>initial slope for day, dead</td>
<td>1.151</td>
<td>0.751</td>
<td>1.532</td>
</tr>
<tr>
<td>slope increment, ≥ hospital/facility</td>
<td>1.171</td>
<td>0.257</td>
<td>4.559</td>
</tr>
<tr>
<td>slope increment, ≥ vent/ARDS</td>
<td>0.295</td>
<td>0.239</td>
<td>1.236</td>
</tr>
<tr>
<td>slope increment, dead</td>
<td>-1.142</td>
<td>0.756</td>
<td>-1.510</td>
</tr>
<tr>
<td>baseline age linear effect</td>
<td>0.011</td>
<td>0.003</td>
<td>3.907</td>
</tr>
<tr>
<td>baseline SOFA score linear effect</td>
<td>0.060</td>
<td>0.013</td>
<td>4.809</td>
</tr>
<tr>
<td>treatment log OR</td>
<td>-0.350</td>
<td>0.085</td>
<td>-4.135</td>
</tr>
</tbody>
</table>
We see evidence for a benefit of treatment. Compute the treatment transition OR and approximate 0.95 confidence interval.

\[
\text{lor} \leftarrow \text{coef}(f)[\text{'tx'}] \\
\text{se} \leftarrow \sqrt{\text{vcov}(f)[\text{'tx', 'tx'}]} \\
b \leftarrow \exp(\text{lor} + \text{qnorm}(0.975) \times \text{se} \times c(0, -1, 1)) \\
\text{names}(b) \leftarrow c(\text{'OR'}, \text{'Lower'}, \text{'Upper'}) \\
\text{round}(b, 3)
\]

<table>
<thead>
<tr>
<th>OR</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.705</td>
<td>0.597</td>
<td>0.832</td>
</tr>
</tbody>
</table>

The maximum likelihood estimate of the OR compares favorably with the true OR of 0.75 on which the simulations were based.

14.3.3 Covariate Effects

- Most interesting covariate effect is effect of time since randomization
- Show estimated time trends in relative log odds of transition probabilities
- Other variables set to median/mode and using \( \text{tx}=0 \)

\[
\text{w} \leftarrow d[\text{day} == 1] \\
\text{dat} \leftarrow \text{expand.grid}(\text{yprev = 'In Hospital/Facility'}, \text{age=median(w$age)}, \text{sofa=median(w$sofa)}, \text{tx=0, day=1:28}) \\
\text{ltrans} \leftarrow \text{function(fit, mod) {}} \\
\text{p} \leftarrow \text{predict(fit, dat)} \\
\text{u} \leftarrow \text{data.frame(day=as.vector(row(p)), y=as.vector(col(p)), logit=as.vector(p)}) \\
\text{u$y} \leftarrow \text{factor(u$y, 1:3, paste('≥', levels(d$y)[-1]))} \\
\text{u$mod} \leftarrow \text{mod} \\
\text{u} \\
\text{u} \leftarrow \text{rbind(ltrans(f, 'model with few knots'), ltrans(g, 'model with more knots'))} \\
\text{ggplot(u, aes(x=day, y=logit, color=y)) + geom_line() +}
\]
14.3.4 Correlation Structure

- The data were simulated under a first-order Markov process so it doesn't make sense to check correlation pattern assumptions for our model.

- When the simulated data were created, the within-patient correlation pattern was checked against the pattern from the fitted model by simulating a large trial from the model fit and comparing correlations in the simulated data to those in the real data.
• It showed excellent agreement

• Let’s compute the Spearman $\rho$ correlation matrix on the 500 patient dataset and show the matrix from the real data next to it

• Delete day 28 from the new correlation matrix to conform with correlation matrix computed on real data

• Also show correlation matrix from 10,000 patient sample

• Heights of bars are proportional to Spearman $\rho$

```r
Tall and thin -> short and wide data table
w ← dcast(d[, .(id, day, y=as.numeric(y))],
 id ~ day, value.var='y')
r ← cor(as.matrix(w[, -1]), use='pairwise.complete.obs',
 method='spearman')[,-28]
p ← plotCorrM(r, xangle=90)
p[[1]] + theme(legend.position='none') +
 labs(caption='Spearman correlation matrix from 500 patient dataset')
```

```
max |r|:0.993 min |r|:0.196
Spearman correlation matrix from 500 patient dataset
```

```r
vcorr ← readRDS('~/R/examples/simMarkovOrd/vcorr.rds')
ra ← vcorr$r.actual
plotCorrM(ra, xangle=90)[[1]] + theme(legend.position='none') +
 labs(caption='Spearman correlation matrix from actual data')
```

Spearman correlation matrix from 500 patient dataset
Estimating the whole correlation matrix from 500 patients is noisy

Compute the mean absolute difference between two correlation matrices (the first on 10,000 simulated patients assuming a first-order Markov process and the second from the
real data)

- Compute means of mean absolute differences stratified by the day involved

\[
\text{ad} \leftarrow \text{abs}(\text{rc}[-28, -28] - \text{ra})
\]
\[
\text{round}(\text{apply}(\text{ad}, 1, \text{mean}), 2)
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Actual and simulated with-patient correlations agree well except when day 1 is involved.

