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Universidad Autónoma de Yucatán

Mérida, Yucatán, Mexico

18–22 February, 2002

Stephan M. Rudolfer

April 2002

University of Manchester

Manchester Centre for Statistical Science

Technical Reports

Available by post from the author
Department of Mathematics, University of Manchester, Manchester M13 9PL, U.K.

or from his webpage
http://www.maths.man.ac.uk/DeptWeb/Homepages/smr/Reprints/mexico2.pdf



Contents

1 ACKNOWLEDGEMENTS 0

2 BACKGROUND 1
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.3 Carpal Tunnel Syndrome (CTS) Dataset: Rudolfer(2001), Section 2 . . . . 2

2.3.1 (ORDINAL) Response Variable . . . . . . . . . . . . . . . . . . . . 3
2.3.2 Predictor Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3.3 Definition of Carpal Tunnel Syndrome . . . . . . . . . . . . . . . . 10
2.3.4 Cause of Carpal Tunnel Syndrome . . . . . . . . . . . . . . . . . . 11
2.3.5 Source of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Models considered so far: Rudolfer(2001), Sections 3.2–3.4 . . . . . . . . . 12
2.4.1 Proportional Odds (PO) . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Continuation Ratio (CR) . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Classification procedures: Rudolfer (2001), Section 3.6 . . . . . . . . . . . 13
2.5.1 Highest Probability (HP) . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Anderson and Philips (AP) for the PO model . . . . . . . . . . . . 14

2.6 General methodology of model fitting: Rudolfer(2001), Section 4 . . . . . . 14
2.6.1 Preliminary Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.3 Verify the model’s assumptions . . . . . . . . . . . . . . . . . . . . 14
2.6.4 Fit the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.5 Compute measures of predictive accuracy . . . . . . . . . . . . . . . 15
2.6.6 Validate the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Computational Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.1 Statistical software used this time: SAS Version 8.2 . . . . . . . . . 15
2.7.2 Previous problem: Rudolfer(2001), Section 2.5 . . . . . . . . . . . . 15
2.7.3 Solution: Bad News/Good News . . . . . . . . . . . . . . . . . . . . 15
2.7.4 Ascending and Descending options in proc LOGISTIC are equivalent 17

3 FURTHER MODEL FITTING 17
3.1 Use of Binary Logistic Regression software for fitting

Continuation Ratio (CR) models . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 Underlying Reason why the Method works . . . . . . . . . . . . . . 18
3.1.2 Details of the Method . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Partial Proportional Odds (PPO) models . . . . . . . . . . . . . . . . . . . 19
3.3 Extended Continuation Ratio (ECR) models . . . . . . . . . . . . . . . . . 20
3.4 Equivalence between PO and CR models . . . . . . . . . . . . . . . . . . . 20



4 FURTHER VARIABLE SELECTION 20
4.1 Univariate Wald’s test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Score test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Automatic Variable Selection (SAS, 2000) . . . . . . . . . . . . . . . . . . 21

4.3.1 Backward elimination . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Fast backward elimination . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Forward selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 The Bonferroni method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Occam’s (or Ockham’s) razor . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 PERFORMANCE EVALUATION/MEASURES OF
PREDICTIVE ACCURACY: Rudolfer(2001), Section 4.5 24
5.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Concordant/Discordant pairs of observations . . . . . . . . . . . . . . . . . 27

5.2.1 Properties of πc, πd, πt . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Goodman & Kruskal’s Gamma, γ . . . . . . . . . . . . . . . . . . . . . . . 30

5.3.1 Interpretations of γ . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 Properties of γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.3 G = Estimator of γ . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.4 Properties of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.5 Estimated Asymptotic Variance of G . . . . . . . . . . . . . . . . . 32
5.3.6 Estimated Asymptotic Variance of G under the null hypothesis that

γ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Somers’ D rank correlation indices . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.1 Interpretations of ∆(C|R) . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.2 Properties of ∆(C|R) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.3 D(C|R) = Estimator of ∆(C|R) . . . . . . . . . . . . . . . . . . . . 34
5.4.4 Properties of D(C|R) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.5 Estimated Asymptotic Variance of D(C|R) . . . . . . . . . . . . . . 34
5.4.6 Estimated Asymptotic Variance of D(C|R) under the null hypothesis

that ∆(C|R) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Concordance index, c: scaled Somers’ D . . . . . . . . . . . . . . . . . . . 35
5.6 Percentage correct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Cohen’s Kappa statistic,κ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.7.1 Properties of κ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.7.2 Estimated Asymptotic Variance of κ̂ . . . . . . . . . . . . . . . . . 36

5.8 Brier’s score, B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8.1 Properties of B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 RESULTS 37
6.1 Variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 History variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



6.1.2 Clinical sign variables . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.3 Nerve conduction variables . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.4 Combined model: M1 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.5 Six-variable submodel of M1: M2 . . . . . . . . . . . . . . . . . . . 39
6.1.6 Seven-variable submodel of M1: M3 . . . . . . . . . . . . . . . . . . 39
6.1.7 Full model without variable selection: M4 . . . . . . . . . . . . . . 39

6.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.1 Anderson & Philips’ (AP) classification procedure performs badly . 40
6.2.2 Which of the two Somers’ Ds to use? . . . . . . . . . . . . . . . . . 40
6.2.3 Performance of M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.4 Performance of M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.5 Performance of M3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.6 Performance of M4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 OPEN PROBLEMS / FURTHER WORK 43
7.1 Inadequacy of the AP classification rule . . . . . . . . . . . . . . . . . . . . 43
7.2 Further variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2.1 Branch & Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.2 Use of bootstrap to refine automatic variable selection . . . . . . . 43

7.3 Valedictory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 REFERENCES 44



1 ACKNOWLEDGEMENTS

Firstly, I would like to thank Dr. Luis A. Rodriguez Carvajal, Director of the Faculty of
Mathematics, for inviting me again to give the talks, and the Autonomous University of
Yucatán, Mérida, for its financial support.

Secondly, I extend my most grateful thanks to Humberto Cervera Rossado for the excellent
and difficult job he did of simultaneous translation of my talks for the second time.

My thanks also go to Dr. Peter Eccles, Senior Lecturer in Mathematics, and Dr. Chris
Paul, Systems Administrator, for their invaluable assistance with the preparation of my
talks as a technical report and a web page.

I owe a deep debt of gratitude to the late Dr. John L. James, Consultant Physician, St
Luke’s Hospital, Huddersfield, Yorkshire, England. He introduced me to Carpal Tunnel
Syndrome, and gave consistently helpful and encouraging input to my research in this area
with him. The dataset used for these talks would never have seen the light of day without
his immense cooperation. I am also profoundly grateful to Dr. James’ secretary, Mrs Sylvia
Hague, and to his technicians, Miss Gill Lockwood, Mrs Ginny Lockwood and Mrs Louise
Mullinger, as well as to Martyn Thompson, a more recently appointed technician, for their
great patience and cooperation in the acquisition and evaluation of the data.

