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1 Introduction

Reviewers who do not seem to worry about the proportional hazards assumption in a Cox model
or the equal variance assumption in a 𝑡-test seem to worry a good deal about the proportional
odds (PO) assumption in a semiparametric ordinal logistic regression model. This in spite of
the fact that proportional hazards and equal variance in other models are exact analogies to
the PO assumption. Furthermore, when there is no covariate adjustment, the PO model is
equivalent to the Wilcoxon test, and reviewers do not typically criticize the Wilcoxon test or
realize that it has optimum power only under the PO assumption.

The purpose of this report is to (1) demonstrate examinations of the PO assumption for a
treatment effect in a two-treatment observational comparison, and (2) discuss various issues
around PO model analysis and alternative analyses using cutpoints on the outcome variable.
It is shown that exercises such as comparing predicted vs. observed values can be misleading
when the sample size is not very large.

2 Dataset

The dataset, taken from a real observational study, consists of a 7-level ordinal outcome variable
y having values 0-6, a treatment variable trt, and a strong baseline variable baseline defined
by a disease scale that is related to y but with more resolution. This is a dominating covariate,
and failure to adjust for it will result in a weaker treatment comparison. trt levels are A and
B, with 48 patients given treatment B and 100 given treatment A.

getHdata(txpo)
d <- txpo
dd <- datadist(d); options(datadist='dd')
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if(ishtml) html(describe(d)) else latex(describe(d), file='')

d
3 Variables 148 Observations

y
n missing distinct Info Mean Gmd

148 0 7 0.954 3 1.759

lowest : 0 1 2 3 4, highest: 2 3 4 5 6

Value 0 1 2 3 4 5 6
Frequency 6 19 39 24 40 5 15
Proportion 0.041 0.128 0.264 0.162 0.270 0.034 0.101

trt
n missing distinct

148 0 2

Value A B
Frequency 100 48
Proportion 0.676 0.324

baseline
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

148 0 37 0.993 20.31 17.63 0 0 4 20 32 38 42

lowest : 0 1 2 3 4, highest: 44 48 51 54 60

with(d, pr(obj=table(trt, y)))

y
trt 0 1 2 3 4 5 6
A 4 8 26 19 27 2 14
B 2 11 13 5 13 3 1

3 Proportional Odds Model

f <- lrm(y ~ trt + baseline, data=d)
f

Logistic Regression Model
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lrm(formula = y ~ trt + baseline, data = d)

Frequencies of Responses

0 1 2 3 4 5 6
6 19 39 24 40 5 15

{

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 148 LR 𝜒2 69.26 𝑅2 0.386 𝐶 0.778
max |𝜕 log 𝐿

𝜕𝛽 | 4×10−13 d.f. 2 𝑅2
2,148 0.365 𝐷𝑥𝑦 0.556

Pr(> 𝜒2) <0.0001 𝑅2
2,141.3 0.379 𝛾 0.571

Brier 0.151 𝜏𝑎 0.449

}

̂𝛽 S.E. Wald 𝑍 Pr(> |𝑍|)
y≥1 6.1565 0.6167 9.98 <0.0001
y≥2 4.3821 0.4718 9.29 <0.0001
y≥3 2.5139 0.3600 6.98 <0.0001
y≥4 1.5520 0.3174 4.89 <0.0001
y≥5 -0.3033 0.3150 -0.96 0.3357
y≥6 -0.6738 0.3361 -2.00 0.0450
trt=B -1.1328 0.3290 -3.44 0.0006
baseline -0.0888 0.0121 -7.32 <0.0001

summary(f)

Low High Δ Effect S.E. Lower 0.95 Upper 0.95
baseline 4 32 28 -2.487500 0.33969 -3.15330 -1.82180

Odds Ratio 4 32 28 0.083114 0.04271 0.16174
trt — B:A 1 2 -1.132800 0.32900 -1.77770 -0.48802

Odds Ratio 1 2 0.322120 0.16903 0.61384
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anova(f)

Wald Statistics for y

𝜒2 d.f. 𝑃
trt 11.86 1 0.0006
baseline 53.63 1 <0.0001
TOTAL 56.57 2 <0.0001

4 Volatility of ORs Using Different Cutoffs

Even when the data generating mechanism is exactly proportional odds for treatment, different
cutoffs of the response variable Y can lead to much different ORs when the sample size is not
in the thousands. This is just the play of chance (sampling variation). To illustrate this point,
consider the observed proportions of Y for trt=A as population probabilities for A. Apply an
odds ratio of 0.3 to get the population distribution of Y for treated patients. For 10 simulated
trials, sample from these two multinomial distributions and compute sample ORs for all Y
cutoffs.

p <- table(d$y[d$trt == 'A'])
p <- p / sum(p)
p # probabilities for SOC

0 1 2 3 4 5 6
0.04 0.08 0.26 0.19 0.27 0.02 0.14

set.seed(1)
round(simPOcuts(n=210, odds.ratio=0.3, p=p), 2)

y>=1 y>=2 y>=3 y>=4 y>=5 y>=6
Simulation 1 0.13 0.25 0.33 0.28 0.14 0.16
Simulation 2 0.39 0.26 0.41 0.41 1.00 1.00
Simulation 3 0.39 0.37 0.44 0.47 0.90 0.78
Simulation 4 0.18 0.27 0.30 0.41 0.32 0.23
Simulation 5 0.43 0.31 0.24 0.17 0.43 0.33
Simulation 6 0.17 0.37 0.37 0.39 0.36 0.30
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Simulation 7 0.14 0.24 0.22 0.17 0.30 0.33
Simulation 8 0.37 0.50 0.28 0.29 0.26 0.26
Simulation 9 0.85 0.45 0.36 0.40 0.54 0.61
Simulation 10 0.36 0.34 0.31 0.26 0.21 0.22

See here1 for simPOcuts source code.

