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Abstract
Despite the growing popularity of propensity score (PS) methods in epidemiology, relatively little
has been written in the epidemiologic literature about the problem of variable selection in PS models.
The authors present the results of two simulation studies designed to help epidemiologists gain insight
into the variable selection problem in a PS analysis. The simulation studies illustrate how the choice
of variables that are included in a PS model can affect the bias, variance and mean-squared error of
an estimated exposure effect. The results suggest that variables that are unrelated to the exposure but
related to the outcome should always be included in a PS model. The inclusion of these variables
will increase the precision of the estimated exposure effect without increasing bias. In contrast,
including variables that are related to the exposure but not the outcome will decrease the precision
of the estimated exposure effect without decreasing bias. In small studies, the inclusion of variables
that are strongly related to the exposure but only weakly related to the outcome can be detrimental
to an estimate in a mean-squared error sense. The addition of these variables removes only a small
amount of bias but can strongly decrease the precision of the estimated exposure effect. These
simulation studies and other analytical results suggest that standard model building tools designed
to create good predictive models of the exposure will not necessarily lead to optimal PS models,
particularly in the setting of small samples.
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Confounding in non-experimental studies can occur when baseline covariates that predict the
exposure under study are independently related to the outcome of interest. In the presence of
confounding, any marginal association between the exposure and outcome can at least partly
be attributed to the confounder. When the exposure is dichotomous, one approach that can be
used to control confounding is the method of propensity scores (PS) as formalized by
Rosenbaum and Rubin [1]. PS methods depend on a model of the conditional probability of
exposure given the confounders. Ideally, specification of the PS model will be driven by subject
matter knowledge, e.g., a detailed understanding of how a particular treatment is assigned to
a patient. Typically, however, the researcher does not have the benefit of such knowledge and
instead is confronted with a large collection of pre-treatment covariates and many derived
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functions of these covariates (e.g., interactions, quadratic terms, log transformations) and must
decide which of these terms to enter into a regression model of the exposure. The bias and
variance of the estimated exposure effect can depend strongly on which of these candidate
variables are included in the PS model.

Despite their growing popularity, relatively little has been written about variable selection
strategies for PS models. In the context of multivariate normal confounders, Rubin and Thomas
derived approximations for the reduction in the bias and variance of an estimated exposure
effect from a PS matched analysis [2]. In this paper, the authors suggest including in a PS
model all variables thought to be related to the outcome, whether or not they are related to
exposure. In a later paper, Rubin suggests that including variables that are strongly related to
exposure, but unrelated to the outcome, can decrease the efficiency of an estimated exposure
effect; but he argues that if such a variable had even a weak effect on the outcome, the bias
resulting from its exclusion would dominate any loss of efficiency for a reasonably sized study
[3]. Some of these guidelines are repeated in Perkins et. al. [4]. Robins et al. derived analytic
results showing that the asymptotic variance of an estimator based on an exposure model is
not increased and often decreased as the number of parameters in the exposure model is
increased [5]. These results suggest that the size of a PS model should increase with the study
size. Hirano and Imbens proposed a variable selection strategy for use with a multivariate
outcome model employing propensity score weighting [6].

In practice, variables are often selected in data-driven ways, for example, by using stepwise
variable selection algorithms to develop good predictive models of the exposure [7], [8].
Furthermore, many PS analyses report the AUC or c statistic (area under the receiver operating
characteristic curve) of the final PS model as a means of assessing the model's adequacy [7].
Implicit in this practice is the assumption that PS models that are better predictors or
discriminators of the exposure status result in superior estimators of exposure effect. According
to this criterion, any variable that increases the c statistic or predictive ability of the PS model
should be selected for inclusion in the model. Despite the widespread use of such variable
selection strategies, there has been little discussion of their appropriateness. In a recent
editorial, Rubin expressed doubt over the usefulness of such diagnostics in a PS analysis [9].

The present work was conducted to illuminate this issue and to help researchers gain some
practical insight into the variable selection problem in a propensity score analysis. We present
the results of two Monte-Carlo simulation experiments designed to evaluate how different
specifications of a PS model affect the bias, variance and resulting mean squared error of an
estimated exposure effect under a variety of assumptions about the data generating process.