Look at a variogram-like graph, especially to see the intra-patient correlations in the raw data as a function of days between two measurements (the x-axis)

- Usual serial correlation declining pattern; outcome status values become less correlated within patient as time gap increases
• Also see non-isotropic pattern: correlations depend also on absolute time, not just gap

**Formal Goodness of Fit Assessments for Correlation Structure**

• Data simulation model → we already know that the first order Markov process has to fit

• Do two formal assessments to demonstrate how this can be done in general. Both make the correlation structure more versatile.
  
  – Add patient-specific intercepts to see if a compound symmetry structure adds anything to the first-order Markov structure
  
  – Add a dependency on state before last in addition to our model’s dependency on the last state to see if a second-order Markov process fits better

**Add Random Effects**

• Bayesian models handle random effects more naturally than frequentist models → use a Bayesian partial PO first-order Markov model (R *rmsb* package)

```r
require(rmsb)
options(prType='latex')
stanSet() # sets to use all but one core
```
The following took 15m using 4 cores

```r
seed ← 2
b ← blrm(y ~ yprev + lsp(day, 2) + age + sofa + tx + cluster(id), ~ lsp(day, 2), data=d, file='bppo.rds')
stanDx(b)
```

Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n_eff</th>
<th>Rhat</th>
</tr>
</thead>
<tbody>
<tr>
<td>y &gt;= In Hospital/Facility</td>
<td>2283</td>
<td>1.000</td>
</tr>
<tr>
<td>y &gt;= Vent/ARDS</td>
<td>2162</td>
<td>1.002</td>
</tr>
<tr>
<td>y &gt;= Dead</td>
<td>1885</td>
<td>1.002</td>
</tr>
<tr>
<td>yprev = In Hospital/Facility</td>
<td>2248</td>
<td>1.001</td>
</tr>
<tr>
<td>yprev = Vent/ARDS</td>
<td>2715</td>
<td>1.001</td>
</tr>
<tr>
<td>day</td>
<td>1027</td>
<td>1.003</td>
</tr>
<tr>
<td>day'</td>
<td>2434</td>
<td>1.000</td>
</tr>
<tr>
<td>age</td>
<td>3728</td>
<td>1.000</td>
</tr>
<tr>
<td>sofa</td>
<td>1677</td>
<td>0.999</td>
</tr>
<tr>
<td>tx</td>
<td>3281</td>
<td>1.002</td>
</tr>
<tr>
<td>day:y &gt;= Vent/ARDS</td>
<td>328</td>
<td>1.010</td>
</tr>
<tr>
<td>day':y &gt;= Vent/ARDS</td>
<td>3066</td>
<td>1.000</td>
</tr>
<tr>
<td>day:y &gt;= Dead</td>
<td>2602</td>
<td>1.000</td>
</tr>
<tr>
<td>day':y &gt;= Dead</td>
<td>2228</td>
<td>1.001</td>
</tr>
<tr>
<td>sigmag</td>
<td>2324</td>
<td>1.002</td>
</tr>
</tbody>
</table>

Bayesian Partial Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.455 for Intercepts

```r
blrm(formula = y ~ yprev + lsp(day, 2) + age + sofa + tx + cluster(id),
 ppo = ~lsp(day, 2), data = d, file = "bppo.rds")
```

Frequencies of Responses

<table>
<thead>
<tr>
<th>Response</th>
<th>Home In Hospital/Facility</th>
<th>Vent/ARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8231</td>
<td>3995</td>
</tr>
<tr>
<td>Dead</td>
<td>43</td>
<td>934</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>13203</th>
<th></th>
<th>0.028 [0.028, 0.028]</th>
<th>5.337 [5.071, 5.61]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draws</td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chains</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster on id</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ, 0.2176 [0.0011, 0.4764]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Chapter 14. Semiparametric Ordinal Longitudinal Models

