Bayesian Interest Group Talk 25-Sep-2016
I. There is more to assessing risk than statistics.
a. Predicting economic growth: the normal distribution and its limitations-Growth of GDP(%) 1993 to 2008 versus 1993 to 2010 versus 1956 to 2010
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b. Patterns and randomness- school league tables, Siegfried and Roy and the Black Swan
c. Most real-world ‘risks’ are not purely random- randomness and patterns.
d. [bookmark: _GoBack]Dubious Relationships: why you should be very wary of correlations  and their significance values-Number of fatal crashes versus outdoor temperature.
e. Averages alone will never be sufficient for decision making.
f. When Simpson’s Paradox becomes more worrisome- is there a link between taking a drug and recovery- Case study.
A new drug is being tested on a group of 80 people (40 men and 40 women) with a particular ailment. We wish to establish whether there is a link between taking the drug and recovery from the ailment.  As is standard with drug trials, half of the people (randomly selected) are given the drug and the other half are given a placebo.  The results show that of the 40 given the drug, 20 recover from the ailment; this compares favorably with just 16 out of the 40 given the placebo who recover.
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g. Uncertain vs incomplete information-do not assume they are different; they have to be treated in the same way.
h. Do not trust anyone (even experts) to reason about probabilities properly- the earthquake in Italy.  
The Harvard Medical School Story
One in a thousand people has a prevalence for a particular heart disease. There is a test to detect this disease. The test is 100% accurate for people who have the disease and is   95% accurate for those who don’t (i.e. 5% of people without the disease will be wrongly diagnosed as having it). If a randomly selected person tests positive, what is the probability that the person actually has the disease?
























II. The need for causal, explanatory models in risk assessment.
a. Are you more likely or less likely to get into a car accident when the weather is good?
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b. Too little and too much scrutiny over causal mechanisms can be undesirable. 
c. The limitations of common approaches to risk assessment-impact based risk.
d. Risk assessments are viewpoint dependent.
e. Risk or opportunity?-dependence on consequences and viewpoint.
f. A rational risk measure requires the context of the risk.
g. Risk is an event characterized by a causal chain that includes at least:
1. The event itself
2. At least one consequence event that characterizes the impact (neg. for risk, pos. for opportunity)
3. One or more triggering events
4. One or more control events (that prevents the trigger from starting the risk) or impediment events (that prevents the opportunity)
5. One or more mitigating events (that help reduce the negative consequences).
Risk from this perspective is actually a set of events, each with a number of possible     outcomes. Risk versus Opportunity-the consequences will tell. 
The uncertainty associated with a risk is not a separate notion: every event and every object associated with risk has uncertainty that is characterized by the event’s probability distribution. 
Risks viewed in this way depend on stakeholders and perspectives, but once a risk event is identified from a particular perspective, there is little ambiguity about the concept and the clear causal structure that tells the whole story.
All the variables are modeled as chance events (although they don’t have to be) rather than decision/actions that a participant might take because the payoffs for different decision/actions are obvious and do not need to be assigned a utility value.
The ability to decompose a risk problem into chains of interrelated events and variables should make analysis more meaningful, practical, and coherent.
Some events in any risk assessment need to be assigned unconditional probability values. These are called parent nodes, because there is no variable (condition) placed on them. 
The benefits of this approach are:
h. Risk measurement is more meaningful in the context of the network: it tells a story that makes sense.  This is in stark contrast with the simple “risk equals probability times impact” approach where not one of the concepts has a clear unambiguous interpretation.
i. Uncertainty is quantified and at any stage can be read of the current probability values associated with any event.
j. It provides a visual and formal mechanism for recording and testing subjective probabilities.
k. Although this approach does not explicitly provide an overall risk score and prioritization, these can be grafted on in ways that are much more meaningful and rigorous. We could:
1. Simply read off the probability values for each risk event given our current state of knowledge.  This will rank the risks in order of probability of occurrence (what is most likely to happen) given the state of your knowledge of controls and triggers.
2. Set the value of each risk event in turn to be fixed, and read off the resulting probability values of appropriate consequence nodes. This will provide the probability of the consequence given that each individual risk definitively occurs. The risk prioritization can then be based on the probability values of consequence nodes.




















