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10.11
Bayesian Logistic Model Example

This re-analysis of data in Section 10.1.3 was done by Nathan
James, Dinesh Karki, and Elizabeth McNeer. Ryan Jarrett
added the section on bivariate confidence regions. This Bayesian
analysis uses the R brms package [33] front-end to the Stan
Bayesian modeling system [208, 36].

require (brms)
require(cluster)
require (MASS)
set.seed (42)

Fit the frequentist model using 1rm and the Bayesian model
using brm in the brms package. For the Bayesian model, the
intercept prior was a Student’s ¢-distribution with 3 degrees of
freedom and the age and sex parameters were given mean zero
priors with standard deviations computed to achieve specified
tail prior probabilities. Four MCMC chains with 5000 iterations
were used with a warm-up of 2500 iterations each resulting in
10000 draws from the posterior distribution.

dd < datadist(sex.age.response)
options(datadist = ’dd’)

# Frequentist model
fit_lrm < 1lrm(response ~ sex + age, data=sex.age.response)

# Bayesian model

# Distribute chains across cpu cores:
options(mc.cores=parallel::detectCores ())

# Set priors

# Solve for SD such that sex effect has only a 0.025 chance of
# being above 5 (or being below -5)

sl < 5 / gnorm(0.975)

# Solwve for SD such that 10-year age effect has only 0.025 chance
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# of being above 20

s2 + (20 / qnorm(0.975)) / 10

stanvars < stanvar(sl, name=’sl’) + stanvar(s2,

prs < c(prior(student_t(3,0,10), class=’Intercept’),

prior (normal (0, sl1), class=’b’, coef=’sexmale’),

prior(normal (0, s2), class=’b’, coef=’age’))

# Full model

# divide by 10 since ratio onm 10b scale

name=’s2’)

fit_brms ¢+ brm(response ~ sex + age, data=sex.age.response,

family=bernoulli("logit"), prior=prs,

stanvars=stanvars)

iter=5000,
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The model summaries for the frequentist and Bayesian models
are shown below, with posterior means computed as Bayesian
“point estimates.” The parameter estimates are similar for the
two approaches. The frequentist 0.95 confidence interval for
the age parameter is 0.037 - 0.279 while the Bayesian 0.95
credible interval is 0.051 - 0.270. Similarly, the 0.95 confidence
interval for sex is 1.139 - 5.840 and the corresponding Bayesian
0.95 credible interval is 1.377 - 5.336.

# Frequentist model output
fit_1lrm

Logistic Regression Model

lrm(formula = response ~

sex + age, data = sex.age.response)

Model Likelihood | Discrimination | Rank Discrim.
Ratio Test Indexes Indexes
Obs 40 | LR 2 16.54 | R? 0451 | C 0.849
0 20 | d.f. 2| g 2.104 | D,, 0.698
1 20 | Pr(> x?) 0.0003 | g, 8.199 | ~ 0.703
max | "’1§§L| 7x1078 9p 0.350 | 7, 0.358
Brier 0.162

I6] SE. Wald Z Pr(>1Z2|)

Intercept  -9.8429  3.6758 -2.68 0.0074

sex=male  3.4898 1.1992 2.91 0.0036

age 0.1581 0.0616 2.56 0.0103
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summary (fit_lrm, age=20:21)

Low High A Effect S.E. Lower 0.95 Upper 0.95

age 20 21 1 0.15806 0.061638 0.037249 0.27887
Odds Ratio 20 21 1 1.17120 1.038000 1.32160
sex — male:female 1 2 3.48980 1.199200 1.139500 5.84020
Odds Ratio 1 2 32.78000 3.125200  343.83000
# Bayesian model output
post_samps < posterior_samples(fit_brms, c("age","sex"))
fit_brms

Family: bermnoulli
Links: mu = logit
Formula: response ~ sex + age
Data: sex.age.response (Number of observations: 40)
Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
total post-warmup samples = 10000

Population-Level Effects:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept -9.32 3.19 -15.99 -3.66 1.00 5447 5435
sexmale 3.18 1.00 1.39 5.27 1.00 5787 6194
age 0.15 0.05 0.05 0.27 1.00 5805 5805