Lastly, but not leastly, my deepest appreciation goes to my wife, Christine, for her support
and encouragement during the preparation and delivery of these lectures.

0



2 BACKGROUND

2.1 Introduction

This chapter covers the necessary background from Rudolfer (2001) needed to understand
the applications to Dr. James’ dataset of the further methods described in this report.
Sections 2.4 – 2.6 are summaries of the corresponding sections of Rudolfer (2001), which
should be referred to for more details. Section 2.3, on the other hand, describes the dataset
in detail, being based on Rudolfer (2001), Section 2, since it is not widely known outside
the circle of clinical neurophysiologists and is essential to understand the results of the
further methods.

2.2 Notation

Muddled notation produces muddled thought. Precise notation produces precise thought.

Hence, we shall adopt the following convention throughout this report:

sample observed values: small Roman letters

population random variables: LARGE Roman letters

population parameters: Greek letters

estimatE: observed sample statistic that estimates a population parameter

estimatOR: random variable of which the estimate is an observed value
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2.3 Carpal Tunnel Syndrome (CTS) Dataset: Rudolfer(2001),
Section 2

CTS = cluster of certain hand symptoms (to be specified later)

cause = entrapment of the median nerve in the Carpal Tunnel at the wrist

An excellent and comprehensive account of CTS is given in Rosenbaum & Ochoa (1993).
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2.3.1 (ORDINAL) Response Variable

Y =



















































1 : No Abnormality Detected (NAD)

2 : Mild CTS

3 : Moderate CTS

4 : Severe CTS

Important property of ordinal Y : the event {Y ≤ j} is defined. For a non-ordinal Y , the
statement “Y ≤ j” is meaningless.

2.3.2 Predictor Variables

These are contained in the vector x = (x1, . . . , xp)
T , which divides into three types of

variables:

x =































history

clinical signs

nerve conduction studies

• HISTORY

– Age (in years)

– Sex (Male/Female)

together with the symptoms

– Numbness

– Pain

– Tingling

– Weakness

qualified by their descriptors (defined on the next page).
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Descriptors of Symptom Variables

Numbness

Pain

Tingling

Weakness









































































































































Duration

First Occurrence

Location

Method of Relief

Severity

Time of Day

Coding of Descriptors for Numbness, Pain, Tingling and Weakness

Descriptor Coding (0 = symptom absent)
Duration 1 at most 10 minutes

2 over 10 minutes
First 1 less than 3 months

2 from 3 months to one year
3 from 1 to 5 years
4 from 6 to 10 years
5 over 10 years

Location 1 first to third fingers
2 fourth and fifth fingers
3 all five fingers
4 other

Relief 1 shaking hand
2 other
3 none

Severity 1 mild
2 moderate
3 severe

Time 1 daytime episodes
2 nocturnal episodes
3 episodes day and night
4 continuous symptom
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• CLINICAL SIGNS

Coding of Variables

Variable Coding (0 = symptom absent)
Sensory Loss
Location 1 first to third fingers

2 fourth and fifth fingers
3 all fingers
4 other

Wasting
Location 1 Thenar Eminence

2 Hypothenar Eminence
3 other

Severity 1 mild
2 moderate
3 severe

Weakness
Location 1 Thenar Eminence

2 Hypothenar Eminence
3 other

Severity 1 mild
2 moderate
3 severe
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• NERVE CONDUCTION STUDIES

Variables

Nerve Measurement
Median Motor Latency at the Wrist

Motor Latency at the Elbow
Motor Rate, Elbow to Wrist

Sensory Latency
Sensory Amplitude
Sensory Duration

Ulnar Motor Latency at the Wrist
Motor Latency at the Elbow
Motor Rate, Elbow to Wrist

Units

Amplitudes microvolts
Durations milliseconds
Latencies milliseconds
Rates metres per second
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Stimulation of Median Nerve Motor Fibres

l1 = latency at the wrist (milliseconds)

l2 = latency at the elbow (milliseconds)

d21 = distance, elbow to wrist (centimeters)

ld21 = l2 − l1

= latency difference, elbow to wrist

r21 = 10d21/ld21

= rate, elbow to wrist (meters/second)
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Stimulation of Median Nerve Sensory Fibres

a = median sensory amplitude (microvolts)

d = median sensory duration (milliseconds)

l = median sensory latency (milliseconds)
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Stimulation of Ulnar Nerve Motor Fibres

l1 = latency at the wrist (milliseconds)

l2 = latency above elbow (milliseconds)

d21 = distance, above elbow to wrist

(centimeters)

ld21 = l2 − l1

= latency difference, above elbow to wrist

r21 = 10d21/ld21

= rate, above elbow to wrist (meters/second)
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Non-Response to electrical stimulation
occurs in the median motor and sensory measurements

Table 1: Distribution of non-responses for the whole dataset

NAD MILD MOD SEV ALL
CTS CTS CTS

Median
Motor 0 0 2 16 18
Wrist
Median
Motor 0 1a 2a 17 20
Elbow
Median 0 17 128 85 230
Sensory

Total 0 18 132 118 268

aThese are likely to have been technical errors (inability to elicit a response
rather than non-excitability of the nerve).

Note: sensory fibres are thinner than motor fibres, hence are damaged more easily.

Coding of non-responses: Pseudo-values

These were taken as 99.9 for latencies and durations, 0 for amplitudes and motor rates.
These aren’t actual physical measurements, but represent plausible codings: if there is
no response, then the amplitude of the waveform will be zero, as will be the motor rate;
similarly, the time to response (latency) will be “infinite”. We have taken the largest
possible number available in the given format (F4.1 in FORTRAN notation), namely, 99.9.
The choice of 99.9 for non-response duration is somewhat arbitrary, but seems to fit in with
the overall pattern.

2.3.3 Definition of Carpal Tunnel Syndrome

• varies among doctors

• most doctors would accept that CTS results from a median nerve lesion at the wrist
(see section 2.3.4)

• “typical” hand symptoms: some of numbness, pain,tingling, weakness

– lasting at most ten minutes

– at night (waking patient)

– in the first to third fingers

– relieved by shaking hand
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2.3.4 Cause of Carpal Tunnel Syndrome

is agreed by most doctors to be the entrapment of (pressure on) the median nerve at the
wrist, with resulting damage to the nerve at that point (median nerve lesion at the wrist).