III. Measuring uncertainty: the inevitability of subjectivity
a. Experiments, Outcomes, and Events
1. Experiments are trials; Outcomes are events; elementary events (states) are the unique elements of an event such that the collection of all elementary events is the set of all possible events of an experiment. Events are assigned capitol letters; elementary elements are assigned lower case letters.
2. Relationships between Events: 
A. Complement of an event: event E and its complement E’ make up all possible elementary events of the experiment.
B. Union of two or more events
C. Intersection of two or more events
D. Mutually exclusive events
E. Exhaustive events: contains all elementary elements of the experiment.
3. Multiple experiments: repetitions
4. Joint experiments: where two or more events are involved.
5. Marginalization in joint events: all events containing a single outcome of interest.
b. Frequentist vs Subjective view of uncertainty
1. Frequentists assume that an experiment can be repeated many times under the same conditions.
2. Frequentists assume that the outcome of one experiment is independent of the outcome of any prior or subsequent experiment.
3. Frequentist definition of the chance of an event is simply the sum of the frequencies of the elementary outcomes of the event.
4. Frequentist measurement of uncertainty applies only to events generated by random processes and can never be considered for unique events.
5. Where the assumptions of Frequentists do not apply, subjective measures are required.
6. The primary objections to subjective measures is they cannot be validated and different experts will give different subjective measures.
7. The assumptions of both approaches to uncertainty gray the lines between them and uncertainty must be estimated using the strengths of both.








IV. The Basics of Probability
a. Uncertainty is expressed as a percentage chance that the event will happen
b. This uncertainty can never be more than 100%
c. This uncertainty can never be less than 0%
d. Probability of any event is its uncertainty/100 and cannot be less than 0 nor more than 1.
e. The exhaustive event probability =1
f. Set theory is the mathematics and logic of sets such as events. 
1. All elements that occur in either event A or event B or both, considered together, is called the union of the two events: AB. 
2. All elements that occur in both events A and B are known as the intersection of events A and B: AB.
3. The intersection of elements in A that are not in B is known as not B: AB, and the elements in B that are not in A known as not A: BA.
g. For any two events, the probability of either event happening is the sum of the probabilities of the two events minus the probability of both events happening: P(AB) = P(A)  + P(B) – P(AB). For two mutually exclusive events, i.e.  with no common elements, the probability of either one of them happening is just the sum of the probabilities of both of them: P(AB) = P(A)  + P(B).
h. For events A and its complement A’, the  probability of A occurring is one minus its complement: P(A) = 1 – P(A’)
i. As long as the events of A and B are independent of one another, i.e. the probability of occurrence of the elements of one does not depend on the probability of the elements of the other, the intersection of  events A and B is  equal to the product of their respective probabilities: P(AB)= P(A) * P(B). If the probabilities of events A and B do depend on one another, then P(AB) = P(A) * P(B|A) = P(B) * P(A|B), where P(B|A) is the probability of B “given” the probability of A and vice versa for P(A|B).   
j. The use of P(A|B) and P(B|A) is the mathematical measure of dependency required for the intersection of dependent probabilities.  This kind of probability is known as conditional probability. The word “given” indicates the pre-existing or “prior” condition of the relationship.  The probability that results from applying the prior condition is known as the “posterior” probability.
k. If P(A) is not zero, then  P(B|A) =  , by definition. For any two events A and B, P(AB)= P(A) * P(B|A) = P(B) * P(A|B)
 
l. Chain rule: calculating the full joint probability distribution of the joint events P(A  B  C) = P(A  (B  C) = P(A|(B  C)) * P(B  C) = P(A|(B  C)) * P(B|C) * P(C). The equations apply to any outcomes, such as A, B, C.  For any number of events, the chain rule looks like P(A1, A2, A3, , An) =  

m. Probability Distributions: an assignment of probability values to each of the possible states (elementary events) of a variable. The probability of an event E is the sum of the probabilities of the elementary events that make up the event E. Elementary events are mutually exclusive.