METHODS
Overview of Propensity Score Methods in Non-experimental Cohort Studies

Propensity score methods are designed to estimate the effect of a dichotomous exposure A on
an outcome Y that is not confounded by a set of measured covariates X = (X1, X2, . . . , Xp). As
potential confounders, the elements of X can be both predictors of the exposure and independent
risk factors for the outcome. As an illustration, we can consider a cohort study in which the
exposure of interest is the use of a particular cholesterol lowering drug at the start of the study
and the outcome is a myocardial infarction (MI) within one year. Baseline confounders could
include age, gender, history of MI, previous drug exposures, and various comorbid conditions.

A propensity score is the conditional probability that a subject receives a treatment or exposure
under study given all measured confounders, i.e., Pr[A = 1|X1, X2, . . . , Xp]. The propensity
score has been termed a balancing score, meaning that among subjects with the same propensity
to be exposed, treatment is conditionally independent of the covariates [1]. This property
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suggests that estimates of the exposure effect that are not confounded by any of the measured
covariates can be obtained by estimating the effect of exposure within groups of people with
the same propensity score. Within such a group, any difference in the outcome between the
exposed and unexposed subjects is not attributable to the measured confounders. When
treatment assignment is strongly ignorable and other specific assumptions hold, estimates
derived from a propensity score analysis can be interpreted causally [1].

In non-experimental research the true PS will not usually be known and, therefore, will need
to be estimated, typically according to an assumed model. How the model for Pr[A|X] is
specified has the potential to affect the bias and variance of the estimated exposure effect.
Given an estimated PS, exposure effects are usually estimated by either matching on the PS to
create two comparable groups, including the PS and the exposure in a multivariate model of
the outcome under study, or conducting an analysis stratified on the PS. It is also possible to
fit a weighted regression using inverse-probability of exposure weights generated from the
estimated PS [10]. A more detailed discussion and review of PS methods can be found
elsewhere [1], [11], [12].

Monte-Carlo Simulation Study
We performed two Monte-Carlo simulation experiments. The first examined how the inclusion
of three different types of covariates in a PS model affected the estimated exposure effect (see
figure 1):

1. a variable related to both outcome and exposure, a true confounder (X1),

2. a variable related to the outcome but not the exposure (X2),

3. and a variable related to the exposure but not the outcome (X3).

In the second experiment, we considered how the addition of a single confounder to a PS model
changes the bias and variance of an estimated exposure effect under varying assumptions about
the strength of the confounder-outcome and confounder-exposure relations.

Both simulation experiments employ the same basic data generating mechanism. The simulated
data consisted of realizations of a dichotomous exposure, a Poisson distributed count outcome,
and continuous confounders. The data were generated in the following order according to the
specified probability models:

• The covariates X1, X2, X3 are independent standard normal random variables with
mean 0 and unit variance.

• The conditional distribution of the dichotomous exposure A given X1, X2, X3 follows
a Bernoulli distribution with a conditional mean given by the function

Pr A = 1 | X1, X2, X3 = Φ(β0 + β1X1 + β2X2 + β3X3).

where ĭ is the standard Normal distribution function.
• The conditional distribution of Y given X and A follows a Poisson distribution with

two possible specifications of the mean. The first specification (used in the first
simulation experiment) is given by

E Y | A, X1, X2, X3 = exp {α0 + α1((1 + exp ( − 3 * X1))
−1 − 0.5) + α2X2 + α3X + α4A}.

This specification creates a non-linear (S-shaped) relationship between the confounder X1 and
the log of the expected value of the outcome. The second specification is given by
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E Y | A, X1, X2, X3 = exp {α0 + α1X1 + α2X2 + α3X3 + α4A}.

This model specifies a standard log-linear relationship between the covariates and the expected
value of the outcome.

Within both simulation experiments, the effect of exposure is held constant (Į4 = 0.5). The
simulations differ in how the covariates are related to the exposure and outcome.

We considered two approaches to controlling for the propensity score. In the first, the exposure
effects were estimated by adjusting for the PS in a multivariate outcome model in which the
effect of the estimated PS was flexibly modeled through a cubic regression spline with three
interior knot points placed at quartiles of the estimated propensity score. The fitted model is
given by

E Y | P̂S, A = exp {λ +∑
k
ψkBk(P̂S) + γA}.

where Ȝ is the baseline rate, the Bk are the B-spline basis functions [13], and Ȗ is the treatment
effect. The second approach that we employed was based on sub-classification. Exposure
effects were estimated within strata defined by quintiles of the estimated propensity score.