#### Table 14.1

<table>
<thead>
<tr>
<th></th>
<th>Mean $\hat{\beta}$</th>
<th>Median $\hat{\beta}$</th>
<th>S.E.</th>
<th>Lower</th>
<th>Upper</th>
<th>Pr($\beta &gt; 0$)</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \geq$ In Hospital/Facility</td>
<td>-5.3659</td>
<td>-5.3796</td>
<td>0.5901</td>
<td>-6.3794</td>
<td>-4.0985</td>
<td>0.0000</td>
<td>1.09</td>
</tr>
<tr>
<td>$y \geq$ Vent/ARDS</td>
<td>-13.6426</td>
<td>-13.6384</td>
<td>0.5567</td>
<td>-14.7277</td>
<td>-12.5501</td>
<td>0.0000</td>
<td>0.94</td>
</tr>
<tr>
<td>$y \geq$ Dead</td>
<td>-21.7289</td>
<td>-21.6025</td>
<td>1.5831</td>
<td>-24.9182</td>
<td>-18.8302</td>
<td>0.0000</td>
<td>0.73</td>
</tr>
<tr>
<td>$y_{prev}=In;Hospital/Facility$</td>
<td>8.7224</td>
<td>8.7131</td>
<td>0.2699</td>
<td>8.1969</td>
<td>9.2485</td>
<td>1.0000</td>
<td>1.15</td>
</tr>
<tr>
<td>$y_{prev}=Vent/ARDS$</td>
<td>14.9042</td>
<td>14.8973</td>
<td>0.3249</td>
<td>14.2721</td>
<td>15.5421</td>
<td>1.0000</td>
<td>1.09</td>
</tr>
<tr>
<td>day</td>
<td>-1.1320</td>
<td>-1.1266</td>
<td>0.2582</td>
<td>-1.6088</td>
<td>-0.6265</td>
<td>0.0000</td>
<td>0.93</td>
</tr>
<tr>
<td>day'</td>
<td>1.1775</td>
<td>1.1740</td>
<td>0.2600</td>
<td>0.6470</td>
<td>1.6424</td>
<td>1.0000</td>
<td>1.07</td>
</tr>
<tr>
<td>age</td>
<td>0.0112</td>
<td>0.0112</td>
<td>0.0030</td>
<td>0.0054</td>
<td>0.0172</td>
<td>0.9998</td>
<td>0.99</td>
</tr>
<tr>
<td>sofa</td>
<td>0.0638</td>
<td>0.0634</td>
<td>0.0141</td>
<td>0.0358</td>
<td>0.0915</td>
<td>1.0000</td>
<td>1.11</td>
</tr>
<tr>
<td>tx</td>
<td>-0.3588</td>
<td>-0.3578</td>
<td>0.0884</td>
<td>-0.5225</td>
<td>-0.1802</td>
<td>0.0000</td>
<td>0.98</td>
</tr>
<tr>
<td>day:$y \geq$ Vent/ARDS</td>
<td>0.8217</td>
<td>0.8180</td>
<td>0.3532</td>
<td>0.1661</td>
<td>1.5277</td>
<td>0.9928</td>
<td>1.05</td>
</tr>
<tr>
<td>day:$y \geq$ Vent/ARDS</td>
<td>-0.8457</td>
<td>-0.8411</td>
<td>0.3568</td>
<td>-1.5655</td>
<td>-0.1914</td>
<td>0.0058</td>
<td>0.96</td>
</tr>
<tr>
<td>day:$y \geq$ Dead</td>
<td>2.4244</td>
<td>2.3405</td>
<td>0.8416</td>
<td>0.8711</td>
<td>4.0675</td>
<td>1.0000</td>
<td>1.33</td>
</tr>
<tr>
<td>day':$y \geq$ Dead</td>
<td>-2.4635</td>
<td>-2.3856</td>
<td>0.8470</td>
<td>-4.1387</td>
<td>-0.9151</td>
<td>0.0000</td>
<td>0.76</td>
</tr>
</tbody>
</table>

- Note that \texttt{brlm} parameterizes the partial PO parameters differently than \texttt{vglm}.

- Posterior median of the standard deviation of the random effects $\sigma_\gamma$ is 0.22

- This is quite small on the logit scale in which most of the action takes place in $[-4, 4]$

- Random intercepts add an inconsequential improvement in the fit, justifying the Markov process’ conditional (on prior state) independence assumption

### Second-order Markov Process

- On follow-up days 2-28

- Frequentist partial PO model

```r
Derive time-before-last states (lag-1 \Co{yprev})

h ← d[, yprev2 := shift(yprev), by=id]

h ← h[day > 1,]
```
CHAPTER 14. SEMIPARAMETRIC ORDINAL LONGITUDINAL MODELS

# Fit first-order model ignoring day 1 so can compare to second-order
# We have to make time linear since no day 1 data
f1 ← vglm(ordered(y) ~ yprev + day + age + sofa + tx, 
    cumulative(reverse=TRUE, parallel=FALSE ~ day), data=h)
f2 ← vglm(ordered(y) ~ yprev + yprev2 + day + age + sofa + tx, 
    cumulative(reverse=TRUE, parallel=FALSE ~ day), data=h)
lrtest(f2, f1)

Likelihood ratio test

Model 1: ordered(y) ~ yprev + yprev2 + day + age + sofa + tx
Model 2: ordered(y) ~ yprev + day + age + sofa + tx

