Newer Approaches to
Regression and Tree-Based
Modeling

These approaches may not require data reduction before modeling. But recent
research has shown them to be “data hungry”[5]

lasso (shrinkage using L1 norm favoring zero regression coefficients) [9, 8]

elastic net (combination of L1 and L2 norms that handles the p > n case
better than the lasso) [16]

adaptive lasso [14, 10]

more flexible lasso to differentially penalize for variable selection and for
regression coefficient estimation [6]

group lasso to force selection of all or none of a group of related variables
(e.g., dummy variables representing a polytomous predictor)

group lasso-like procedures that also allow for variables within a group to
be removed [11]

sparse-group lasso using L1 and L2 norms to achieve spareness on groups
and within groups of variables [7]

adaptive group lasso (Wang & Leng)
Breiman’s nonnegative garrote [13]

“preconditioning”, i.e., model simplification after developing a “black box”
predictive model [4]

sparse principal component analysis to achieve parsimony in data reduc-
tion [12, 15, 3, 2]

bagging, boosting, and random forests. [1]



One problem prevents most of these methods from being ready for everyday
use: they require scaling predictors before fitting the model. When a predictor
is represented by nonlinear basis functions, the scaling recommendations in the
literature are not sensible. There are also computational issues and difficulties
obtaining hypothesis tests and confidence intervals.

0.1 Some Useful Links

e http://freakonometrics.hypotheses.org/19424 has beautiful demon-
strations of several methods using R to approximate a smooth 3-dimensional
surface

e http://freakonometrics.hypotheses.org/19874 has beautiful demon-
strations of boosting when there is one continuous predictor
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