The simulation studies presented in this paper compare the performance of various
specifications of PS models. To evaluate each PS model, we use the simulation results to
determine the variance, bias and mean-squared error of the corresponding estimators. Because
we have used a log-linear model of the outcome, the parameter estimate γ̂ is consistent for the
parameter Į4 from our data generating distribution at the true propensity score [14]. Therefore,
we can estimate the bias of a given estimator with

BÎ AS = 1
S ∑
s=1

S
(γ̂(s) − α4),

and its mean-squared error with

MŜE = 1
S ∑
s=1

S
(γ̂(s) − α4)

2,

where γ̂(s) is the estimated effect of exposure in the sth simulated data set according to a
particular PS model and S is the total number of simulations.

Simulation experiment 1—For this experiment, exposure was confounded through X1,
X3 predicted treatment but was unrelated to the outcome, and X2 predicted the outcome but
was unrelated to treatment (Į0 = 0.5, Į1 = 4, Į2 = 1, Į3 = 0, ȕ0 = 0, ȕ1 = 0.5, ȕ2 = 0, ȕ3 = 0.75).
This scenario is depicted graphically in figure 1.

We simulated 1000 data sets for both n=500 and n=2500. For each simulated data set, we
estimated seven different propensity scores corresponding to all possible combinations of
(X1, X2, X3) in a probit regression model. These models are given by

• PS Model 1: Pr[A = 1|X] = ĭ (ȕ0 + ȕ1X1).
• PS Model 2: Pr[A = 1|X] = ĭ (ȕ0 + ȕ1X2).
• PS Model 3: Pr[A = 1|X] = ĭ (ȕ0 + ȕ1X3).
• PS Model 4: Pr[A = 1|X] = ĭ (ȕ0 + ȕ1X1 + ȕ2X2).
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• PS Model 5: Pr[A = 1|X] = ĭ (ȕ0 + ȕ1X1 + ȕ2X3).
• PS Model 6: Pr[A = 1|X] = ĭ (ȕ0 + ȕ1X2 + ȕ2X3).
• PS Model 7: Pr[A = 1|X] = ĭ (ȕ0 + ȕ1X1 + ȕ2X2 + ȕ3).

We also report the estimated bias, variance, and MSE of an estimator corresponding to the
crude log relative rate (RR) and the average area under the receiver operating characteristic
(ROC) curve (AUC or c statistic) for each PS model considered.

We conducted a variety of sensitivity analyses with n = 500. These were done by holding all
parameters at their default value while a single parameter was altered. The following sensitivity
analyses were performed: standard deviation of each covariate was both increased and
decreased by 50%; the treatment effect was decreased to Į4 = 0.25 and increased to Į4 = 1; and
the baseline prevalence of the exposure was decreased from approximately 50% to
approximately 20% (ȕ0 = í1).

Simulation experiment 2—The second simulation experiment examined how the inclusion
of a single true confounder in a PS model affected the bias and variance of an estimated
exposure effect under varying assumptions about the strength of association between the single
confounder and both the outcome and exposure. For each simulated data set two estimators
were considered: the first was derived from the crude log relative rate and the second was
derived from a PS adjusted estimate of the effect of A on Y in which the PS model contained
only the confounder X1. In this simulation experiment, the adjustment for the PS used the spline
approach. We denote the crude estimator of the log relative rate with γ̂0 and the PS adjusted
estimator with γ̂1.

The parameter Į1, the strength of association between X1 and Y , took values in {0, 0.01, . . . ,
0.20} corresponding to relative rates ranging from 1.00 to 1.28. The parameter ȕ1, the strength
of association between X1 and A, took values in {0.00, 0.05, . . . , 1.25}. For all possible
combinations of these values of Į1 and ȕ1, we simulated 1000 data sets of n = 500 and n =
2500. In this simulation, the covariates X2 and X3 are not used. For each set of 1000 data sets
we computed the estimated bias, variance, and MSE of each of the two estimators.

Computation—All simulations were performed in R version 1.9.1 [15], [16] running on a
Windows XP platform using software created by the authors.

