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algorithm and lasso start to differ when an active coefficient passes through
zero; condition (3.58) is violated for that variable, and it is kicked out of the
active set B. Exercise 3.23 shows that these equations imply a piecewise-
linear coefficient profile as A decreases. The stationarity conditions for the
non-active variables require that

Xk (y = XB)| <\, Vk & B, (3.59)

which again agrees with the LAR algorithm.

Figure 3.16 compares LAR and lasso to forward stepwise and stagewise
regression. The setup is the same as in Figure 3.6 on page 59, except here
N = 100 here rather than 300, so the problem is more difficult. We see
that the more aggressive forward stepwise starts to overfit quite early (well
before the 10 true variables can enter the model), and ultimately performs
worse than the slower forward stagewise regression. The behavior of LAR
and lasso is similar to that of forward stagewise regression. Incremental
forward stagewise is similar to LAR and lasso, and is described in Sec-
tion 3.8.1.

Degrees-of-Freedom Formula for LAR and Lasso

Suppose that we fit a linear model via the least angle regression procedure,
stopping at some number of steps k£ < p, or equivalently using a lasso bound
t that produces a constrained version of the full least squares fit. How many
parameters, or “degrees of freedom” have we used?

Consider first a linear regression using a subset of k features. If this subset
is prespecified in advance without reference to the training data, then the
degrees of freedom used in the fitted model is defined to be k. Indeed, in
classical statistics, the number of linearly independent parameters is what
is meant by “degrees of freedom.” Alternatively, suppose that we carry out
a best subset selection to determine the “optimal” set of k predictors. Then
the resulting model has k parameters, but in some sense we have used up
more than k degrees of freedom.

We need a more general definition for the effective degrees of freedom of
an adaptively fitted model. We define the degrees of freedom of the fitted

vector ¥ = (91, Y2, ..., N ) as
L
df(§) = — >~ Cov(ii,yi). (3.60)
i=1

Here Cov(y;,y;) refers to the sampling covariance between the predicted
value g; and its corresponding outcome value y;. This makes intuitive sense:
the harder that we fit to the data, the larger this covariance and hence
df(y). Expression (3.60) is a useful notion of degrees of freedom, one that
can be applied to any model prediction y. This includes models that are
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FIGURE 3.16. Comparison of LAR and lasso with forward stepwise, forward
stagewise (FS) and incremental forward stagewise (FSy) regression. The setup
is the same as in Figure 3.6, except N = 100 here rather than 300. Here the
slower FS regression ultimately outperforms forward stepwise. LAR and lasso
show similar behavior to F'S and FSy. Since the procedures take different numbers
of steps (across simulation replicates and methods), we plot the MSE as a function
of the fraction of total L1 arc-length toward the least-squares fit.

adaptively fitted to the training data. This definition is motivated and
discussed further in Sections 7.4-7.6.

Now for a linear regression with k fixed predictors, it is easy to show
that df(y) = k. Likewise for ridge regression, this definition leads to the
closed-form expression (3.50) on page 68: df(y) = tr(S,). In both these
cases, (3.60) is simple to evaluate because the fit y = H,y is linear in y.
If we think about definition (3.60) in the context of a best subset selection
of size k, it seems clear that df(y) will be larger than &, and this can be
verified by estimating Cov(9;,y;)/0? directly by simulation. However there
is no closed form method for estimating df(y) for best subset selection.

For LAR and lasso, something magical happens. These techniques are
adaptive in a smoother way than best subset selection, and hence estimation
of degrees of freedom is more tractable. Specifically it can be shown that
after the kth step of the LAR procedure, the effective degrees of freedom of
the fit vector is exactly k. Now for the lasso, the (modified) LAR procedure
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often takes more than p steps, since predictors can drop out. Hence the
definition is a little different; for the lasso, at any stage df(y) approximately
equals the number of predictors in the model. While this approximation
works reasonably well anywhere in the lasso path, for each k it works best
at the last model in the sequence that contains k predictors. A detailed
study of the degrees of freedom for the lasso may be found in Zou et al.
(2007).

3.5 Methods Using Derived Input Directions

In many situations we have a large number of inputs, often very correlated.
The methods in this section produce a small number of linear combinations
Zm, m=1,..., M of the original inputs X, and the Z,, arc then used in
place of the X as inputs in the regression. The methods differ in how the
linear combinations are constructed.

3.5.1 Principal Components Regression

In this approach the linear combinations Z,, used are the principal com-
ponents as defined in Section 3.4.1 above.

Principal component regression forms the derived input columns z,, =
X, and then regresses y on z1,2s, ..., Zys for some M < p. Since the z,,
are orthogonal, this regression is just a sum of univariate regressions:

M
I =1+ > Omzm, (3.61)

m=1

where 6,, = (Zm,¥)/{Zm,Zm). Since the z,, are each linear combinations
of the original x;, we can express the solution (3.61) in terms of coefficients
of the x; (Exercise 3.13):

M
chr(]\[) - Z émﬂ)m‘ (362)

m=1

As with ridge regression, principal components depend on the scaling of
the inputs, so typically we first standardize them. Note that if M = p, we
would just get back the usual least squares estimates, since the columns of
Z = UD span the column space of X. For M < p we get a reduced regres-
sion. We see that principal components regression is very similar to ridge
regression: both operate via the principal components of the input ma-
trix. Ridge regression shrinks the coefficients of the principal components
(Figure 3.17), shrinking more depending on the size of the corresponding
eigenvalue; principal components regression discards the p — M smallest
eigenvalue components. Figure 3.17 illustrates this.