Df LogLik Df Chisq Pr(> Chisq)
1 38096 -2098.2
2 38098 -2098.5 2 0.572 0.7512

AIC(f1); AIC(f2)

[1] 4218.93
[1] 4222.358

- First-order model has better fit "for the money" by AIC
- Formal chunk test of second-order terms not impressive

### 14.3.5 Computing Derived Quantities

From the fitted Markov state transition model, compute for one covariate setting and two treatments:

- state occupancy probabilities
- mean time in state
- differences between treatments in mean time in state

To specify covariate setting:
• most common initial state is In Hospital/Facility so use that

• within that category look at relationship between the two covariates

• they have no correlation so use the individual medians

```r
istate ← 'In Hospital/Facility'
w ← d[day == 1 & yprev == istate,]
w[, cor(age, sofa, method='spearman')]
```

```
[1] 0.01651803
```

```r
x ← w[, lapply(.SD, median), .SDcols=Cs(age, sofa)]
adjto ← x[, paste0('age=', x[, age], ', sofa=', x[, sofa],
initial state=', istate)]
Expand to cover both treatments and initial state
x ← cbind(tx=0:1, yprev=istate, x)
x
```

```
tax yprev age sofa
1: 0 In Hospital/Facility 56 5
2: 1 In Hospital/Facility 56 5
```

Compute all SOPs for each treatment. soprobMarkovOrdm is in Hmisc.

```r
S ← z ← NULL
for(Tx in 0:1) {
 s ← soprobMarkovOrdm(f, x[tx == Tx,], times=1:28, ylevels=levels(d$y),
 absorb='Dead', tvarname='day')
 S ← rbind(S, cbind(Tx, s))
 u ← data.frame(day=as.vector(row(s)), y=as.vector(col(s)), p=as.vector(s))
 u$tx ← Tx
 z ← rbind(z, u)
}
z$y ← factor(z$y, 1:4, levels(d$y))
revo ← function(z) {
 z ← as.factor(z)
 factor(z, levels=rev(levels(as.factor(z))))
}
ggplot(z, aes(x=factor(day), y=p, fill=revo(y))) +
 facet_wrap(~ paste('Treatment', tx), nrow=1) + geom_col() +
 xlab('Day') + ylab('Probability') +
 guides(fill=guide_legend(title='Status')) +
 labs(caption=paste0('Estimated state occupancy probabilities for
 adjto')) +
```
Compute by treatment the mean time unwell (expected number of days not at home). Expected days in state is simply the sum over days of daily probabilities of being in that state.

\[
\text{mtu} \leftarrow \text{tapply}(1 - S[, \text{'Home'}], S[, \text{'tx'}], \text{sum}) \\
\text{dmtu} \leftarrow \text{diff(mtu)} \\
\text{w} \leftarrow \text{c(mtu, dmtu)} \\
\text{names(w)} \leftarrow \text{c('tx=0', 'tx=1', 'Days Difference')} \\
\text{w}
\]

<table>
<thead>
<tr>
<th>tx=0</th>
<th>tx=1</th>
<th>Days Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.742602</td>
<td>7.768658</td>
<td>-2.973943</td>
</tr>
</tbody>
</table>

We estimate that patients on treatment 1 have 3 less days unwell than those on treatment 0 for the given covariate settings.

Do a similar calculation for the expected number of days alive out of 28 days (similar to restricted mean survival time).

\[
\text{mta} \leftarrow \text{tapply}(1 - S[, \text{'Dead'}], S[, \text{'tx'}], \text{sum}) \\
\text{w} \leftarrow \text{c(mta, diff(mta))}
\]
names(w) <- c('tx=0', 'tx=1', 'Days Difference')

<table>
<thead>
<tr>
<th></th>
<th>tx=0</th>
<th>tx=1</th>
<th>Days Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27.585079</td>
<td>27.844274</td>
<td>0.259195</td>
</tr>
</tbody>
</table>

14.3.6

Bootstrap Confidence Interval for Difference in Mean Time Unwell

- Need to sample with replacement from patients, not records
  - code taken from \texttt{rms} package's \texttt{bootcov} function
  - sampling patients entails including some patients multiple times and omitting others
  - save all the record numbers, group them by patient ID, sample from these IDs, then use all the original records whose record numbers correspond to the sampled IDs

- Use the basic bootstrap to get 0.95 confidence intervals

- Speed up the model fit by having each bootstrap fit use as starting parameter estimates the values from the original data fit

B <- 500  # number of bootstrap resamples
recno <- split(1:nrow(d), d$id)
npt <- length(recno)  # 500
startbeta <- coef(f)
seed <- 3
if(file.exists('boot.rds')) {
  z <- readRDS('boot.rds')
betas <- z$betas
diffmean <- z$diffmean
See how bootstrap treatment log ORs relate to differences in days unwell.