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).
posterior_interval (fit_brms, c("age","sex"))

2.5% 97 .5%
b_age 0.05288013 0.2663081

b_sexmale 1.39201656 5.2727436

prior_summary (fit_brms)

prior class coef group resp dpar nlpar bound
1 b
2 normal (0, s2) b age
3 normal (0, s1) b sexmale
4 student_t (3, 0, 10) Intercept

The figure shows the posterior draws for the age and sex pa-
rameters as well as the trace of the 4 MCMC chains for each
parameter and the bivariate posterior distribution. The poste-
rior distributions of each parameter are roughly mound shaped
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and the overlap between chains in the trace plots indicates good
convergence. The bivariate density plot indicates moderate cor-
relation between the age and sex parameters.

# display posterior densities for age and sex parameters

plot (fit_brms, c("age","sex"), combo=c("dens","trace","hex"))

b_age b_age 8-
6 0.4~ ‘ ' —~
4- 22- I m W \i"HMH“ lv“l el ‘\”IW‘ M‘ 6- Density
Z' g.;' Aﬂu” “ﬂ Wt ﬂfﬁk i Mmrﬂml Chain é R I high
0.0 01 0.2 03 0.4 0 500 1000 1500 2000 2500 §
b_sexmale b_sexmale i Q '
8- — 3
1 i low
o o ho
2= bt el el H | s °
0- Ay M i Ll 00 01 02 03 04

' ' ' ' ' '
0 500 1000 1500 2000 2500 b_age

A plot of the marginal effects from the Bayesian model reveals
the same pattern as Figure 10.3.

# Marginal effects plot
plot (marginal_effects(fit_brms, "age:sex"))
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# Frequentist
# wartiance-covariance for sex and age parameters
sex_age_vcov ¢ vcov(fit_lrm) [2:3,2:3]

# Sampling based parameter estimate correlation coefficient
f_cc ¢ sex_age_vcov[1,2] / (sqrt(sex_age_vcov[1,1]) * sqrt(sex_age_vcov[2,2]))
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# Bayesian
# Linear correlation between params from posterior
b_cc ¢+ cor(post_samps) [1,2]

Using the code in the block above, we calculate the frequen-
tist sampling-based parameter estimate correlation coefficient
is 0.75 while the linear correlation between the posterior draws
for the age and sex parameters is 0.65. Both models indicate
a comparable amount of correlation between the parameters,
though in difference senses (sampling data vs. sampling poste-
rior distribution of parameters).

# Define P () as mean () just to provide a nice notation for
# computing posterior probabilities

P ¢+ function(x) mean(x)

bl < post_samps[, ’b_sexmale’]

b2 <« post_samps[, ’b_age’]

(p1 < P(b1 > 0)) # post prob (sex has positive association with Y)
[1] 0.9999

(p2 + P(b2 > 0))

[1] 0.9991

(p3 < P(bl > 0 & b2 > 0))

[1] 0.999

(p4 « P(b1 > 0 | b2 > 0))

[1] 1

The posterior probability that sex has a postive relationship with
hospital death is estimated as Prob(Bs., > 0) = 0.9999 while
the posterior probability that age has a postive relationship with
hospital death is Prob(5,5 > 0) = 0.9991 and the probability

of both events is Prob(Bsc; > 0 N Bage > 0) = 0.999. Even
using somewhat skeptical priors centered around 0, male gender



CHAPTER 10. BINARY LOGISTIC REGRESSION 10-57

and increasing age are highly likely to be associated with the
response.

