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 Introduction

The problem of model uncertainty is 

…when a model is formulated and fitted to the same data, inferences made from it will be biased and overoptimistic when they ignore the data-analytic actions which preceded the inference. (Chatfield, 1995).
On the other hand, if models are chosen without looking at the data, 

inferences will often be suboptimal and sometimes incorrect.

This is a dilemma.
In most statistical analyses, choice of model is data-driven. Here the problem is model uncertainty.

In confirmatory drug trials, models are pre-specified. Here the problem  could be called false certainty: the risk of suboptimal or incorrect analyses if the model is wrong.

I consider  randomized clinical trials 

in which the primary analysis tests whether there is a treatment effect and estimates its size.

Exploding a  Myth
That model pre-specification is necessary and sufficient for strict inferential validity (control of type I error and prevention of model selection bias). 

It is neither.
It is not sufficient, since wrongly specified models can have greatly inflated type I errors. (Eg poisson regression models, Cox models).

To show it is not necessary, I  describe an approach to data-driven model choice which retains strict inferential validity.

Notation
· Y response (N x 1).

· X covariates (N x q).

· Z binary treatment (Nx1).

· H the null hypothesis: that Yi would have been the same whatever Z was.

· F and F’: parametric model families for Y|X and Y|(X,Z). 

To any model m in F there is a corresponding model m’ in F', formed by adding a treatment term.

· t(m,x,y,z): test statistic for m(m’.

Testing the null hypothesis
· Before the trial, specify the model family F and a selection criterion.

· When the trial is complete, select a model m using the criterion.

· Then perform a randomisation test of H using t(m,x,y,z).

Proof 
Consider first a fixed model m. Let ( be the set of possible treatment allocations. We know Pr(Z=z) for each z in (.

The randomization distribution of t(m,x,y,Z) under H is obtained from Pr(Z=z)t(m,x,y,z) for each z in (. We can find the (1-() critical point t((m,x,y) such that

Pr{t(m,x,y,Z)> t((m,x,y)}((,
which can be written as

(z Pr(Z=z)I{t(m,x,y,z)> t((m,x,y)}((.

Now let m be stochastic. The type I error is

Pr{t(M,x,y,Z)> t((M,x,y)},
which can be re-written as

(m,zPr(M=m,Z=z)I{t(m,x,y,z)>t((m,x,y)}
where this is evaluated under H.

If M and Z are independent under H, 

then the type I error is controlled.

Under H, Z is independent of (X,Y).

When model choice only uses (X,Y),  M and Z are independent under H.

(
Estimating the treatment effect
Repeat until convergence:

1. Find estimate ê under m’.

2. Adjust the responses using 

             Y* = Y - ê Z.

3. Select a new model m using (X,Y*).


This removes model selection bias.

Proof

Let He be the shift hypothesis: that Yi would be e larger if Zi=1 than if Zi=0. Suppose that ê = ê(m,x,y,z) is unbiased when m is fixed, i.e.

(z Pr(Z=z)ê(m,x,y,z) = e
under He. When m is stochastic the expectation becomes

(m,zPr(M=m,Z=z)ê(m,x,y,z)

so ê is still unbiased when M and Z are independent under He. If M is selected using (X, Y-e Z) then it is independent of Z under He.  

(
Comment
You can’t have your model and eat it
· A model chosen to test H weighs the evidence in favour of H and so will tend to under-estimate e.

· A model chosen to estimate e weighs the evidence in favour of He and so will tend to give a supra-nominal test of H.

Conclusion

The approach searches for a marginal model that approximates the data well, to obtain the efficiency that would apply if the full model were true, i.e.
·  a more powerful test of H, 

·  a more precise estimate ê.

It will be most successful when:

·  the models in F’ are plausible. 

·  the treatment effect is small and additive.
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F’:  Y = g(x) + e.z + ( 

F:  Y = g(x) + (
for g in some family of functions.
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