ggfreqScatter(betas, diffmean,
             xlab='Log OR', ylab='Difference in Mean Days Unwell')
Compute basic bootstrap 0.95 confidence interval for OR and differences in mean time

```r
bootBCa is in the rms package and uses the boot package
clb <- exp(bootBCa(coef(f)['tx'], betas, seed=seed, n=npt, type='basic'))
clm <- bootBCa(dmtu, diffmean, seed=seed, n=npt, type='basic')
a <- round(c(clb, clm), 3)[c(1,3,2,4)]
data.frame(Quantity=c('OR', 'Difference in mean days unwell'),
 Lower=a[1:2], Upper=a[3:4])
```

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OR</td>
<td>0.584</td>
<td>0.853</td>
</tr>
<tr>
<td>2 Difference in mean days unwell</td>
<td>-4.609</td>
<td>-1.286</td>
</tr>
</tbody>
</table>
14.3.7 Notes on Inference

- Differences between treatments in mean time in state(s) is zero if and only if the treatment OR=1
  - note agreement in bootstrap estimates
  - will not necessarily be true if PO is relaxed for treatment
  - inference about any treatment effect is the same for all covariate settings that do not interact with treatment
  - → $p$-values are the same for the two metrics, and Bayesian posterior probabilities are also identical

- Bayesian posterior probabilities for mean time in state $> \epsilon$, for $\epsilon > 0$, will vary with covariate settings (sicker patients at baseline have more room to move)
Annotated Bibliography


[10] Peter C. Austin, Jack V. Tu, and Douglas S. Lee. “Logistic Regression Had Superior Performance Compared with Regression Trees for Predicting In-Hospital Mortality in Patients Hospitalized with Heart Failure”. In: *J Clin Epi* 63 (2010). ROC areas for logistic models varied from 0.747 to 0.775 whereas they varied from 0.620-0.651 for recursive partitioning; repeated data simulation showed large variation in tree structure, pp. 1145–1155 (cit. on p. 2-35).

[11] Sunni A. Barnes, Stacy R. Lindborg, and John W. Seaman. “Multiple Imputation Techniques in Small Sample Clinical Trials”. In: *Stat Med* 25 (2006). bad performance of LOCF including high bias and poor confidence interval coverage; simulation setup; longitudinal data; serial data; RCT; dropout; assumed missing at random (MAR); approximate Bayesian bootstrap; Bayesian least squares; missing data; nice background summary; new completion score method based on fitting a Poisson model for the number of completed clinic visits and using donors and approximate Bayesian bootstrap, pp. 233–245 (cit. on p. 3-15).
[12] Federica Barzi and Mark Woodward. “Imputations of Missing Values in Practice: Results from Imputations of Serum Cholesterol in 28 Cohort Studies”. In: *Am J Epi* 160 (2004). excellent review article for multiple imputation; list of variables to include in imputation model; imputation models should ideally include all covariates that are related to the missing data mechanism, have distributions that differ between the respondents and nonrespondents, are associated with cholesterol, and will be included in the analyses of the final complete data sets; detailed comparison of results (cholesterol effect and confidence limits) for various imputation methods, pp. 34–45 (cit. on pp. 3-8, 3-15).


[23] James G. Booth and Somnath Sarkar. “Monte Carlo Approximation of Bootstrap Variances”. In: *Am Statistician* 52 (1998). number of resamples required to estimate variances, quantiles; 800 resamples may be required to guarantee with 0.95 confidence that the relative error of a variance estimate is 0.1; Efron’s original suggestions for as low as 25 resamples were based on comparing stability of bootstrap estimates to sampling error, but small relative effects can significantly change P-values; number of bootstrap resamples, pp. 354–357 (cit. on p. 5-10).


William M. Briggs and Russell Zaretzki. “The Skill Plot: A Graphical Technique for Evaluating Continuous Diagnostic Tests (with Discussion)”. In: Biometrics 64 (2008), “statistics such as the AUC are not especially relevant to someone who must make a decision about a particular $x_c$. ... ROC curves lack or obscure several quantities that are necessary for evaluating the operational effectiveness of diagnostic tests. ... ROC curves were first used to check how radio receivers (like radar receivers) operated over a range of frequencies. ... This is not how most ROC curves are used now, particularly in medicine. The receiver of a diagnostic measurement ... wants to make a decision based on some $x_c$, and is not especially interested in how well he would have done had he used some different cutoff.”; in the discussion David Hand states “when integrating to yield the overall AUC measure, it is necessary to decide what weight to give each value in the integration. The AUC implicitly does this using a weighting derived empirically from the data. This is nonsensical. The relative importance of misclassifying a case as a noncase, compared to the reverse, cannot come from the data itself. It must come externally, from considerations of the severity one attaches to the different kinds of misclassifications.”; see Lin, Kvam, Lu Stat in Med 28:798-813;2009, pp. 250–261 (cit. on p. 1-7).