1. Uniform distribution: P(E)=1/n, where n is the number of states.
2. Infinite number of outcomes: discretize the continuous range of outcomes to intervals and assign probability to each interval. The full range can be expressed as a range of 0 to 1 by dividing the outcomes by the maximum outcome.  The normal distribution is another such treatment.
n. Joint probability distributions and the probability of marginalized events. The joint probability distribution of A and B is simply the probability distribution of the joint event (A, B).  Marginalization is sorting the full joint experiment (A, B) for one particular event such as elementary event a (from A) and all B elementary events containing a. Its collective probability is simply the sum of the probabilities of all pairs containing a:.  The full probability distribution of A is written as ) when A = {a1, a2, an} and B = { b1, b2, bm}. This form can be generalized for more than two variables and made to sort for 3 out of 4 of them.
o. Binomial distribution: for n independent trials, each with the probability of p to succeed, the probability of r successes in n trials is = .
The expected value (mean) of a discrete probability distribution, P(x) = {x1, x1, x1, is .























V. Bayes’ Theorem and conditional probability.
a. All probabilities are conditional: when frequentists assign a probability value of 1/6 to the event “rolling a 4 on a die,” they are conditioning this on assumptions of some physical properties of both the die and the way it can be rolled. It follows that any initial assignment of probability to an event A is actually a statement about conditional probability and …P(A) is actually P(A|K), where K is the background knowledge or context. If the same context K is assumed throughout an analysis, then it makes sense to simply write P(A) rather than P(A|K). However, since the focus of this talk is on risk in [our work], rather than in casinos or theoretical games of chance, most of the events for which we have to assign an initial probability have no reasonable frequentist approach for doing so. We are therefore forced to use at least some subjectivist approach judgment. This is why a subjective probability P(A) is often referred to as a “degree of belief.”
b. We are driven, however, by a quest for improvement. Having started with some initial probability assignment for an event A, we look for, or observe, evidence that can help us revised the probability. We, in fact, all do this every day of our lives in both mundane and important decision making. 
c. The Bayes Theorem:  gives us a simple method to calculate P(H|E) in terms of P(E|H) rather than P(H  E), which is also written P(H,E).
d. The reason for using Bayes’ theorem rather than the fundamental rule (the definition of conditional probability) is that in many situations it is more natural to have information about P(E|H) (the likelihood of the evidence) rather than information about P(H,E) (the joint probability). We still need, however, to have information about P(E). It turns out that in many practical situations we can use marginalization to determine P(E).
P(E) = P(EH) + P(EH), or the sum of all joint probabilities containing E and H.
HH
e. The Bayes’ theorem, together with marginalization of P(E) can be written generally as 










VI. From Bayes’ Theorem to Bayesian NetworksTrain strike (T)
(T_


Norman late (N)
(T_



				Probability table for “Norman Late”,
given “Train Strike”
Train Strike   False  True
False                   0.9       0.2
True                    0.1      0.8      
               

Probability table for “Train Strike”
False                   0.9
True                    0.1







a. A very simple risk assessment problem: all variables are either true or false; the direction of causality is clear; the assignment of probability to Train Strike = true might be based on some subjective judgment given the most recent news or on the recent frequency of train strikes, i.e. one strike every 10 days. The assignment of the probability of Train Strike = false is automatically the complement of Train Strike = true.
Assigning the probability that Norman will be late, given the Train system is on strike is estimated to appropriately reflect Norman’s ability to get to work without a train system (taxi, walking, horseback, by hitching a ride, etc.) and all the extra traffic caused by the strike. The likelihood of Norman being late during normal train service is the complement of the former probability. This being done, we can calculate the marginal or unconditional probability that Norman is late when we do not know any specific information about the train strike. The probability table does not provide this, but using the equation for marginalization, we can calculate the marginal probability: 
	
             	 = 0.8 x 0.1 + 0.1 x 0.9 = 0.17,
i.e. there is a 17% chance that Norman will be late without reference to the variable that affects it.
Now suppose we actually see Norman coming in late. We might then want to update our belief about the probability of a train strike, because, for instance, the strike could impact others who also depend on the trains to get to work. To calculate this posterior probability of a train strike we use Bayes’ theorem:  