As seen above, the MCMC algorithm used by brms provides
us with samples from the joint posterior distribution of [,
and [Gs.. Unlike frequentist intervals which require the log-
likelihood to be approximately quadratic in form, there are no
such restrictions placed on the posterior distribution, as it will
always be proportional to the product of the likelihood density
and the prior, regardless of the likelihood function that is used.
In this specific example, we notice that the bivariate density is
somewhat skewed — a characteristic that would likely lead to
unequal tail converage probabilities if a symmetric confidence
interval is used.

ggplot (post_samps, aes(x=b_sexmale, y = b_age)) +
geom_hex () +
theme (legend.position="none")
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Create a 0.95 bivariate credible interval for the joint distribution
of age and sex. Any number of intervals could be drawn, as
any region that covers 0.95 of the posterior density could be
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accurately be called a 0.95 credible interval. Commonly used:
maximum a-posteriori probability (MAP) interval, which seeks
to find the region that holds 0.95 of the density, while also
having the smallest area. In a 1-dimensional setting, this would
translate into having the shortest interval length, and therefore
the most precise estimate. The figure below shows the point
estimate calculated by brms as well as the corresponding MAP
interval.

# Calculate MAP <interwval

# Code from http://www.sumsar.net/blog/2014/11/
how—to—summarize—a—Zd—posterior—using—a—highest—density—ellipse/

samples < as.matrix(post_samps)

coverage = 0.95

fit < cov.mve(samples, quantile.used = round(nrow(samples) * coverage))

points_in_ellipse < samples[fit$best,]

ellipse_boundary < predict(ellipsoidhull (points_in_ellipse))

map ¢ data.frame(ellipse_boundary)

names (map) <+ c("y","x")

ggplot (post_samps, aes(x=b_sexmale, y = b_age)) +
geom_hex () +
geom_polygon(data = map, aes(x=x,y=y), color = "grey", alpha = 0) +
geom_point (aes(x = fixef (fit_brms)[,1]1[2], y = fixef(fit_brms)[,1]1[3]), color
= "grey") +
theme (legend.position="none"
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In the above figure, the point estimate does not appear quite
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at the point of highest density. This is because brms estimates
the posterior mean, rather than the posterior mode. You have
the full posterior density, so you can calculate whatever you'd
like if you don’'t want the mean.

See how the MAP interval compares to a confidence ellipse that
we would calculate using a frequentist approach.

# Function takes 4n variance-covartiance matriz (D), point estimates (d),
# and a level of stigntificance (alpha)
EllipseDF ¢ function(D, d, alpha = 0.05) {

delta = sqrt(eigen(D)$values)

# Root eigenvalues correspond to the half-lengths of the ellipse
eigen(D)$vectors
Eigenvectors give the axzes of the confidence ellipse
= sqrt(qchisq(l-alpha, df = length(delta)))
Scaling factor to get to 0.95 confidence
= Rxdeltal[l] # scale the ellipse azes
= Rx*delta[2]
< seq(0, 2*pi, length.out=200)
# Generate rTadian measures from 0 to 2p1
points.proj = V %*% t(cbind(a * cos(t), b * sin(t)))
# Transform circle into ellipse
return(data.frame(x = (points.proj)[1, ] + d[1],

y (points.projl[2, 1 + d[2]1))

¢ T o DR <

}

D + vcov(fit_lrm)[-1,-1]
beta <+ coef(fit_lrm)[-1]
ci_ellipse < EllipseDF(D, beta, alpha = 0.05)

ggplot (post_samps, aes(x=b_sexmale, y = b_age)) +
geom_hex () +

geom_polygon (data = map, aes(x=x,y=y), color = "grey", alpha = 0) +

geom_polygon(data = ci_ellipse, aes(x = x,y = y), color = "red", alpha = 0) +

geom_point (aes(x = fixef (fit_brms)[,1][2], y = fixef(fit_brms)[,1]1[3]), color
= "grey") +

geom_point (aes(x = coef(fit_lrm)[2], y = coef(fit_lrm) [3]), color = "red") +

theme (legend.position="none"
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b_sexmale

Much of the region covered by the confidence ellipse (in red)
is shared by the MAP ellipse, but the point estimate appears
to target the posterior mode and constructs a symmetric confi-
dence region about it, while the MAP region is not symmetric
about the posterior mean®. As a result, even in this simple
2-parameter logistic regression model, the confidence ellipse is
likely to have problematic asymmetric coverage of the true pa-
rameter.

Note: Most of these results can be easily obtained using the
rms package in conjunction with the rstan package, as shown
in the Titanic case study.

¢To be fair, there's no requirement saying that confidence intervals/regions must be symmetric, they just usually are computed that way.