C. Chatfield. “Model Uncertainty, Data Mining and Statistical Inference (with Discussion)”. In: J Roy Stat Soc A 158 (1995). bias by selecting model because it fits the data well; bias in standard errors;P. 420: ... need for a better balance in the literature and in statistical teaching between techniques and problem solving strategies. P. 421: It is ‘well known’ to be ‘logically unsound and practically misleading’ (Zhang, 1992) to make inferences as if a model is known to be true when it has, in fact, been selected from the same data to be used for estimation purposes. However, although statisticians may admit this privately (Breiman (1992) calls it a ‘quiet scandal’), they (we) continue to ignore the difficulties because it is not clear what else could or should be done. P. 421: Estimation errors for regression coefficients are usually smaller than errors from failing to take into account model specification. P. 422: Statisticians must stop pretending that model uncertainty does not exist and begin to find ways of coping with it. P. 426: It is indeed strange that we often admit model uncertainty by searching for a best model but then ignore this uncertainty by making inferences and predictions as if certain that the best fitting model is actually true. P. 427: The analyst needs to assess the model selection process and not just the best fitting model. P. 432: The use of subset selection methods is well known to introduce alarming biases. P. 433: ... the AIC can be highly biased in data-driven model selection situations. P. 434: Prediction intervals will generally be too narrow. In the discussion, Jamal R. M. Ameen states that a model should be (a) satisfactory in performance relative to the stated objective, (b) logically sound, (c) representative, (d) questionable and subject to on-line interrogation, (e) able to accommodate external or expert information and (f) able to convey information., pp. 419–466 (cit. on pp. 4-10, 5-22).


[46] Nancy R. Cook. “Use and Misues of the Receiver Operating Characteristic Curve in Risk Prediction”. In: Circ 115 (2007). example of large change in predicted risk in cardiovascular disease with tiny change in ROC area; possible limits to c index when calibration is perfect; importance of calibration accuracy and changes in predicted risk when new variables are added, pp. 928–935 (cit. on p. 8-39).


[61] B. Efron. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation”. In: J Am Stat Assoc 78 (1983), suggested need at least 200 models to get an average that is adequate, i.e., 20 repeats of 10-fold cv, pp. 316–331 (cit. on pp. 5-17, 5-20, 5-21).


[69] Valerii Fedorov, Frank Mannino, and Rongmei Zhang. “Consequences of Dichotomization”. In: Pharm Stat 8 (2009), optimal cutpoint depends on unknown parameters; should only entertain dichotomization when “estimating a value of the cumulative distribution and when the assumed model is very different from the true model”; nice graphics, pp. 50–61. doi: 10.1002/pst.331. url: http://dx.doi.org/10.1002/pst.331 (cit. on pp. 1-6, 2-13).


[99] Norbert Holländer, Willi Sauerbrei, and Martin Schumacher. “Confidence Intervals for the Effect of a Prognostic Factor after Selection of an ‘optimal’ Cutpoint”. In: Stat Med 23 (2004), true type I error can be much greater than nominal level;one example where nominal is 0.05 and true is 0.5;minimum P-value method;CART;recursive partitioning;bootstrap method for correcting confidence interval;based on heuristic shrinkage coefficient;"It should be noted, however, that the optimal cutpoint approach has disadvantages. One of these is that in almost every study where this method is applied, another cutpoint will emerge. This makes comparisons across studies extremely difficult or even impossible. Altman et al. point out this problem for studies of the prognostic relevance of the S-phase fraction in breast cancer published in the literature. They identified 19 different cutpoints used in the literature; some of them were solely used because they emerged as the ‘optimal’ cutpoint in a specific data set. In a meta-analysis on the relationship between cathepsin-D content and disease-free survival in node-negative breast cancer patients, 12 studies were included with 12 different cutpoints ... Interestingly, neither cathepsin-D nor the S-phase fraction are recommended to be used as prognostic markers in breast cancer in the recent update of the American Society of Clinical Oncology."; dichotomization; categorizing continuous variables; refs alt94dan, sch94out, alt98sub, pp. 1701–1713. doi: 10.1002/sim.1611. url: http://dx.doi.org/10.1002/sim.1611 (cit. on pp. 2-13, 2-15).


[121] Katherine J. Lee and John B. Carlin. “Recovery of Information from Multiple Imputation: A Simulation Study”. In: Emerg Themes Epi 9.1 (June 2012). Not sure that the authors satisfactorily dealt with nonlinear predictor effects in the absence of strong auxiliary information, there is little to gain from multiple imputation with missing data in the exposure-of-interest. In fact, the authors went further to say that multiple imputation can introduce bias not present in a complete case analysis if a poorly fitting imputation model is used [from Yong Hao Pua], pp. 3+. issn: 1742-7622. doi: 10.1186/1742-7622-9-3. pmid: 22695083. url: http://dx.doi.org/10.1186/1742-7622-9-3 (cit. on p. 3-4).