5 Examining the PO Assumption

For discrete Y we are interested in checking the impact of the PO assumption on predicted
probabilities for all of the Y categories, while also allowing for covariate adjustment. This can
be done using the following steps:

• Select a set of covariate settings over which to evaluate accuracy of predictions
• Vary at least one of the predictors, i.e., the one for which you want to assess the impact

of the PO assumption
• Fit a PO model the usual way
• Fit models that relaxes the PO assumption

– to relax the PO assumption for all predictors fit a multinomial logistic model
– to relax the PO assumption for a subset of predictors fit a partial PO (PPO) model

• For all the covariate combinations evaluate predicted probabilities for all levels of Y using
the PO model and the relaxed assumption models

• Use the bootstrap to compute confidence intervals for the differences in predicted values
between a PO model and a relaxed model. This will put the differences in the right
context by accounting for uncertainties. This guards against over-emphasis of differences
when the sample size does not support estimation, especially for the relaxed model
with more parameters. Note that the same problem occurs when comparing predicted
unadjusted probabilities to observed proportions, as observed proportions can be noisy.

Level 5 of y has only 5 patients so we combine it with level 6 for fitting the two relaxed
models that depend on individual cell frequencies. Similarly, level 0 has only 6 patients, so we
combine it with level 1. The PPO model is fitted with the VGAM R package, and the nonpo
argument below signifies that the PO assumption is only being relaxed for the treatment effect.
The multinomial model allows not only non-PO for trt but also for baseline. See here2 for
impactPO source code.

nd <- data.frame(trt=levels(d$trt), baseline=4)
d$y5 <- with(d, pmin(pmax(y, 1), 5))

1https://github.com/harrelfe/Hmisc/blob/master/R/popower.s
2https://github.com/harrelfe/rms/blob/master/R/impactPO.r
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w <- impactPO(y5 ~ trt + baseline, nonpo = ~ trt,
data=d, newdata=nd, B=300)

w

PO PPO Multinomial
Deviance 395.58 393.10 388.36
d.f. 6 9 12
AIC 407.58 411.10 412.36
p 2 5 8
LR chi^2 69.41 71.89 76.63
LR - p 67.41 66.89 68.63
LR chi^2 test for PO 2.48 7.22
d.f. 3 6
Pr(>chi^2) 0.4792 0.3013

MCS R2 0.374 0.385 0.404
MCS R2 adj 0.366 0.364 0.371
McFadden R2 0.149 0.155 0.165
McFadden R2 adj 0.141 0.133 0.130
Mean |difference| from PO 0.021 0.042

Covariate combination-specific mean |difference| in predicted probabilities

method trt baseline Mean |difference|
1 PPO A 4 0.010
2 PPO B 4 0.033
11 Multinomial A 4 0.032
21 Multinomial B 4 0.052

Bootstrap 0.95 confidence intervals for differences in model predicted
probabilities based on 300 bootstraps

trt baseline
1 A 4

PO - PPO probability estimates

1 2 3 4 5
Lower -0.004 -0.017 -0.058 -0.055 -0.042
Upper 0.008 0.018 0.008 0.081 0.058

PO - Multinomial probability estimates
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1 2 3 4 5
Lower 0.002 -0.017 -0.152 -0.105 -0.037
Upper 0.020 0.071 -0.006 0.107 0.133

trt baseline
2 B 4

PO - PPO probability estimates

1 2 3 4 5
Lower -0.043 -0.077 -0.025 -0.191 -0.101
Upper 0.013 0.083 0.197 0.065 0.095

PO - Multinomial probability estimates

1 2 3 4 5
Lower -0.050 -0.025 -0.051 -0.272 -0.143
Upper 0.035 0.147 0.194 0.041 0.095

Comparisons of the PO model fit with models that relax the PO assumption above can be
summarized as follows.

• By AIC, the model that is most likely to have the best cross-validation performance is
the fully PO model (the lower the AIC the better)

• There is no evidence for non-PO, either when judging against a model that relaxes the
PO assumption for treatment (P=0.48) or against a multinomial logistic model that does
not assume PO for any variables (P=0.30).

• The McFadden adjusted 𝑅2 index, in line with AIC, indicates the best fit is from the PO
model

• The Maddala-Cox-Snell adjusted 𝑅2 indicates the PO model is competitive. See this3 for
information about general adjusted 𝑅2 measures.

• Nonparametric bootstrap percentile confidence intervals for the difference in predicted
values between the PO model and one of the relaxed models take into account uncertainties
and correlations of both sets of estimates. In all cases the confidence intervals are quite
wide and include 0 (except for one case, where the lower confidence limit is 0.002), which
is very much in line with apparent differences being clouded by overfitting (high number
of parameters in non-PO models).