So knowing that Norman is late leads to an increased probability of a train strike (from 0.1 to 0.47059), that is from 10% to 47%.
b. Accounting for multiple causes (and effects): Norman is not the only person whose chances of being late increase when there is a train strike. Martin is also more likely to be late, but Martin depends less on trains than Norman, and he is often late simply as a result of oversleeping.  These  additional  factors can be modeled as shown below (adding the nodes Martin Oversleeps and Martin Late):

						Martin Late (M)
Martin Oversleeps (O)
Norman Late (N)
Train strike (T)

Probability Table for “Martin Late”
Martin oversleeps (O)  False            True
Train strike (T)          False  True   False  True
Martin late    False    0.7      0.4      0.4     0.2
(M)	          True     0.3      0.6      0.6     0.8







The probability table for node “Martin late” is more complicated than the table of “Norman late” because “Martin late” is conditioned on two nodes rather than one. When you calculate the marginal probability of “Martin late” as we did above for “Norman late”, the unconditional probability is 0.446. If we know that Norman is late, then the probability that Marin is late increases from the prior 0.446 to 0.542.  Each time we marginalize, the result is dependent on the current state of the joint probability model and, as we find out new information- as evidence or data- the state of the probability model changes.  This is not made clear by some authors of books about probability and Bayesian networks who do not account for such changes in their notation.
c. Using propagation to make special types of reasoning possible.
When we enter evidence and use it to update the probabilities in the way we have seen so far we cell it propagation. In principle we can enter any number of observations anywhere in the BN model and use propagation to update the marginal probabilities of all the unobserved variables. This can yield some exceptionally powerful types of analysis. For example, if we first enter the observation that Marin is late, we get the revised probabilities shown below:Martin oversleeps (O)
False:	0.44395 
True:	0.55605


Train Strike (T)
False:	0.84753
True:	0.15247
Martin Late (M)
False:	
True:	1.00
Norman Late (N)
False:	0.79327
True:	0.20673




		



What the model above is telling us is that the most likely explanation for Martin’s lateness is Martin oversleeping; the revised probability of a train strike is still low. If we now discover that Norman is also late, however, then “Train strike” (rather than “Martin oversleeps”) becomes the most likely explanation for Martin being late.  This particular type of (backward) inference is called explaining away. Classical statistical tools alone do not enable this type of reasoning and what-if analysis. 
In fact, BNs offer the following benefits:
1.  Explicit modeling of causal factors
2. Reasoning from effect to cause and vice versa
3. Reduces the burden of parameter acquisition
4. Able to overturn previous beliefs in the light of new evidence
5. Makes predictions with incomplete data
6. Combines diverse types of evidence including both subjective beliefs and objective data
7. Arrives at decisions based on visible, auditable reasoning
8. Explicitly quantifies uncertainty and enables effective communication of arguments or decisions 
d.   The crucial independence assumptions: 
	We have made have used some crucial simplifying assumptions in order to avoid having to work out the full joint probability distribution of (Norman late, Martin late, Martin oversleeps, train strike) or simply (N, M, O, T). 
	To calculate the marginal probabilities we have assumed that “Martin late” (M) was dependent only on “Martin oversleeps” (O) and “Train strike” ( T).  We also assumed that “Martin oversleeps” (O), “Norman late “N”, and “Train strike”(T) do not depend on “Martin late”(M), therefore are not  in the equation.  Similarly, M depends on both O and T, but O and T are independent of each other. Without these assumptions, we would have to calculate the full joint probability distribution of (N, M, O, T) as P(N,M,O,T) = P(N|M, O, T)P(M|O, T)P(O|T)P(T).  
	Because N directly depends only on T, P(N|M, O, T) is equal to P(N|T) and because O is independent of T, the term P(O|T) is equal to P(O).  Then the full joint probability distribution can be simplified as P(N, M, O, T) = P(N|T)P(M|O,T)P(O)P(T). These four terms are in fact the probability distributions of the four probability tables used above.
	The simple but profound conclusion of this exercise is that the relationships of dependence (causality) are graphically drawn in the BN (Bayesian network) tells us what is and is not linked(dependent or not dependent) on one another.
e. The definition of a Bayesian network.
 A Bayesian Network (BN) is an explicit description of the direct dependencies between a set of variables. This description is in the form of a directed graph and a set of node probability tables (NPTs).
Directed Graph--The directed graph (also called the topology or structure of the BN) consist of a set of nodes and arcs. The nodes correspond to the variables and arcs link directly dependent variables. An arc from A to B encodes an assumption that there is a direct causal or influential dependence of A on B; the node A is then said to be a parent of B. We also insist that there are no cycles in the graph (so, for example, if we have an arc from A to B and from B to C then we cannot have an arc from C to A). This avoids circular reasoning.
NPT—Each node A has an associated probability table, called the node probability table (NPT) of A. This is the probability distribution of A given the set of parents of A. For a node A without parents (also called a root node) the NPT of A is simply the probability distribution of A.
The existence of unlinked nodes in a BN, i.e. root nodes, reduces the complexity of the full joint probability distribution, as we have seen above. A completely general expression for the full joint probability distribution of a BN is