There are many and varied reasons for this entrapment: for example,

• fracture of the wrist

• rheumatoid arthritis of the wrist

• fluid retention, as in pregnancy

The symptoms described in section 2.3.3 can also be caused by damage to

• median nerve at the elbow or shoulder

• nerves in the neck

ONLY NERVE CONDUCTION STUDIES CAN FIND OUT THE EXACT LOCATION OF THE NERVE DAMAGE

2.3.5 Source of the dataset

994 patients referred with suspected Carpal Tunnel Syndrome (CTS)

• to the Electromyography Clinics of the late Dr. John L James, Consultant Physician,
St Luke’s Hospital, Huddersfield, Yorkshire, England

• between March 1991 and March 1994

Dr. James’ diagnoses of the examined hands:

• NAD

• Mild CTS

• Moderate CTS

• Severe CTS

• Non-CTS Abnormality (possibly with some severity of CTS)

Non-CTS Abnormality class was omitted from the study, since it was very inhomogeneous.

11



Table 2: Distribution of hand diagnoses for the whole dataset

NAD MILD MOD SEV TOTAL
CTS CTS CTS

777 621 294 102 1794

If you compare this table with the corresponding one in Rudolfer (2001), you will see that it
contains 20 more hands. The reason for this is that, because of Section 2.7.3, the 20 hands
with non-responses in their median motor readings can now be included in the dataset.

2.4 Models considered so far: Rudolfer(2001), Sections 3.2–3.4

2.4.1 Proportional Odds (PO)

It assumes

• cutpoints α0, α1, . . . , αJ satisfying the condition

−∞ = α0 < . . . < αJ−1 < αJ = ∞, (1)

• a linear form for the logit of the cumulative probabilities γj(x) (j = 1, . . . , J − 1),
which is equivalent to

γj(x) =
exp(αj − β

Tx)

1 + exp(αj − β
Tx)

, (2)

where
γj(x) = P (Y ≤ j| x)

is the cumulative probability of Y ≤ j given x.

2.4.2 Continuation Ratio (CR)

For j = 1, . . . , J , let
πj(x) = P (Y = j|x)

and the (backward) Continuation Ratio (CR)

δj(x) = P (Y = j|Y ≤ j,x)

=
πj(x)

π1(x) + . . .+ πj(x)
.

Then

δ1(x) = 1,

δJ(x) = πJ(x),
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and for j = 2, . . . , J − 1,

πj(x) =
δj(x)

1− δj(x)
[π1(x) + . . .+ πj−1(x)].

The CR model is given by

logit{δj(x)} = αj − β
Tx, (3)

and the corresponding πj(x) is

πj(x) =



















1
∏J

t=2
[1+exp(αt−β

T
x)]

(j = 1),

exp(αj−β
T
x)

∏J

t=j
[1+exp(αt−β

T
x)]

(2 ≤ j ≤ J).
(4)

(
∏J
t=j denotes the product from t = j to J .)

πj(x) can also be expressed directly in terms of the δjs:

πj(x) =































∏J
t=2[1− δt(x)] (j = 1),

δj(x)
∏J
t=j+1[1− δt(x)] (1 < j < J),

δJ(x) (j = J)

(5)

2.5 Classification procedures: Rudolfer (2001), Section 3.6

Let d(x) be the classification function evaluated at the covariate vector x:

d(x) is the index of the group into which x is classified.

Let d̂(x) denote the estimate of d(x) obtained by substituting the maximum likelihood
estimates for the corresponding parameters in the model.

2.5.1 Highest Probability (HP)

d̂(x) = argmax
1≤k≤J

P̂ (Y = k | x), (6)

where d̂(x) is chosen to be the smallest index if several groups have the same maximum
conditional probability.

(6): classify x to the group k which maximises P̂ (Y = k | x) : classify to the most
probable group.
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2.5.2 Anderson and Philips (AP) for the PO model

(Anderson & Philips, 1981)

d̂(x) = j if α̂j−1 < β̂
T
x ≤ α̂j (j = 1, ..., J).

This is a valid definition, since the αj satisfy condition (1).
The AP method assumes that the continuous unobserved latent variable Z has logistic

density : for −∞ < z < +∞

fZ(z) =
exp(z − βTx)

{1 + exp(z − βTx)}2
,

with
E(Z | x) = βTx.

2.6 General methodology of model fitting: Rudolfer(2001), Sec-
tion 4

2.6.1 Preliminary Steps

• Define response variable Y and predictor variable x, after consultation with medical
expert.

• Choose interactions carefully.

2.6.2 Data Reduction

• Methods ignoring Y (Principal Component Analysis, Cluster Analysis)

• Variable Selection

2.6.3 Verify the model’s assumptions

• Linearity of continuous predictors

• Additivity of predictors (no interaction)

• Predictors’ distribution

• Influential observations

14



2.6.4 Fit the model

2.6.5 Compute measures of predictive accuracy

2.6.6 Validate the model

using one or more of the following methods:

• Resubstitution

• Data splitting

• Cross-validation

• Bootstrap

2.7 Computational Aspects

2.7.1 Statistical software used this time: SAS Version 8.2

2.7.2 Previous problem: Rudolfer(2001), Section 2.5

Floating point zero division overflow occurred with SAS Version 8 when

• the descending option was selected and

• – median motor latencies at the wrist or elbow or

– median sensory latency or duration

equalled their pseudo-value 99.9 for non-response

in proc LOGISTIC (occurred in computing Pearson residuals).

2.7.3 Solution: Bad News/Good News

Bad News: SAS have not yet corrected the error with the Descending Option in version
8.2.

Good News: they have corrected the error with the Ascending Option.

Using the equivalence of ascending and descending options (see section 2.7.4), we can
compute the model.

15



Proc LOGISTIC works with Ordered Values, Y ∗, which are related to the Recorded
Values, Y , in one of two ways:

• Ascending Option: Y ∗ = Y

• Descending Option: Y ∗ = reversal of Y = J + 1 - Y (Rudolfer, 2001, p. 13)

The distributions of Y and Y ∗ for the option selected are given by proc LOGISTIC in its
Response Profile.

The Y column gives both

• the numerical value (in brackets) and

• the formatted value (NAD, etc.)

For both options, the probabilities modeled are P (Y ∗ ≤ j| x) cumulated over the lower
Ordered Values.

For Dr. James’ data, the Response Profiles are given in Tables 3 and 4.

Table 3: Response Profile: Ascending option

Ordered Recorded Value Total
Value, Y ∗ DIAGNOSIS, Y Frequency

1 (1) NAD 777
2 (2) Mild CTS 621
3 (3) Moderate CTS 294
4 (4) Severe CTS 102

Table 4: Response Profile: Descending option

Ordered Recorded Value Total
Value, Y ∗ DIAGNOSIS, Y Frequency

1 (4) Severe CTS 102
2 (3) Moderate CTS 294
3 (2) Mild CTS 621
4 (1) NAD 777

16



2.7.4 Ascending and Descending options in proc LOGISTIC are equivalent

Define the conditional probabilities, under the ascending and descending options, of Y = j
given x, P (A)(Y = j| x) and P (D)(Y = j| x), respectively, as follows: for j = 1, 2, . . . , J,

P (A)(Y = j| x) = P (Y = j| x),

P (D)(Y = j| x) = P (Y ∗ = j| x)

= P (Y = J − j + 1| x).