RESULTS
Simulation Experiment 1

For the simulations controlling for the PS through a spline, we report the estimated bias,
variance, and MSE of all estimators in Table 1. We also report the average c-statistic for each
candidate PS model. The sole confounder was the covariate X1, therefore any estimator that
did not contain X1 in the PS model was biased. For both study sizes, the unbiased estimator
with the smallest variance was the one that contained the covariates X1 and X2. This estimator
had more than 40% less variance than the estimator containing just the confounder X1. Adding
X3, the covariate related only to exposure, increased the variance of the estimated effect. The
estimator with all covariates in the PS model had a variance that was approximately 40% greater
(for both study sizes) than the estimator with just the covariates X1 and X2. The c-statistic of
the PS model with X1 and X2 was smaller (0.67) than c-statistic of the less efficient PS model
with all covariates (0.80). For both study sizes, the PS models with the highest average c statistic
contained all variables related to the exposure.
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In Table 2, we report the results when this simulation experiment was repeated using sub-
classification instead of spline adjustment. The results are qualitatively similar. In this
simulation experiment, all estimators admit some bias due to some residual confounding within
strata of the propensity score. However, the variance and MSE of all estimators was smaller
than the corresponding estimator based on spline adjustment.

The results of the sensitivity analysis are presented in Table 3. In all of the sensitivity analyses
the same essential pattern prevailed: the inclusion of the variable related only to exposure
increased the variance of the estimator without altering bias, inclusion of the variable related
only to the outcome decreased variance without affecting bias, and failure to include the
confounder yielded a biased estimator. However, the perturbation of simulation parameters
changed absolute and, in some cases, relative numbers.

Simulation Experiment 2
In figure 2, we plot the estimated variance of the PS adjusted estimator γ̂1 and the unadjusted
estimator γ̂0 across values of ȕ1 for both n = 500 and n = 2500. We transform the value of
ȕ1 into a risk difference. This is done by computing the probability of treatment difference
between X1 = 1 and X1 = í1. In others words the probability of treatment for someone with a
moderately large value of X1 (at the 84th quantile) minus the probability of treatment for some-
one with a moderately small value of X1 (at the 16th quantile). For both sample sizes, increasing
the value of ȕ1 (i.e., increasing the strength of association between X1 and A) increased the
variability of the estimated exposure effect γ̂1 (the PS adjusted estimator). The increase in
variance did not depend on the strength of association between X1 and Y (data not presented).
The bias of γ̂0 increased as the association between either X1 and Y or X1 and A increased,
unless there was no association between either X1 and A or between X1 and Y.

In figure 3, we plot contours of the MSE of γ̂1 relative to the MSE of γ̂0 on a grid of values
of Į1 and ȕ1. The values of ȕ1 are transformed into a risk difference as described previously.
This plot indicates values of Į1 and ȕ1 for which the addition of the confounder X1 to a PS
model is detrimental in a MSE sense, i.e., the MSE of γ̂1 is greater than γ̂0. The region between
the contour lines at 0.95 and 1.05 represents an indifference zone for which the analyst
concerned with minimizing the MSE might be indifferent about adding X1 to a PS model since
the effect on MSE would be small. The region above and to the left of the contour line at 1.05
indicates the region where the analyst might chose to exclude X1 from the PS as it would
increase the MSE of the estimated exposure effect by more than 5%. This region is
characterized by large values of ȕ1 (strong association between X1 and A) and small values of
Į1 (weak association between X1 and Y ). Here the increase in variance of γ̂1 is not offset by
a large enough decrease in bias to reduce the MSE of γ̂1 relative to γ̂0. Similarly, the region
below and to the right of the contour line at 0.95 would represents the region where the analyst
would want to add the confounder to the PS as it would decrease the MSE by more than 5%.
Here the bias of an estimator excluding X1 overwhelms any resulting increase in variance. For
n = 2500 the same pattern prevailed, but the region for which γ̂0 yielded a smaller MSE than
γ̂1 was reduced.