These assessments must be kept in mind when interpreting the inter-model agreement between
probabilities of all levels of the ordinal outcome in the graphic that follows. According to

3https://hbiostat.org/bib/r2.html
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AIC and adjusted 𝑅2, the estimates from the partial PO model and especially those from the
multinomial model are overfitted. This is related to the issue that odds ratios computed from
oversimplifying an ordinal response by dichotomizing it are noisy (also see the next to last
section below).

revo <- function(z) {
z <- as.factor(z)
factor(z, levels=rev(levels(as.factor(z))))

}
ggplot(w$estimates, aes(x=method, y=Probability, fill=revo(y))) +
facet_wrap(~ trt) + geom_col() +
xlab('') + guides(fill=guide_legend(title=''))
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AIC is essentially a forecast of what is likely to happen were the accuracy of two competing
models be computed on a new dataset not used to fit the model. Had the observational study’s
sample size been much larger, we could have randomly split the data into training and test
samples and had a head-to-head comparison of the predictive accuracy of a PO model vs. a
non-PO (multinomial or partial PO) model in the test sample. Non-PO models will be more
unbiased but pay a significant price in terms of variance of estimates. The AIC and adjusted
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𝑅2 analyses above suggest that the PO model will have lower mean squared errors of outcome
probability estimates due to the strong reduction in variance (also see below).

6 Efficiency of Analyses Using Cutpoints

Clearly, the dependence of the proportional odds model on the assumption of proportion-
ality can be over-stressed. Suppose that two different statisticians would cut the same
three-point scale at different cut points. It is hard to see how anybody who could accept
either dichotomy could object to the compromise answer produced by the proportional
odds model. — Stephen Senna

ahttps://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3603

Above I considered evidence in favor of making the PO assumption. Now consider the cost of
not making the assumption. What is the efficiency of using a dichotomous endpoint? Efficiency
can be captured by comparing the variance of an inefficient estimate to the variance of the most
efficient estimate (which comes from the PO model by using the full information in all levels
of the outcome variable). We don’t know the true variances of estimated treatment effects so
instead use the estimated variances from fitted PO and binary logistic models.

vtrt <- function(fit) vcov(fit)['trt=B', 'trt=B']
vpo <- vtrt(f)
w <- NULL
for(cutoff in 1 : 6) {
h <- lrm(y >= cutoff ~ trt + baseline, data=d)
eff <- vpo / vtrt(h)
# To discuss later: critical multiplicative error in OR
cor <- exp(sqrt(vtrt(h) - vpo))
w <- rbind(w, data.frame(Cutoff=paste0('y�', cutoff),

Efficiency=round(eff, 2),
`Sample Size Ratio`=round(1/eff, 1),
`Critical OR Factor`=round(cor, 2),
check.names=FALSE))

}
w

Cutoff Efficiency Sample Size Ratio Critical OR Factor
1 y�1 0.13 7.6 2.33
2 y�2 0.38 2.6 1.52
3 y�3 0.44 2.3 1.44
4 y�4 0.56 1.8 1.34
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5 y�5 0.29 3.5 1.68
6 y�6 0.09 10.6 2.77

The last column is discussed in a later section.

Under PO the odds ratio from the PO model estimates the same quantity as the odds ratio
from any dichotomization of the outcome. The relative efficiency of a dichotomized analysis is
the variance of the most efficient (PO model) model’s log odds ratio for treatment divided by
the variance of the log odds ratio from a binary logistic model using the dichotomization. The
optimal cutoff (mainly due to being a middle value in the frequency distribution) is y�4. For
this dichotomization the efficiency is 0.56 (i.e., analyzing y�4 vs. y is equivalent to discarding
44% of the sample) and the variance of the treatment log odds ratio is 1.8× greater than the
variance of the log odds ratio from the proportional odds model without binning. This means
that the study would have to be 1.8× larger to have the same power when dichotomizing the
outcome as a smaller study that did not dichotomize it. Other dichotomizations result in even
worse efficiency.

For more examples of relative efficiencies for various outcome configurations see Information
Gain From Using Ordinal Instead of Binary Outcomes4.

7 PO Model Results are Meaningful Even When PO is Violated

7.1 Overall Efficacy Assessment

Putting aside covariate adjustment, the PO model is equivalent to a Wilcoxon-Mann-Whitney
two-sample rank-sum test statistic. The normalized Wilcoxon statistic (concordance probability;
also called probability index) is to within a high degree of approximation a simple function of
the estimated odds ratio from a PO model fit. Over a wide variety of datasets satisfying and
violating PO, the 𝑅2 for predicting the log odds ratio from the logit of the scaled Wilcoxon
statistic is 0.996, and the mean absolute error in predicting the concordance probability from
the log odds ratio is 0.002. See Violation of Proportional Odds is Not Fatal5 and If You Like
the Wilcoxon Test You Must Like the Proportional Odds Model6.