Then, for j = 1, 2, . . . , J,

P (A)(Y = j| x) = P (D)(Y = j| x). (7)

To see (7), note that

logit{P (D)(Y ≤ j| x)}

= logit{P (Y ∗ ≥ J − j + 1| x)}

= logit{P (Y ∗ > J − j| x)}

= −logit{P (Y ∗ ≤ J − j| x)}

= −{−αj + βTx} (8)

= logit{P (Y ≤ j| x)}

= logit{P (A)(Y ≤ j| x)}.

Equation (8) follows from Rudolfer(2001), p. 14.

3 FURTHER MODEL FITTING

3.1 Use of Binary Logistic Regression software for fitting
Continuation Ratio (CR) models

Restructure the original dataset appropriately by repeatedly including

• corresponding data subsets and

• two new variables

– the cutpoint CP and

– the binary response BR at that cutpoint

Then Binary Logistic Regression software can be used to fit CR models.
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3.1.1 Underlying Reason why the Method works

The continuation ratio

δj(x) = P (Y = j|Y ≤ j,x)

corresponds to the subset
{Y = j}

of the set
Sj = {Y ≤ j}.

The complementary subset of {Y = j} in Sj is

{Y < j}.

This leads to the binary situation of {Y = j} versus {Y < j} within the set Sj:

δj(x) = 1− P (Y < j|Y ≤ j,x).

3.1.2 Details of the Method

This is described explicitly by Bender & Benner (2000), following less detailed discussions
in

• Armstrong & Sloan (1989)

• Berridge & Whitehead (1991)

• Scott et al. (1997)

Bender & Benner (2000) also give SAS and S-Plus code to achieve this coding.

(1) Start with the whole dataset

SJ = {Y ≤ J},

and define the cutpoint CP and binary response BR as follows:

CP = J

BR =

{

0 if Y < J
1 if Y = J

18



(2) Consider the dataset

SJ−1 = {Y ≤ J − 1},

and define the cutpoint CP and binary response BR as follows:

CP = J − 1

BR =

{

0 if Y < J − 1
1 if Y = J − 1

(3) Continue in this way until the last dataset

S2 = {Y ≤ 2},

and define the cutpoint CP and binary response BR as follows:

CP = 2

BR =

{

0 if Y = 1
1 if Y = 2

(4) If nj observations have value Y = j, then the restructured dataset has

J(n1 + n2) + (J − 1)n3 + (J − 2)n4 + . . .+ nJ

observations.

(5) Fit binary logistic regression on the restructured dataset to the variable BR using the
cutpoint CP as additional covariate to x and the relationship

δj(x) = P (BR = 1 | CP = j, x). (9)

3.2 Partial Proportional Odds (PPO) models

These were introduced by Peterson & Harrell (1990), and allow for the Common Slopes
assumption to fail for some of the covariates in the PO model.

The model is thus

γj(x) =
exp(αj − β

T
j x)

1 + exp(αj − β
T
j x)

. (10)

It is possible to fit PPO models using

(1) Generalized Estimating Equations (Stokes et al., 2000),

(2) a SAS macro provided by Scott et al. (1997).
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3.3 Extended Continuation Ratio (ECR) models

These models were introduced by Harrell et al. (1998), and allow for the Common Slopes
Assumption to fail for some of the covariates in the CR model. In some cases, the Common
Slopes Assumption is too restrictive, so it is very useful to have more flexibility.

ECR models are easily fitted using the method of 3.1 by introducing an interaction term
between the cutpoint for the response level j and the covariates x (Bender & Benner, 2000).

3.4 Equivalence between PO and CR models

Laara & Matthews (1985) have shown that if a complementary log-log link function is used
instead of the logit link in the PO model, then the corresponding CR and PO models are
equivalent.

With the complementary log-log link function, equation (2) of the PO model becomes

γj(x) = 1− exp
{

(− exp(αj − β
Tx)

}

, (11)

while equation (3) of the CR model becomes

δj(x) = 1− exp
{

(− exp(αj − β
Tx)

}

. (12)

Since the logit and complementary log-log link functions are quite similar, at least for
small probabilities (McCullagh & Nelder, 1989), we can expect that in general PO and CR
models will produce similar fits to data.

4 FURTHER VARIABLE SELECTION

4.1 Univariate Wald’s test

This is used to test the null hypothesis H0 : β = 0 for a population parameter β. The test
statistic is

χ2
W1

=
{

β̂/SE(β̂)
}2
, (13)

which under mild assumptions has an asymptotic chi-squared distribution with 1 degree of
freedom if H0 is true.
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Equation (13) is a special case of the multivariate Wald’s test of H0 : β = 0, where
β = (β1, . . . , βp)

T . Its test statistic is

χ2
Wp

= β̂
T [

V̂
(

β̂
)]−1

β̂, (14)

where V̂
(

β̂
)

is the estimated variance-covariance matrix of β̂. Under mild assumptions,

χ2
Wp

has an asymptotic χ2 distribution with p degrees of freedom if H0 is true.

4.2 Score test

Let β(p) = (β1, . . . , βp)
T be the parameter of the model being fitted. The score, U(β(p)),

of β(p) is the vector of partial derivatives of the log likelihood, l, with respect to the
components of β(p):

U(β(p)) = (∂l/∂β1, . . . , ∂l/∂βp)
T . (15)

If I denotes the Fisher information (variance-covariance) matrix of U , then asymptoti-
cally (Rao,1973)

S
(

β(p)
)

= UT I−1U ∼ χ2
p, (16)

provided the inverse I−1 of I exists (I is non-singular). Let β(p+1) denote the parameter
vector β(p) with an extra component βp+1 at the end.

Then the score chi-square statistic for βp+1 is

S
(

β(p)
)

− S
(

β(p+1)
)

∼ χ2
1,

asymptotically.

4.3 Automatic Variable Selection (SAS, 2000)

4.3.1 Backward elimination

(1) Parameters for the complete model are estimated.

(2) Results of the Wald test for individual parameters are examined.

(3) The least significant variable that does not meet the level for staying in the model is
removed.

Once a variable is removed from the model, it remains excluded.

(4) Continue until no other effect in the model meets the specified level for removal.
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4.3.2 Fast backward elimination

(1) This method uses a computational algorithm of Lawless and Singhal (1978) to com-
pute a first-order approximation to the remaining slope estimates for each subsequent
elimination of a variable from the model.