[125] Kung-Yee Liang and Scott L. Zeger. “Longitudinal Data Analysis of Continuous and Discrete Responses for Pre-Post Designs”. In: Sankhyā A. 62 (2000). makes an error in assuming the baseline variable will have the same univariate distribution as the response except for a shift; baseline may have for example a truncated distribution based on a trial’s inclusion criteria; if correlation between baseline and response is zero, ANCOVA will be twice as efficient as simple analysis of change scores; if correlation is one they may be equally efficient, pp. 134–148 (cit. on p. 7-5).


[129] Guanghan F. Liu et al. “Should Baseline Be a Covariate or Dependent Variable in Analyses of Change from Baseline in Clinical Trials?” In: *Stat Med* 28 (2009). seems to miss several important points, such as the fact that the baseline variable is often part of the inclusion/exclusion criteria and so has a truncated distribution that is different from that of the follow-up measurements; sharp rebuke in ken10sho, pp. 2509–2530 (cit. on p. 7-5).


[139] Barry K. Moser and Laura P. Coombs. “Odds Ratios for a Continuous Outcome Variable without Dichotomizing”. In: *Stat Med* 23 (2004). large loss of efficiency and power; embeds in a logistic distribution, similar to proportional odds model; categorization; dichotomization of a continuous response in order to obtain odds ratios often results in an inflation of the needed sample size by a factor greater than 1.5, pp. 1843–1860 (cit. on p. 2-13).


[144] Debasis Paul et al. “Preconditioning” for Feature Selection and Regression in High-Dimensional Problems”. In: 
Ann Stat 36.4 (2008), develop consistent Y using a latent variable structure, using for example supervised principal 
components. Then run stepwise regression or lasso predicting Y (lasso worked better). Can run into problems when 
a predictor has importance in an adjusted sense but has no marginal correlation with Y;model approximation;model 

[145] Peter Peduzzi et al. “A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis”. In: 


[147] N. Peek et al. “External Validation of Prognostic Models for Critically Ill Patients Required Substantial Sample 
Sizes”. In: J Clin Epi 60 (2007), large sample sizes need to obtain reliable external validations; inadequate power of 
DeLong, DeLong, and Clarke-Pearson test for differences in correlated ROC areas (p. 498); problem with tests of 
calibration accuracy having too much power for large sample sizes, pp. 491–501 (cit. on p. 4-43).

Discrimination: Net Reclassification and Integrated Discrimination Improvement for Normal Variables and Nested 

ment Calculations to Measure Usefulness of New Biomarkers”. In: Stat Med 30 (2011), lack of need for NRI to 
be category-based; arbitrariness of categories; “category-less or continuous NRI is the most objective and versatile 
measure of improvement in risk prediction; authors misunderstood the inadequacy of three categories if categories 
are used; comparison of NRI to change in C index; example of continuous plot of risk for old model vs. risk for new 

[150] Michael J. Pencina et al. “Evaluating the Added Predictive Ability of a New Marker: From Area under the ROC 
Curve to Reclassification and Beyond”. In: Stat Med 27 (2008), small differences in ROC area can still be very mean-
ingful; example of insignificant test for difference in ROC areas with very significant results from new method; Yates’ 
discrimination slope; reclassification table; limiting version of this based on whether and amount by which probabil-
ities rise for events and lower for non-events when compare new model to old; comparing two models; see letter to 
the editor by Van Calster and Van Huffel, Stat in Med 29:318-319, 2010 and by Cook and Paynter, Stat in Med 

[151] de Vries Bas B.L. Penning, Smeden Maarten van, and Rolf H.H. Groenwold. “Propensity Score Estimation Using 
Classification and Regression Trees in the Presence of Missing Covariate Data”. In: Epidemiologic Methods 7.1 

[152] Sanne A. Peters et al. “Multiple Imputation of Missing Repeated Outcome Measurements Did Not Add to Linear 

[153] Bercedis Peterson and Frank E. Harrell. “Partial Proportional Odds Models for Ordinal Response Variables”. In: 

pp. 7-11, 7-13).

Growing Curve Problems”. In: Biometrika 51 (1964), included an AR1 example, pp. 313–326 (cit. on p. 7-7).


(2008), solves problem caused by lasso using the same penalty parameter for variable selection and shrinkage which 
causes lasso to have to keep too many variables in the model to avoid overshrinking the remaining predictors; does 
not handle scaling issue well, pp. 1304–1315 (cit. on p. 2-36).

[158] D. R. Ragland. “Dichotomizing Continuous Outcome Variables: Dependence of the Magnitude of Association and 
url: http://dx.doi.org/10.1097/00001648-199209000-00009 (cit. on p. 2-13).