Let’s compare the actual Wilcoxon concordance probability with the concordance probability
estimated from the odds ratio without covariate adjustment, OR0.65

1+OR0.65 .

w <- wilcox.test(y ~ trt, data=d)
w

4https://www.fharrell.com/post/ordinal-info
5https://www.fharrell.com/post/po
6https://www.fharrell.com/post/wpo
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Wilcoxon rank sum test with continuity correction

data: y by trt
W = 2881, p-value = 0.04395
alternative hypothesis: true location shift is not equal to 0

W <- w$statistic
concord <- W / prod(table(d$trt))

u <- lrm(y ~ trt, data=d)
u

Logistic Regression Model

lrm(formula = y ~ trt, data = d)

Frequencies of Responses

0 1 2 3 4 5 6
6 19 39 24 40 5 15

{

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 148 LR 𝜒2 4.18 𝑅2 0.029 𝐶 0.555
max |𝜕 log 𝐿

𝜕𝛽 | 2×10−7 d.f. 1 𝑅2
1,148 0.021 𝐷𝑥𝑦 0.110

Pr(> 𝜒2) 0.0409 𝑅2
1,141.3 0.022 𝛾 0.247

Brier 0.240 𝜏𝑎 0.088

}

̂𝛽 S.E. Wald 𝑍 Pr(> |𝑍|)
y≥1 3.4217 0.4390 7.79 <0.0001
y≥2 1.8302 0.2524 7.25 <0.0001
y≥3 0.4742 0.1948 2.43 0.0149
y≥4 -0.1890 0.1929 -0.98 0.3272
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̂𝛽 S.E. Wald 𝑍 Pr(> |𝑍|)
y≥5 -1.6691 0.2561 -6.52 <0.0001
y≥6 -1.9983 0.2858 -6.99 <0.0001
trt=B -0.6456 0.3174 -2.03 0.0420

Note that the 𝐶 statistic in the above table handles ties differently than the concordance
probability we are interested in here.

or <- exp(- coef(u)['trt=B'])
cat('Concordance probability from Wilcoxon statistic: ', concord, '\n',

'Concordance probability estimated from OR: ',
or ^ 0.65 / (1 + or ^ 0.65), '\n', sep='')

Concordance probability from Wilcoxon statistic: 0.6002083
Concordance probability estimated from OR: 0.6033931

In the absence of adjustment covariates, the treatment odds ratio estimate from a PO model is
essentially the Wilcoxon statistic whether or not PO holds. Many statisticians are comfortable
with using the Wilcoxon statistic for judging which treatment is better overall, e.g., which
treatment tends to move responses towards the favorable end of the scale. So one can seldom
go wrong in using the PO model to judge which treatment is better, even when PO does not
hold.

7.2 Simulation Study of Effect of Adjusting for a Highly Non-PO Covariate

What if the treatment operates in PO but an important covariate strongly violates its PO
assumption? Let’s find out by simulating a specific departure from PO for a binary covariate.
For a discrete ordinal outcome with levels 0,1,…,6 let the intercepts corresponding to 𝑌 = 1, ..., 6
be 𝛼 = [4.4, 2.6, 0.7, −0.2, −2, −2.4]. Let the true treatment effect be 𝛽 = −1.0. The simulated
covariate 𝑋 is binary with a prevalence of 1

2 . The true effect of 𝑋 is to have an OR of 3.0 on
𝑌 ≥ 1, 𝑌 ≥ 2, 𝑌 ≥ 3 but to have an OR of 1

3 on 𝑌 ≥ 4, 𝑌 ≥ 5 and 𝑌 = 6. So the initial
regression coefficient for 𝑋 is log(3) and the additional effect of 𝑋 on 𝑌 ≥ 𝑦 once 𝑦 crosses
to 4 and above is a decrement in its prevailing log odds by 2 log(3). So here is our model to
simulate from:

Pr(𝑌 ≥ 𝑦|trt, 𝑋) = expit(𝛼𝑦 − [trt = B] + log(3)𝑋 − 2 log(3)𝑋[𝑦 ≥ 4])

Over simulations compare these three estimates and their standard error:

• unadjusted treatment effect
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• treatment effect adjusted for covariate assuming both treatment and covariate act in PO
• treatment effect adjusted for covariate assuming treatment is PO but allowing the covariate

to be arbitrarily non-PO

To test the simulation, simulate a very large sample size of n=50,000 and examine the coefficient
estimates from the correct partial PO model and from two other models.

sim <- function(beta, n, nsim=100) {
tx <- c(rep(0, n/2), rep(1, n/2))
x <- c(rep(0, n/4), rep(1, n/4), rep(0, n/4), rep(1, n/4))
# Construct a matrix of logits of cumulative probabilities
L <- matrix(alpha, nrow=n, ncol=6, byrow=TRUE)
L[tx == 1,] <- L[tx == 1, ] + beta
L[x == 1, ] <- L[x == 1, ] + log(3)
L[x == 1, 4:6] <- L[x == 1, 4:6] - 2 * log(3)
P <- plogis(L) # cumulative probs
P <- cbind(1, P) - cbind(P, 0) # cell probs (each row sums to 1.0)

b <- v <- pv <- matrix(NA, nrow=nsim, ncol=3)
colnames(b) <- colnames(v) <- colnames(pv) <- c('PPO', 'PO', 'No X')
y <- integer(n)
a <- 'tx'
msim <- 0
for(i in 1 : nsim) {

for(j in 1 : n) y[j] <- sample(0:6, 1, prob=P[j, ])
f <- try(vglm(y ~ tx + x, cumulative(reverse=TRUE, parallel=FALSE ~ x)))
if(inherits(f, 'try-error')) next
msim <- msim + 1
g <- lrm(y ~ tx + x)
h <- lrm(y ~ tx)
co <- c(coef(f)[a], coef(g)[a], coef(h)[a])
vs <- c(vcov(f)[a,a], vcov(g)[a,a], vcov(h)[a,a])
b[msim, ] <- co
v[msim, ] <- vs
pv[msim, ] <- 2 * pnorm(- abs(co / sqrt(vs)))