DISCUSSION
Our first simulation experiment revealed that the model that best predicted exposure (as
measured by a c-statistic) did not yield the optimal PS model (in terms of MSE). The optimal
model was the one that included the confounder and the variable related only to the outcome.
This finding is consistent with the advice of Rubin and Thomas [2], i.e., that one should include
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in a PS model variables that are thought to be related to the outcome, regardless of whether
they are related to the exposure. This result may run counter to intuition for many people. One
might wonder why a PS model should include a variable that is unrelated to exposure. The
answer is that even if a covariate is theoretically unassociated with exposure, there can be some
slight chance relation between the covariate and the exposure for any given realization of a
data set. If that covariate is also related to the outcome, then it is a empirical confounder for
that particular data set. Including such a covariate in a PS model corrects for small amounts of
chance bias or empirical confounding existing within each realization of the data set, thereby
improving the precision of the estimator. This finding is related to the result that it is better to
use an estimated rather than a known PS [17], [5].

This simulation study also revealed that if variables unrelated to the outcome but related to the
exposure are added to a PS model they will increase the variance of an estimated exposure
effect without decreasing its bias. Adding strong predictors of exposure to the PS model
increases the variability of the estimated PS. If these added variables are unrelated to the
outcome, then the variation they induce in the PS is not correcting confounding and is therefore
only adding noise the estimated exposure effect. This result also suggests that there is little risk
in adding a variable unrelated to exposure to a PS model. If the included covariate is unrelated
to the outcome, it will affect neither the bias nor the variance of the estimator, but if it is related
to the outcome, it can improve efficiency.

The second simulation experiment revealed that if one seeks to minimize the MSE of an
estimate, then in small studies there are situations in which it might be advantageous to exclude
true confounders from a PS model. This occurs when a covariate is only weakly related to the
outcome, but very strongly related to the exposure. The loss in efficiency due to the inclusion
of such a covariate is not offset by a large enough decrease in bias. However, as the study size
increases, the variance of the estimator decreases at a rate proportional to 1 = n, yet the bias
due to an omitted confounder remains. Therefore, in large studies one would probably not want
to exclude any covariate related exposure from a PS model, unless it was known to be
completely unrelated to the outcome.

Although the results presented in this paper are consistent with theoretical results (e.g., [2]),
the specific numbers are highly dependent on the specification of the data generating
mechanism and the choice of parameter values considered. Through sensitivity analysis we
varied the parameters that seemed to be the most relevant, however, the probability
distributions and other structural elements of the study (e.g., using only three covariates,
assuming a homogeneous exposure effect) remained unaltered. It is also important to point out
that matching and other PS methods can be used in conjunction with standard multivariate
regression models containing additional covariates [18]. The variable selection problem in
these situations is more complex, as variables can appear in the PS model, the outcome model,
or both. The results presented in this paper do not offer insight into the variable selection
problem for these hybrid analytic methods.

Our findings and the analytical results in [2] and [5] raise questions about the appropriateness
of standard model building strategies for the construction of PS models. Iterative stepwise
model-building algorithms (e.g., forward stepwise regression) are designed to create good
predictive models of exposure. Similarly, the c statistic, commonly used to asses the quality
of a PS model, is a measure of the predictive ability of the model. The goal of a PS model is
to efficiently control confounding, not to predict treatment or exposure. A variable selection
criterion based on prediction of the exposure will miss variables related only to the outcome
and could miss important confounders that have a weak relationship to the exposure, but a
strong relationship to the outcome. Future work in this area should focus on identifying and
evaluating practical strategies or rules of thumb that practitioners can use to help them select
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variables for inclusion in a propensity score model with an aim of decreasing both the bias and
variance of an estimated exposure effect.
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Figure 1.
The causal diagram for Simulation Experiment 1.
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Figure 2.
Variance of unadjusted estimator γ̂0 and PS adjusted estimator γ̂1 for different values of ȕ1

for n = 500 and n = 2500.
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Figure 3.
Contours of the MSE of the PS adjusted estimator relative to the unadjusted estimator,
MSE(γ̂1) / MSE(γ̂0).
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ŜE

×
10

1
0.

38
7.

44
10

.7
1

0.
27

0.
51

10
.5

0
0.

38
7.

64
# 

3
B
ÎA
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Â
R
×
10

1
0.

07
0.

13
0.

19
0.

05
0.

12
0.

17
0.

10
0.

16

M
ŜE
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Â
R
×
10

1
0.

34
0.

25
0.

46
0.

23
0.

39
0.

36
0.

28
0.

42

M
ŜE
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