[168] Joseph L. Schafer and John W. Graham. “Missing Data: Our View of the State of the Art”. In: Psych Meth 7 (2002). excellent review and overview of missing data and imputation; problems with MICE; less technical description of 3 types of missing data, pp. 147–177 (cit. on p. 3-1).


[171] Stephen Senn. “Change from Baseline and Analysis of Covariance Revisited”. In: Stat Med 25 (2006). shows that claims that in a 2-arm study it is not true that ANCOVA requires the population means at baseline to be identical; refutes some claims of lia00lon; problems with counterfactuals; temporal additivity (“amounts to supposing that despite the fact that groups are difference at baseline they would show the same evolution over time”); causal additivity; is difficult to design trials for which simple analysis of change scores is unbiased, ANCOVA is biased, and a causal interpretation can be given; temporally and logically, a “baseline cannot be a <i>i</i> to treatment”, so baseline and response cannot be modeled in an integrated framework as Laird and Ware’s model has been used; “one should focus clearly on ‘outcomes’ as being the only values that can be influenced by treatment and examine critically any schemes that assume that these are linked in some rigid and deterministic view to ‘baseline’ values. An alternative tradition sees a baseline as being merely one of a number of measurements capable of improving predictions of outcomes and models it in this way.”; “You cannot establish necessary conditions for an estimator to be valid by nominating a model and seeing what the model implies unless the model is universally agreed to be impeccable. On the contrary it is appropriate to start with the estimator and see what assumptions are implied by valid conclusions.”; this is in distinction to lia00lon, pp. 4334–4344 (cit. on p. 7-5).


[201] Andrew J. Vickers. “Decision Analysis for the Evaluation of Diagnostic Tests, Prediction Models, and Molecular Markers”. In: *Am Statistician* 62.4 (2008). limitations of accuracy metrics;incorporating clinical consequences;nice example of calculation of expected outcome;drawbacks of conventional decision analysis, especially because of the difficulty of eliciting the expected harm of a missed diagnosis;use of a threshold on the probability of disease for taking some action;decision curve;has other good references to decision analysis, pp. 314–320 (cit. on pp. 2-29, 4-22, 5-17, 5-21, 5-22).


[203] Eric Vittinghoff and Charles E. McCulloch. “Relaxing the Rule of Ten Events per Variable in Logistic and Cox Regression”. In: *Am J Epi* 165 (2006). the authors may have not been quite stringent enough in their assessment of adequacy of predictions;letter to the editor submitted, pp. 710–718 (cit. on p. 4-19).


[214] Ian R. White, Patrick Royston, and Angela M. Wood. “Multiple Imputation Using Chained Equations: Issues and Guidance for Practice”. In: *Stat Med* 29.4 (2010). practical guidance for the use of multiple imputation using chained equations; MICE; imputation models for different types of target variables; PMM choosing at random from among a few closest matches; choosing number of multiple imputations by a reproducibility argument, suggesting 100f imputations when f is the fraction of cases that are incomplete, pp. 377–399 (cit. on pp. 3-1, 3-10, 3-15, 3-19).


See letter to editor SM 15:1065-6 for binary case; see errata in SM 13:871 1994; see kol95com, jul96sam.


[217] Daniela M. Witten and Robert Tibshirani. “Testing Significance of Features by Lassoed Principal Components”. In: *Ann Appl Stat* 2.3 (2008). reduction in false discovery rates over using a vector of t-statistics; borrowing strength across genes; “one would not expect a single gene to be associated with the outcome, since, in practice, many genes work together to effect a particular phenotype. LPC effectively down-weights individual genes that are associated with the outcome but that do not share an expression pattern with a larger group of genes, and instead favors large groups of genes that appear to be differentially-expressed.”; regressing principal components on outcome; sparse principal components, pp. 986–1012 (cit. on p. 2-37).


[220] Shifeng Xiong. “Some Notes on the Nonnegative Garrote”. In: *Technometrics* 52.3 (2010). “... to select tuning parameters, it may be unnecessary to optimize a model selection criterion repeatedly”; natural selection of penalty function, pp. 349–361 (cit. on p. 2-37).


[223] Recai M. Yucel and Alan M. Zaslavsky. “Using Calibration to Improve Rounding in Imputation”. In: *Am Statistician* 62.2 (2008), using rounding to impute binary variables using techniques for continuous data; uses the method to solve for the cutpoint for a continuous estimate to be converted into a binary value; method should be useful in more general situations; idea is to duplicate the entire dataset and in the second half of the new datasets to set all non-missing values of the target variable to missing; multiply impute these now-missing values and compare them to the actual values, pp. 125–129 (cit. on p. 3-17).


R packages written by FE Harrell are freely available from CRAN, and are managed at github.com/harrelfe.


To obtain a glossary of statistical terms and other handouts related to diagnostic and prognostic modeling, see hbiostat.org/doc/glossary.pdf