}
b <- b [1:msim,, drop=FALSE]
v <- v [1:msim,, drop=FALSE]
pv <- pv[1:msim,, drop=FALSE]
bbar <- apply(b, 2, mean)
bmed <- apply(b, 2, median)
bse <- sqrt(apply(v, 2, mean))
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bsemed <- sqrt(apply(v, 2, median))
sd <- if(msim < 2) rep(NA, 3) else sqrt(diag(cov(b)))
pow <- if(nsim < 2) rep(NA, 3) else apply(pv, 2, function(x) mean(x < 0.05))
list(summary=cbind('Mean beta' = bbar,

'Median beta' = bmed,
'Sqrt mean estimated var' = bse,
'Median estimated SE' = bsemed,
'Empirical SD' = sd,
'Power' = pow),

sims=list(beta=b, variance=v, p=pv),
nsim=msim)

}

require(VGAM)
alpha <- c(4.4, 2.6, 0.7, -0.2, -2, -2.4)
set.seed(1)
si <- sim(beta=-1, 50000, 1)
round(si$summary, 4)

Mean beta Median beta Sqrt mean estimated var Median estimated SE
PPO -0.9832 -0.9832 0.0176 0.0176
PO -0.9271 -0.9271 0.0168 0.0168
No X -0.9280 -0.9280 0.0168 0.0168

Empirical SD Power
PPO NA NA
PO NA NA
No X NA NA

With n=50,000 extreme non-PO in the binary covariate hardly affected the estimated treatment
and its standard error, and did not affect the ratio of the coefficient estimate to its standard
error. Non-PO in 𝑋 does effect the intercepts which has an implication in estimating absolute
effects (unlike the treatment OR). But by examining the intercepts when the covariate is
omitted entirely one can see that the problems with the intercepts when PO is forced are no
worse than just ignoring the covariate altogether (not shown here).

Now simulate 2000 trials with n=300 and study how the various models perform.

set.seed(7)
fi <- '~/data/sim/simtx.rds'
if(file.exists(fi)) simr <- readRDS(fi) else {
s <- sim(-1, 300, 2000)
s0 <- sim( 0, 300, 2000) # also simulate under the null
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simr <- list(s=s, s0=s0)
saveRDS(simr, fi)

}
cat('Convergence in', simr$s$nsim, 'simulations\n\n')

Convergence in 1947 simulations

kab(round(simr$s$summary, 4))

Mean
beta

Median
beta

Sqrt mean estimated
var

Median
estimated SE

Empirical
SD Power

PPO -1.0157 -1.0100 0.2273 0.2281 0.2340 0.9979
PO -0.9609 -0.9565 0.2189 0.2184 0.2227 0.9974
No
X

-0.9599 -0.9556 0.2188 0.2183 0.2227 0.9974

The second line of the summary shows what to expect when fitting a PO model in the presence
of severe non-PO for an important covariate. The mean estimated treatment effect is the same
as not adjusting for the covariate and so is its estimated standard error. Both are close to the
estimate from the proper model—the partial PO model that allows for different effects of 𝑋
over the categories of 𝑌. And for all three models the standard error of the treatment effect
estimated from that model’s information matrix is very accurate as judged by the closeness to
the empirical SD of the simulated regression coefficient estimates.

Check simulations under the null, i.e., with 𝛽 = 0 for treatment. Look at the distribution of
p-values for the three model’s treatment 2-sided Wald tests (which should be uniform), and
the empirical 𝛼, the fraction of Wald p-values < 0.05.

p <- simr$s0$sims$p
par(mfrow=c(2,2))
for(i in 1 : 3) {
pow <- paste0('Fraction P<0.05: ', round(mean(p[, i] < 0.05), 3))
hist(p[, i], main=paste(colnames(p)[i], ' ', pow), xlab='P-value',

sub=, nclass=50)
}
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This is better shown using empirical cumulative distributions.

z <- NULL
for(i in 1 : 3) {
pow <- paste0('Fraction P<0.05: ', round(mean(p[, i] < 0.05), 3))

ti <- paste(colnames(p)[i], ' ', pow)
z <- rbind(z,

data.frame(`Assumed Covariate Effect`=ti, p=p[, i],
check.names=FALSE))

}
ggplot(z, aes(x=p, color=`Assumed Covariate Effect`)) +

stat_ecdf(geom='step', pad=FALSE) +
xlab('P-value') + ylab('Cumulative Probability')
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Figure 1: Empirical cumulative distributions of p-values from Wald tests of the treatment effect
under the null 𝛽 = 0, with simulation estimates of 𝛼 for three models for a strong
covariate 𝑋

𝛼 under the improper (with respect to 𝑋) PO model is just under that of the model ignoring
𝑋, which is estimated to be at the nominal 0.05. The estimated 𝛼 for the appropriate partial
PO model is just over 0.05.

7.3 Using the PO Model to Estimate the Treatment Effect for a Specific Y Cutoff

Just as in the case where one thinks that a sex by treatment interaction may be present,
actually estimating such an interaction effect can make treatment estimates worse for both
sexes7 in small samples even when the interaction is truly present. This is because estimating
an unknown quantity well requires both minimal bias and good precision (low variance), and
adding a parameter to the model increases variance (one must estimate both the main effect
and the interaction, equivalent to estimating separate treatment effects for females and males).