(2) Variables are removed from the model based on these approximate estimates.

Note: Fast backward elimination is extremely efficient because the model is not refitted for
every variable removed.

4.3.3 Forward selection

(1) Initial parameters for the model are estimated. These parameters are usually the
intercepts alone.

(2) At each stage, the score chi-square statistics for the variables not in the model are
computed.

(4) The largest of these statistics is examined. If it is significant at the specified entry
level, then the corresponding variable is added to the model.

Once a variable is entered in the model, it is never removed from the model.

(5) The process is repeated until none of the remaining variables meets the specified level
for entry.

4.4 The Bonferroni method

This is a conservative method, which gives an upper bound for the simultaneous probability
of rejecting several null hypotheses.

It is based on

Bonferroni’s inequality (Fisher & van Belle, 1993)

The probability of occurrence of one or more of a set of n events is at most the sum of their
probabilities:

P (
n
⋃

i=1

Ai) ≤
n
∑

i=1

P (Ai). (17)

Equality occurs in (17) if and only if A1, . . . , An are disjoint.
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Bonferroni’s Method:

Suppose that n simultaneous tests are to be performed, with an overall significance level α.
That is, if the null hypothesis is true in all n situations, then the probability of incorrectly
rejecting one or more of the null hypotheses is at most α.

Then perform each test at a significance level α/n.

Proof

Let Ai be the event of incorrectly rejecting the ith null hypothesis.

Then the probability of incorrectly rejecting one or more of the null hypotheses is at most
n
∑

i=1

(α/n) = α.

4.5 Occam’s (or Ockham’s) razor

A philosophical principle attributed to the 14th century logician and Franciscan friar,
William of Occam (or Ockham).

Ockham was the village in the English county of Surrey where he was born.

The principle states:

Entities should not be multiplied unnecessarily.

The statistical application of Occam’s Razor is (Aitkin et al., 1989)

Never fit a more complex model than adequately describes the data:

if two models fit a dataset about equally well, then select the simpler model.

In Latin, Occam’s razor is:

(1) Pluralitas non est ponenda sine neccesitate.

(2) Frustra fit perplura quod potest fieri per pauciora.

(3) Entia non sunt multiplicanda praeter necessitatem.

In fact, only forms (1) and (2) appear in his surviving works; form (3) was written by a
later scholar.
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William used the principle to justify many conclusions, including the statement that

“God’s existence cannot be deduced by reason alone.”

That one did not make him very popular with the Pope!

The most useful statement of the principle for scientists is,

“When you have two competing theories which make exactly the same predictions, the one
that is simpler is the better.”

Stephen Hawking explains in A Brief History of Time (Hawking, 1988):

“We could still imagine that there is a set of laws that determines events completely for some
supernatural being, who could observe the present state of the universe without disturbing
it.

However, such models of the universe are not of much interest to us mortals.

It seems better to employ the principle known as Occam’s razor and cut out all the features
of the theory which cannot be observed.”

5 PERFORMANCE EVALUATION/MEASURES OF

PREDICTIVE ACCURACY: Rudolfer(2001), Sec-

tion 4.5

• Concordant/discordant pairs of observations

• Symmetric measure of association: Goodman & Kruskal’s Gamma

• Asymmetric measures of association: Somers’ D

• Scaled Somers’ D: Concordance index

• Accuracy index: Percentage correct

• Chance-corrected measure of agreement: Cohen’s Kappa statistic

• Calibration index: Brier’s score

Measures of predictive accuracy indicate how well a diagnostic algorithm can distinguish
between classes based on the covariates.
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5.1 Preliminary definitions

All measures but the Brier score are based on contigency tables.

The cross-classification of observations (hands) is expressed by an r × c Contingency
Table of observed counts for data cross-classified by

• ordinal row (R)

• ordinal column (C)

classifications.

For Dr. James’ data, r = c = 4, and

R = Dr. James’ diagnosis
C = Predicted diagnosis

Table 5: General r × c Contingency Table

C Row
1 . . . j . . . c Totals

1 n11 . . . n1j . . . n1c n1+
...

...
...

...
...

...
...

R i ni1 . . . nij . . . nic ni+
...

...
...

...
...

...
...

r nr1 . . . nrj . . . nrc nr+
Column n+1 . . . n+j . . . n+c n
Totals

where

nij = number of observations falling in the (i, j)th cell of the table
= number with R = i and C = j
= observed value of a random variable Nij obtained by taking random

samples of size n from the population of all possible hands seen by Dr.
James,

n = total sample size.

Observed and random proportions pij and Pij are defined, respectively, by

pij = nij/n and Pij = Nij/n.

25



These are related to

πij = the probability of a randomly selected observation falling in the (i, j)th cell of
the table

by the relationships

πij

pij Pij

@
@
@
@@R

estimatE
of

¡
¡

¡
¡¡ª

estimatOR

of

-

observed
value of

pij gives rise to

Table 6: Observed Table of Proportions

C Row
1 . . . j . . . c Totals

1 p11 . . . p1j . . . p1c p1+
...

...
...

...
...

...
...

R i pi1 . . . pij . . . pic pi+
...

...
...

...
...

...
...

r pr1 . . . prj . . . prc pr+
Column p+1 . . . p+j . . . p+c 1
Totals

Table 6 is an observed value of the random table

Table 7: Random Table of Proportions

C Row
1 . . . j . . . c Totals

1 P11 . . . P1j . . . P1c P1+
...

...
...

...
...

...
...

R i Pi1 . . . Pij . . . Pic Pi+
...

...
...

...
...

...
...

r Pr1 . . . Prj . . . Prc Pr+
Column P+1 . . . P+j . . . P+c 1
Totals
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Table 6 is an estimate of the probabilities’ table

Table 8: Table of Probabilities

C Row
1 . . . j . . . c Totals

1 π11 . . . π1j . . . π1c π1+
...

...
...

...
...

...
...

R i πi1 . . . πij . . . πic πi+
...

...
...

...
...

...
...

r πr1 . . . πrj . . . πrc πr+
Column π+1 . . . π+j . . . π+c 1
Totals

5.2 Concordant/Discordant pairs of observations

An observed pair of observations (r1, c1), (r2, c2) is called (Agresti, 1990)

concordant if (r1 − c1)(r2 − c2) > 0
discordant if (r1 − c1)(r2 − c2) < 0
tied if (r1 − c1)(r2 − c2) = 0

Thus, the pair is concordant if the subject ranking higher on r also ranks higher on c;
it is discordant if the subject ranking higher on r ranks lower on c; it is tied otherwise.