7https://www.fharrell.com/post/demohte
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The probability that an estimate is within a given tolerance of the true value is closely related
to the mean squared error (MSE) of the estimator. MSE equals variance plus the square of bias.
Bias is the systematic error that can result from model misspecification, e.g., fitting a common
OR (assuming PO) when the treatment OR needs to vary for some levels of Y (non-PO).

A log odds ratio estimate for a specific cutoff Y�y derived from a model that dichotomized the
raw data at y will tend to be unbiased for estimating that specific log odds ratio. Suppose the
log OR has variance 𝑢. The MSE of the log OR estimate is 𝑢 since the bias is approximately
zero. Now consider estimating the common OR in a PO model and using that to estimate
the OR for Y�y. Suppose that common log OR has variance 𝑣 and bias 𝑏 (𝑏 is a weighted log
OR the PO model estimates minus the true log OR for Y�y) so that MSE of the log OR for
the PO model is 𝑣 + 𝑏2. The multiplicative bias (fold-change bias) is 𝑒𝑏. How large must this
multiplicative bias in the OR estimate be (i.e., how much non-PO needs to exist) before the
tailored model for Y�y has lower mean squared error (on the log scale) than the less-well-fitting
PO model? By comparing the two MSEs of 𝑢 and 𝑣 + 𝑏2 we find that the critical multiplicative
error in the OR is exp(

√
𝑢 − 𝑣).

For the dataset we have been analyzing, the critical fold change in OR is tabulated in the
table above under the column Critical OR Factor. For example, for the lowest cutoff this
factor is 2.33. This is interpreted as saying that an ill-fitting PO model would still break even
with a tailored well-fitting model (one that suffers from having higher variance of ̂𝛽 due to not
breaking ties in Y) in terms of the chance of having the OR estimate close to the true OR, as
long as the true combined estimand PO OR is not more than a factor of 2.33 away from the
true OR for Y�1. For example, if the OR that the PO model is estimating is 2, this estimate
would be equal in accuracy to a tailored sure-to-fit estimate if the true PO is 4.66, and would
be better than the tailored estimate if the true OR is less than 4.66.

Looking over all possible cutoffs, a typical OR critical fold change is 1.5. Loosely speaking if
ORs for two different cutoffs have a ratio less than 1.5 and greater than 1/1.5 the PO model will
provide a more accurate treatment OR for a specific cutoff than will an analysis built around
estimating the OR only for that cutoff. As the sample size grows, the critical multiplicative
change in OR will fall. This leads to the next section.

8 A Continuous Solution

Instead of assessing the adequacy of the PO assumption, hoping that the data contain enough
information to discern whether a PO model is adequate and then making a binary decision (PO
or non-PO model), a far better approach is to allow for non-PO to the extent that the current
sample size allows. By scaling the amount of non-PO allowed, resulting in a reasonable amount
of borrowing of information across categories of Y, one can achieve a good mean squared
error of an effect estimator. This can be achieved using a Bayesian partial proportional odds
model with a skeptical prior distribution for the parameters representing departures from the
PO assumption. As the sample size increases, the prior wears off, and the PO assumption is
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progressively relaxed. All uncertainties are accounted for, and the analyst need not make a
PO/non-PO choice. This is implemented in the R rmsb package blrm function8. See this9 for
discussion of using this approach for a formal analysis studying to what extent a treatment
effects one part of the outcome scale differently than it affects other parts.

To get a feeling for how the degree of skepticism of the prior for the departure from PO relates
to the MSE of a treatment effect, we choose normal distributions with mean 0 and various
variances, compute penalized maximum likelihood estimates (PMLEs). These PMLEs are
computed by forming the prior and the likelihood and having the Bayesian procedure optimize
the penalized likelihood and not do posterior sampling, to save time. Note that the reciprocal
of the variance of the prior is the penalty parameter 𝜆 in PMLE (ridge regression).

Going along with examples shown here10, consider a 3-level response variable Y=0,1,2 and use
the following partial PO model for the two-group problem without covariates. Here treatment
is coded x=0 for control, x=1 for active treatment.

Pr(𝑌 ≥ 𝑗|𝑥) = expit(𝛼𝑦 + 𝑥𝛽 + 𝜏𝑥[𝑦 = 2])

When 𝜏 = 0 PO holds. 𝜏 is the additional treatment effect on 𝑌 = 2.

Consider true probabilities for Y=0,1,2 when x=0 to be the vector p0 in the code below, and
when x=1 to be the vector p1. These vectors are not in proportional odds. Draw samples
of size 100 from each of these two multinomial distributions, with half having x=0 and half
having x=1. Compute the PMLE for various prior distributions for 𝜏 that are normal with
mean 0 and with SD varying over 0.001 (virtually assuming PO), 0.1, 0.5, 0.75, 1, 1.5, 2, 4
(almost fully trusting the partial PO model fit, with very little discounting of 𝜏). When the
prior SD for the amount of non-PO 𝜏 is 0.5, this translates to a prior probability of 0.02275
that 𝜏 > 1 and the same for 𝜏 < −1.

True model parameters are solved for using the following:

logit(0.6) = 𝛼1 logit(0.4) = 𝛼2 logit(0.7) = 𝛼1 + 𝛽 logit(0.6) = 𝛼2 + 𝛽 + 𝜏

so

𝛽 = logit(0.7) - 𝛼1 𝜏 = logit(0.6) - 𝛼2 − 𝛽

require(rmsb)
p0 <- c(.4, .2, .4)
p1 <- c(.3, .1, .6)
lors <- c('log OR for Y>=1'=qlogis(0.7) - qlogis(0.6),

'log OR for Y=2' =qlogis(0.6) - qlogis(0.4))

8https://hbiostat.org/R/rmsb/blrm.html
9https://hbiostat.org/proj/covid19/statdesign.html#analysis

10https://hbiostat.org/R/rmsb/blrm.html#unconstrained-partial-po-model
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alpha1 <- qlogis(0.6)
alpha2 <- qlogis(0.4)
beta <- qlogis(0.7) - alpha1
tau <- qlogis(0.6) - alpha2 - beta
c(alpha1=alpha1, alpha2=alpha2, beta=beta, tau=tau)

alpha1 alpha2 beta tau
0.4054651 -0.4054651 0.4418328 0.3690975

Let’s generate a very large (n=20,000) patient dataset to check the above calculations by
getting unpenalized MLEs (by setting the SD of prior distributions to 1000).

m <- 10000 # observations per treatment
m0 <- p0 * m # from proportions to frequencies
m1 <- p1 * m
x <- c(rep(0, m), rep(1, m))
y0 <- c(rep(0, m0[1]), rep(1, m0[2]), rep(2, m0[3]))
y1 <- c(rep(0, m1[1]), rep(1, m1[2]), rep(2, m1[3]))
y <- c(y0, y1)
table(x, y)

y
x 0 1 2
0 4000 2000 4000
1 3000 1000 6000

f <- blrm(y ~ x, ~x, priorsd=1000, method='opt')
coef(f)

y>=1 y>=2 x x:y>=2
0.4054412 -0.4054380 0.4418775 0.3690140

# Also check estimates when a small prior SD is put on tau
f <- blrm(y ~ x, ~x, priorsd=1000, priorsdppo=0.0001, method='opt')
coef(f) # note PMLE of tau is almost zero

y>=1 y>=2 x x:y>=2
3.176310e-01 -3.177820e-01 6.601259e-01 2.213158e-10
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# Compare with a PO model
coef(lrm(y ~ x))

y>=1 y>=2 x
0.3176995 -0.3176995 0.6600599

Let’s also simulate for 1000 in each group the variance of the difference in log ORs.

m <- 1000
x <- c(rep(0, m), rep(1, m))
nsim <- 5000
set.seed(2)
lg <- function(y) qlogis(mean(y))
dlor <- numeric(nsim)
for(i in 1 : nsim) {
y0 <- sample(0:2, m, replace=TRUE, prob=p0)
y1 <- sample(0:2, m, replace=TRUE, prob=p1)
dlor[i] <- lg(y1 == 2) - lg(y0 == 2) - (lg(y1 >= 1) - lg(y0 >= 1))

}
mean(dlor)

[1] 0.368478

v1000 <- var(dlor)
v100 <- v1000 * (1000 / 100)
cat('Variance of difference in log(OR): 1000 per group:', v1000, ' 100 per group:', v100, '\n')

Variance of difference in log(OR): 1000 per group: 0.004667525 100 per group: 0.04667525

For a sample containing n subjects per treatment arm, the variance of the difference in the two
log ORs (i.e., the amount of deviation from PO) is approximately 𝜎2 = 4.668

𝑛 . An approximate
way to think of the effect of a skeptical prior on the difference in log ORs 𝜏 is to assume that ̂𝜏
has a normal distribution with mean 𝜏 and variance 𝜎2. When the prior for 𝜏 has mean 0 and
variance 𝛾2, the posterior mean for 𝜏 is ̂𝜏

1+ 𝜎2
𝛾2

The denominator is the shrinkage factor 𝑠. Study

how 𝑠 varies with 𝛾2 and 𝑛.

w <- expand.grid(n=seq(20, 1000, by=20), gamma=c(0.1, .25, .5, 1, 2, 4, 10))
w <- transform(w, s = 1 + (4.668/n)/(gamma^2))

21



ggplot(w, aes(x=n, y=s, col=factor(gamma))) + geom_line() +
scale_y_continuous(trans='log10', breaks=c(1, 2, 5, 10, 20),

minor_breaks=c(seq(1.1, 1.9, by=.1), 3:20)) +
scale_x_continuous(breaks=seq(0, 1000, by=100)) +
ylab('Shrinkage Factor') +
guides(col=guide_legend(title=expression(gamma)))
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One can see for example that when the prior SD for 𝜏 is 𝛾 = 1 the prior causes an estimate of
𝜏 to shrink only by only about a factor of 1.25 even for very small sample sizes. By the time
there are 200 patients per treatment arm the shrinkage towards PO is not noticeable.