A randomly selected pair of observations

(R1, C1), (R2, C2)

is called
concordant if (R1 − C1)(R2 − C2) > 0
discordant if (R1 − C1)(R2 − C2) < 0
tied if (R1 − C1)(R2 − C2) = 0

Let

nc = observed number of concordant pairs

nd = observed number of discordant pairs

nt = observed number of tied pairs

based on Table 5.
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Then (SAS, 2000)

nc =
∑

i

∑

j

nij







∑

k>i

∑

l>j

nkl +
∑

k<i

∑

l<j

nkl







,

(18)

nd =
∑

i

∑

j

nij







∑

k>i

∑

l<j

nkl +
∑

k<i

∑

l>j

nkl







,

(19)

nt =
∑

i

∑

j

nij







nij +
∑

l 6=j

nil +
∑

k 6=i

nkj







.

(20)

Let a pair of observations be randomly selected, and

πc = probability the pair is concordant

πd = probability the pair is discordant

πt = probability the pair is tied

Then (Agresti, 1990)

πc =
∑

i

∑

j

πij







∑

k>i

∑

l>j

πkl +
∑

k<i

∑

l<j

πkl







,

(21)

πd =
∑

i

∑

j

πij







∑

k>i

∑

l<j

πkl +
∑

k<i

∑

l>j

πkl







,

(22)

πt =
∑

i

∑

j

πij







πij +
∑

l 6=j

πil +
∑

k 6=i

πkj







.

(23)

5.2.1 Properties of πc, πd, πt

(1) The total number of pairs of observations, nc + nd + nt = n(n− 1)/2.

(2) πc + πd + πt = 1.

(3) For i = J or j = J , the first pairs of inner summations in equations (18)–(19) and
(21)–(22) do not exist.
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(4) For i = 1 or j = 1, the second pairs of inner summations in equations (18)–(19) and
(21)–(22) do not exist.

(5) Replacing nij in equations (18)–(20) by its corresponding random variable Nij, we
get the random numbers of concordant, discordant and tied pairs of observations Nc,
Nd and Nt, respectively.

(6) If the classifications R and C are independent, that is, for i, j = 1, . . . , J,

πij = πi+π+j, (24)

then
πc = πd. (25)

This is an intuitive result, since if R and C are independent, then pairs of observations
are just as likely to be concordant as discordant.

Proof of (25)

If (24) holds, then

πc − πd =
∑

i

∑

j

πi+π+j







∑

k>i

∑

l>j

πk+π+l +
∑

k<i

∑

l<j

πk+π+l







−
∑

i

∑

j

πi+π+j







∑

k>i

∑

l<j

πk+π+l +
∑

k<i

∑

l>j

πk+π+l







=





∑

i

πi+







∑

k>i

πk+ −
∑

k<i

πk+









×





∑

j

π+j







∑

l>j

π+l −
∑

l<j

π+l











Now

∑

i

πi+







∑

k>i

πk+ −
∑

k<i

πk+







= 0, (26)

since each product term πi0+πi1+ on the left-hand side occurs exactly twice, with opposite
signs.
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Similarly,

∑

j

π+j







∑

l>j

π+l −
∑

l<j

π+l







= 0. (27)

Hence, πc = πd.

5.3 Goodman & Kruskal’s Gamma, γ

Gamma was introduced by Goodman & Kruskal in their important paper Goodman &
Kruskal (1954).

Gamma is a symmetric measure of association between the variables R and C of a con-
tigency table: R and C are treated symmetrically, not as independent and dependent
variables.

It is only based on concordant and discordant pairs, ignoring tied pairs to avoid am-
biguity.

The population parameter γ is defined by

γ =
πc − πd
πc + πd

(28)

=
πc − πd
1− πt

. (29)

5.3.1 Interpretations of γ

It is

(1) the difference between the conditional probabilities

P (concordant pairs of observations|no ties)−P (discordant pairs of observations|no ties).

(2) “how much more probable it is to get like than unlike orders in the two classifications,
when two (untied) individuals are chosen at random and independently from the
population.” (Goodman & Kruskal, 1979).

(3) “the proportionate excess of concordant over discordant pairs among all pairs which
are fully discriminated , or fully ranked (it omits from consideration pairs which are
tied on R or C or both.)” (Somers’, 1962).
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5.3.2 Properties of γ

(1) −1 ≤ γ ≤ 1.

(2) γ = 1 if and only if πd = 0:
there is probability one that C1 ≤ C2 for randomly selected observations (R1, C1) and
(R2, C2) with R1 < R2.

(3) γ = 1 if the population is concentrated on an upper-left to lower-right diagonal of
Table 8 (all other πijs are zero).

(4) γ = −1 if and only if πc = 0:
there is probability one that C1 ≥ C2 for randomly selected observations (R1, C1) and
(R2, C2) with R1 < R2.

(5) γ = −1 if the population is concentrated on a lower-left to upper-right diagonal of
Table 8 (all other πijs are zero).

(6) γ = 0 if the classifications R and C are independent [see equation (24) and property
(6) of πc, πd, πt], but not conversely in general except in the 2× 2 case.

5.3.3 G = Estimator of γ

G =
Nc −Nd

Nc +Nd

(30)

=
Nc −Nd

n−Nt

, (31)

replacing πc by Nc/n, πd by Nd/n, and πt by Nt/n in equations (28) and (29)

5.3.4 Properties of G

(1) −1 ≤ G ≤ 1.

(2) G = 1 if and only if Nd = 0:
there are no randomly selected discordant pairs of observations.

(3) G = 1 if the population is concentrated on an upper-left to lower-right diagonal of
Table 7 (all other Pijs are zero).

(4) G = −1 if and only if Nc = 0:
there are no randomly selected concordant pairs of observations.

(5) G = −1 if the population is concentrated on a lower-left to upper-right diagonal of
Table 7 (all other Pijs are zero).

(6) If the classifications R and C are independent, then G should be close to 0.
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5.3.5 Estimated Asymptotic Variance of G

(SAS,2000) is

16

(nc + nd)4







∑

i

∑

j

nij (ndaij − ncdij)
2







,

where

aij =
∑

k>i

∑

l>j

nkl +
∑

k<i

∑

l<j

nkl

= number of pairs (r, c) agreeing (concordant) with(i, j),

dij =
∑

k>i

∑

l<j

nkl +
∑

k<i

∑

l>j

nkl

= number of pairs(r, c) disagreeing (discordant) with (i, j).

5.3.6 Estimated Asymptotic Variance of G under the null hypothesis that γ = 0

(SAS,2000) is

4

(nc + nd)2







∑

i

∑

j

nij (aij − dij)
2 − (nc − nd)

2 /n







.

5.4 Somers’ D rank correlation indices

These were introduced by Somers (Somers, 1962) as asymmetric measures of association
for ordinal variables.

They are an asymmetric modification of section 5.3, and treat rows (R) and columns (C)
asymmetrically.

There are two population Somers’ D measures of association: ∆(C|R) and ∆(R|C). ∆(C|R)
treats R as the independent variable and C as the dependent variable; in ∆(R|C), it is the
other way round.

∆(C|R) =
πc − πd

1−
∑J
i=1 π

2
i+

(32)

1−
∑J
i=1 π

2
i+ is the probability that two randomly selected observations are not tied on R.

32



5.4.1 Interpretations of ∆(C|R)

It is

(1) the difference between the conditional probabilities
P (concordant pairs of observations given no ties on R)
− P (discordant pairs of observations given no ties on R).

(2) “how much more probable it is to get like than unlike orders in the two classifications,
when two individuals (untied on R) are chosen at random and independently from
the population.” (Goodman & Kruskal, 1979)

(3) “the proportionate excess of concordant pairs over discordant pairs among pairs not
tied on the independent variable.” (Somers, 1962).

5.4.2 Properties of ∆(C|R)

(Goodman & Kruskal, 1979)

(1) −1 ≤ ∆(C|R) ≤ 1.

(2) ∆(C|R) = 1 if and only if πd = 0 and

J
∑

i=1

J
∑

i=1

πij (π+j − πij) = 0. (33)

(3) ∆(C|R) = 1 if and only if each column has at most one non-zero cell.

(4) ∆(C|R) = 1 if and only if after removing all-zero columns, the non-zero cells descend
in staircase fashion, perhaps with treads of unequal width.

(5) ∆(C|R) = −1 if and only if πc = 0 and

J
∑

i=1

J
∑

i=1

πij (πi+ − πij) = 0. (34)

(6) ∆(C|R) = −1 if and only if each row has at most one non-zero cell.

(7) ∆(C|R) = −1 if and only if after removing all-zero rows, the non-zero cells ascend in
staircase fashion, perhaps with treads of unequal height.

(8) ∆(C|R) = 0 if the classifications R and C are independent [see equation (24) and
property (6) of πc, πd, πt], but not conversely in general except in the 2× 2 case.
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5.4.3 D(C|R) = Estimator of ∆(C|R)

is obtained from ∆(C|R) (equation (32)) by replacing πc by Nc/n, πd by Nd/n, and πi+ by
Ni+/n:

D(C|R) =
Nc/n−Nd/n

1−
∑J
i=1N

2
i+/n

2

=
n (Nc −Nd)

n2 −
∑J
i=1N

2
i+

. (35)

5.4.4 Properties of D(C|R)

(1) −1 ≤ D(C|R) ≤ 1.

(2) D(C|R) = 1 if and only if Nd = 0 and

J
∑

i=1

J
∑

j=1

Nij (N+j −Nij) = 0. (36)

(3) D(C|R) = 1 if the population is concentrated on an upper-left to lower-right diagonal
of Table 7 (all other Pijs are zero).

(4) D(C|R) = 1 if and only if each column has at most one non-zero cell.

(5) D(C|R) = 1 if and only if after removing all-zero columns, the non-zero cells descend
in staircase fashion, perhaps with treads of unequal width.

5.4.5 Estimated Asymptotic Variance of D(C|R)

(SAS,2000) is
4

w4
r

∑

i

∑

j

nij {wr(aij − dij)− (nc − nd) (n− ni+)}
2 ,

where
wr = n2 −

∑

i

n2
i+.

5.4.6 Estimated Asymptotic Variance of D(C|R) under the null hypothesis that
∆(C|R) = 0

(SAS,2000) is

4

w2
r







∑

i

∑

j

nij (aij − dij)
2 − (nc − nd)

2 /n







.
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5.5 Concordance index, c: scaled Somers’ D

For those who prefer their indices to lie in the interval [0,1] instead of in the interval [-1,1],
c is for them!

c is defined by the equation

c(C|R) =
1

2
{d(C|R) + 1} .

5.6 Percentage correct

This is given by the formula

percent correct = 100

(

∑

i

nii/n

)

,

and gives a rough indication of the accuracy of the diagnostic method.

Note:
∑

i nii is the total number of agreements between R andC.

Percentage correct is the other side of the coin of error rates, in that

percent correct = 100 × (1 - error rate).

For a recent survey of developments in error rate research over the last ten years, see the
article by Schiavo & Hand (2000).

5.7 Cohen’s Kappa statistic,κ̂

Cohen (1960) defined the simple kappa coefficient as a measure of chance-corrected
interrater agreement:

κ̂ =
P0 − Pe
1− Pe

,

where

P0 =
∑

i pii = estimated probability of agreement between R and C,
Pe =

∑

i pi+p+i = estimated probability of agreement between R and C,
assuming independence of R and C.
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5.7.1 Properties of κ̂

(1) κ̂ = 1 when there is complete agreement between the raters.

(2) κ̂ > 0 indicates more agreement between the raters than could be explained by chance
alone.

(3) κ̂ < 0 indicates less agreement between the raters than could be explained by chance
alone.

(4) The minimum value of κ̂ is between -1 and 0, depending on the marginal proportions.

5.7.2 Estimated Asymptotic Variance of κ̂

(Fleiss et al., 1969) is

A+B − C

n(1− Pe)2
,

where

A =
∑

i

pii [1− (pi+ + p+i) (1− κ̂)]2 ,

B = (1− κ̂)2
∑∑

i6=j
pij (pi+ + p+j)

2 ,

C = [κ̂− Pe (1− κ̂)]2 .

5.8 Brier’s score, B

This was proposed by Brier (1950) as a means of measuring a weather forecaster’s skill in
predicting the weather - still an important topic 50 years later!

Suppose that there are J possible weather conditions that the forecaster can predict, that he
does this on n occasions by giving his predicted probability pij of weather class j occurring
on the ith occasion, and, for i = 1, . . . , n, and j = 1, . . . , J , let

Eij =











0 if the weather condition is not j on the ith occasion

1 if the weather condition is j on the ith occasion

Then

B =
1

n

n
∑

i=1

J
∑

j=1

(pij − Eij)
2 .
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5.8.1 Properties of B

(1) The minimum of B is 0 for perfect forecasting (pij = Eij).

(2) The maximum of B is J for worst possible forecasting (pij = 1−Eij). It seems a bit
strange that Brier did not have the extra divisor J , since that would have made the
maximum 1, but we use his definition anyway.

(3) B is purely a function of the predicted probabilities, and does not involve any decision
rule (as do the other performance indicators).

6 RESULTS

6.1 Variable selection

Each of the three groups of variables

• History

• Clinical Signs

• Nerve Conduction Studies

was considered separately, and a best set of variables for each group selected. The variables
selected from the three groups were then combined, and further selection was done.

The methods of variable selection used were

• forward selection

• fast backward elimination

• none

followed by the application of Wald’s test using a significance level of 0.001, following
Bonferroni’s method.