The following simulations for 100 patients per arm provide more accurate estimates because
formal PMLE is used and the data likelihood is not assumed to be Gaussian. In addition to
quantifying the effect of shrinkage caused by different 𝛾 (prior SD of 𝜏), we compute the root
mean squared errors for estimating log(OR) for 𝑌 ≥ 1 and for 𝑌 = 2.
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m <- 100
x <- c(rep(0, m), rep(1, m))
nsim <- 500
sds <- c(.0001, 0.1, 0.5, 0.75, 1, 1.5, 2, 4, 10, 50)
lsd <- length(sds)
gam <- if(ishtml) '�' else '$\\gamma$'
R <- array(NA, c(nsim, lsd, 2),

dimnames=list(NULL, paste0(gam, '=', sds),
c('Y>=1', 'Y=2')))

set.seed(3)
for(i in 1 : nsim) {
y0 <- sample(0:2, m, replace=TRUE, prob=p0)
y1 <- sample(0:2, m, replace=TRUE, prob=p1)
y <- c(y0, y1)
for(j in 1 : lsd) {

f <- blrm(y ~ x, ~ x, priorsd=1000, priorsdppo=sds[j], method='opt')
k <- coef(f)
# save the two treatment log ORs (for Y>=1 and for Y=2)
R[i, j, 1:2] <- c(k['x'], k['x'] + k['x:y>=2'])

}
}
# For each prior SD compute the two mean log ORs and compare
# truth
cat('True values:\n')

True values:

lors

log OR for Y>=1 log OR for Y=2
0.4418328 0.8109302

z <- apply(R, 2:3, mean)
z <- cbind(z, Difference=z[, 2] - z[, 1])
z <- cbind(z, 'Shrinkage Factor'=diff(lors) / z[, 'Difference'])
kab(z, caption='Simulated mean log ORs', digits=c(3,3,3,2))
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Table 2: Simulated mean log ORs

Y>=1 Y=2 Difference Shrinkage Factor

𝛾=1e-04 0.667 0.667 0.000 238693114.13
𝛾=0.1 0.671 0.672 0.002 233.59
𝛾=0.5 0.649 0.685 0.036 10.15
𝛾=0.75 0.626 0.700 0.074 5.00
𝛾=1 0.601 0.716 0.115 3.21
𝛾=1.5 0.557 0.746 0.189 1.95
𝛾=2 0.525 0.768 0.243 1.52
𝛾=4 0.473 0.807 0.334 1.10
𝛾=10 0.450 0.825 0.374 0.99
𝛾=50 0.446 0.829 0.383 0.96

z <- apply(R, 2:3, sd)
kab(z, caption='Simulated SDs of log ORs', digits=3)

Table 3: Simulated SDs of log ORs

Y>=1 Y=2

𝛾=1e-04 0.288 0.288
𝛾=0.1 0.281 0.281
𝛾=0.5 0.282 0.280
𝛾=0.75 0.283 0.280
𝛾=1 0.285 0.279
𝛾=1.5 0.290 0.281
𝛾=2 0.294 0.283
𝛾=4 0.304 0.290
𝛾=10 0.309 0.294
𝛾=50 0.310 0.295

rmse <- function(which, actual) {
x <- R[, , which]
apply(x, 2, function(x) sqrt(mean((x - actual)^2)))

}

z <- cbind('Y>=1'=rmse('Y>=1', lors[1]), 'Y=2'=rmse('Y=2', lors[2]))
kab(z, caption='Simulated root MSEs', digits=3)
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Table 4: Simulated root MSEs

Y>=1 Y=2

𝛾=1e-04 0.365 0.322
𝛾=0.1 0.362 0.313
𝛾=0.5 0.350 0.307
𝛾=0.75 0.338 0.301
𝛾=1 0.326 0.295
𝛾=1.5 0.311 0.288
𝛾=2 0.305 0.286
𝛾=4 0.305 0.290
𝛾=10 0.309 0.294
𝛾=50 0.310 0.296

In a mixed Bayesian/frequentist sense (computing MSE of a posterior mean), the optimum
MSE in estimating the two treatment effects (log ORs) was obtained at 𝛾 = 2. The observed
shrinkage factors do not track very well with the approximate ones derived earlier. A better
approximation is needed.

9 Further Reading

See a similar case study in RMS Section 13.3.511. In that example, the sample size is larger
and PO is clearly violated.

10 Computing Environment

• R version 4.2.0 (2022-04-22), x86_64-pc-linux-gnu

• Running under: Pop!_OS 21.10

• Matrix products: default

• BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

• Base packages: base, datasets, graphics, grDevices, methods, splines, stats, stats4, utils

• Other packages: Formula 1.2-4, ggplot2 3.3.3, Hmisc 4.7-0, lattice 0.20-45, rms 6.3-1,
rmsb 0.1.0, SparseM 1.81, survival 3.2-13, VGAM 1.1-5

11https://hbiostat.org/doc/rms.pdf
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To cite R in publications use: R Core Team (2022). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https:
//www.R-project.org/.

To cite the Hmisc package in publications use:

Harrell Jr F (2022). Hmisc: Harrell Miscellaneous. R package version 4.7-0, https://hbiostat.o
rg/R/Hmisc/.

To cite the rms package in publications use:

Harrell Jr FE (2022). rms: Regression Modeling Strategies. https://hbiostat.org/R/rms/,
https://github.com/harrelfe/rms.

To cite the rmsb package in publications use:

Harrell F (2022). rmsb: Bayesian Regression Modeling Strategies. R package version 0.1.0,
https://hbiostat.org/R/rmsb/.

To cite the VGAM package in publications use:

Yee TW (2015). Vector Generalized Linear and Additive Models: With an Implementation in
R. Springer, New York, USA.

To cite the ggplot2 package in publications use:

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

To cite the survival package in publications use:

Therneau T (2021). A Package for Survival Analysis in R. R package version 3.2-13, https:
//CRAN.R-project.org/package=survival.
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