6.1.1 History variables

The five variables selected were (comments as to why these selections are reasonable are
given in brackets)

• age (incidence of CTS increases with age)

• sex (females are more susceptible to CTS than are males)

• pain at night (a typical CTS symptom)
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• tingling at most ten minutes

• tingling over ten minutes

Tingling is another typical CTS symptom, and a duration of at most ten minutes is very
indicative of CTS.

6.1.2 Clinical sign variables

Only wasting was found significant (in fact, it indicates more severe nerve damage).
The four variables selected were

• wasting in the thenar eminence (corresponds to the median nerve)

• wasting in the hypothenar eminence (corresponds to the ulnar nerve, a rather strange
selection, since the ulnar nerve is not usually implicated in CTS)

• mild wasting

• moderate wasting

The last two indicate the severity of median nerve damage.

6.1.3 Nerve conduction variables

The four variables selected were

• median motor latency at the wrist

• median sensory latency

• median sensory amplitude

• median sensory duration

These variables are accepted by most neurophysiologists as being relevant to the diagnosis
of CTS.

6.1.4 Combined model: M1

This is the 13-variable model formed from the variables selected in sections 5.1.1 – 5.1.3.
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6.1.5 Six-variable submodel of M1: M2

Forward selection and fast backward selection with Wald’s test both gave the 6-variable
model, in which the first two variables are history, and the last four are nerve conduction
study:

• tingling at most ten minutes

• tingling over ten minutes

• median motor latency at the wrist

• median sensory latency

• median sensory amplitude

• median sensory duration

Note that no clinical sign variables have been selected here. Also, age and sex were
omitted, although selected for the history-only model (this is an example of locally impor-
tant variables being swamped in a larger set of variables).

6.1.6 Seven-variable submodel of M1: M3

Wald’s test alone on the combined model, M1, gave the seven-variable model, M3, which
had the additional clinical sign variable wasting of the thenar eminence, which indicates
more serious CTS.

6.1.7 Full model without variable selection: M4

This was included purely for comparison purposes, although it is quite unwieldy and almost
impossible to interpret.

M4 contains 111 variables, some of which are ALIASED (linear combinations of other
variables). Their coefficients are set to zero by SAS, as they provide no further information.

6.2 Performance evaluation

Performance was evaluated by

• resubstitution and

• bootstrapping 200 times
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6.2.1 Anderson & Philips’ (AP) classification procedure performs badly

As the following table for the 7-variable model shows, there were no AP diagnoses of
moderate or mild CTS.

Predicted Diagnosis
Doctor’s Severe
Diagnosis NAD CTS Total

NAD 149 628 777
Mild CTS 579 42 621
Mod CTS 292 2 294

Severe CTS 102 0 102
Total 1122 672 1794

This is confirmed by considering the range of values of β̂
T
x as well as the cutpoints of the

PO model: either β̂
T
x ≤ α̂1 or β̂

T
x > α̂4.

Probable reason: poor fit of the PO model.

Because of this, only the HP results will be given.

6.2.2 Which of the two Somers’ Ds to use?

Dr. James’ diagnosis, considered as the row variable, in a sense influences the models’
predicted diagnoses, since they are designed using Dr. James’ diagnosis.

For this reason, we recommend using D(C|R).

For completeness, however, we give the results for both D(C|R) and D(R|C), also for the
symmetric measure γ.
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6.2.3 Performance of M1

Resubstitution Bootstrap
Gamma 0.96573 0.96535

D(C|R) 0.80602 0.80544

c(C|R) 0.90301 0.90272

D(R|C) 0.82781 0.82742

c(R|C) 0.913905 0.91371

Kappa 0.68323 0.68206

Brier 0.31826 0.31913

%correct 79.2642 79.16945

6.2.4 Performance of M2

Resubstitution Bootstrap
Gamma 0.95765 0.95824

D(C|R) 0.79010 0.79061

c(C|R) 0.89505 0.895305

D(R|C) 0.81218 0.81320

c(R|C) 0.90609 0.90660

Kappa 0.66356 0.66281

Brier 0.32303 0.32318

%correct 77.9822 77.93478
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6.2.5 Performance of M3

Resubstitution Bootstrap
Gamma 0.95429 0.95384

D(C|R) 0.79135 0.79099

c(C|R) 0.895675 0.895495

D(R|C) 0.81040 0.80983

c(R|C) 0.90520 0.904915

Kappa 0.65716 0.65749

Brier 0.33022 0.33052

%correct 77.5362 77.55964

6.2.6 Performance of M4

Resubstitution Bootstrap
Gamma 0.96955 0.96919

D(C|R) 0.81502 0.81418

c(C|R) 0.90751 0.90709

D(R|C) 0.83460 0.83365

c(R|C) 0.91730 0.916825

Kappa 0.69383 0.69245

Brier 0.29981 0.30071

%correct 79.9331 79.8450
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6.3 Conclusions

(1) The four models’ performances are very similar:

– all measures, except % correct, differ only in the second decimal place

– % correct differ by at most 2%

(2) For most measures, Resubstitution performs better than Bootstrap: this is as usual
(Resubstitution results tend to be overoptimistic).

(3) D(C|R) < D(R|C): the proportion of tied pairs of Dr. James’ diagnoses is less than
the proportion of tied pairs of predicted diagnoses.

(4) The Brier’s score B is very low (about 0.3), reflecting the fact that the predicted
probabilities are rarely zero or one.

(5) M1 and M4 are the best models in terms of all the measures except Brier’s score.

(6) M3 is the best model in terms of Brier’s score (but only in the second decimal
place).

(7) Kappa is around 0.6 in all cases, indicating a fairly strong chance-corrected agreement
between predicted diagnosis and Dr. James’ diagnosis.

7 OPEN PROBLEMS / FURTHER WORK

7.1 Inadequacy of the AP classification rule

This rather strange result needs further investigation: could indicate poor fit of the PO
model.

7.2 Further variable selection

7.2.1 Branch & Bound

This is a technique which is

• adapted from the field of Pattern Recognition.

• implemented in SAS (SAS, 2000).

7.2.2 Use of bootstrap to refine automatic variable selection

See Sauerbrei & Schumacher (1992).

43



7.3 Valedictory

• Diagnostic modelling, also called prognostic modelling, is an exciting, active and ever-
expanding area of Medical Statistics: see Statistica Neerlandica, Vol.55, No.1 (2001),
which is devoted to this topic.

• Statisticians can never replace doctors in their goal of accurate and robust diagnosis,
but they can work together with that aim.

• At present, I am working with Dr. Jeremy D P Bland, FRCP, Consultant Neuro-
physiologist, Kent & Canterbury Hospital, UK, who has an ever-increasing database
of over 12,000 patients.

• Carpal Tunnel Syndrome is a very active area of medical research, with many papers
published in medical journals.
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