			= 	
f. Structural Properties of BNs.
1. Serial Connections: Causal and Evidential Trails
2. Diverging Connections: Common Cause
3. Converging Connections: Common Effect
4. Determining whether any two nodes in a BN are dependent
g. Propagation in Bayesian Networks
VII. Defining the Structure of Bayesian Networks
a. Causal Interference and Choosing the correct edge direction
b. The idioms
1. The Cause-Consequence Idiom
2. Measurement Idiom
3. Definitional/Synthesis Idiom
4. Induction Idiom
c. The problems of asymmetry and how to tackle them
1.  Impossible paths
2. Mutually exclusive paths
3. Distinct causal pathways
4. Taxonomic classification
d. Multi-object Bayesian Network Models
e. The Missing Variable Fallacy
VIII. Building and Eliciting Node Probability Tables
a. Factorial growth in the size of probability tables
b. Labeled Nodes and comparative expressions
c. Boolean Nodes and Fuctions
d. The AND function for Boolean Nodes
e. The M from N Operator
f. NoisyOR function for Boolean Nodes
g. Weighted Averages
h. Ranked Nodes
1. Background
2. Solution: Ranked Nodes with the TNormal Distribution.
3. Alternative Weighted Functions for Ranked Nodes
i. Elicitation
1. Elicitation protocols and cognitive biases
2. Scoring Rules and Validation
3. Sensitivity Analysis
IX. Numeric Variables and Continuous Distribution Functions
a. Some Theory on Functions and Continuous Distributions
b. Static Discretization
c. Dynamic Discretization
d. Using Dynamic Discretization
1. Prediction using dynamic discretization
2. Conditioning on discrete evidence
3. Parameter leaning (induction) using dynamic discretization
A. Classical versus Bayesian Modeling
B. Bayesian Hierarchical model using beta-binomial
e. Avoiding Common Problems when using numeric Nodes
1. Unintentional negative values in a node’s state range
2. Potential division by zero
3. Using unbounded distributions on a bounded range.
4. Observations with very low probability
X. Hypothesis Testing and Confidence Intervals
a.	Hypothesis Testing
1.    	Bayes Factors 
2.	Testing for Hypothetical Differences
3.	Comparing Bayesian and Classical Hypothesis Testing
4. 	Model Comparison: Choosing the Best Predictive Model.
5.	Accommodating Expert Judgments about Hypotheses
6.	Distrubution Fitting as Hypothesis Testing.
b.     Confidence Intervals
1. 	The Fallacy of Frequentist Confidence Intervals
2.	The Bayesian Alternative to Confidence Intervals
XI. Modeling Operational Risk
a. The Swiss Cheese Model for Rare Catastrophic Events
b.  Bow Ties and Hazards
c. Fault Tree Analysis (FTA)
d. Event Tree Analysis (ETA)
e. Soft Systems, Causal Models, and Risk Arguments
f. KUUUB Factors
g. Operational Risk in Finance
1. Modeling the Operational Loss Generation Process
2. Scenarios and Stress Testing
XII. Systems Reliability Modeling
a.	Probability of Failure on Demand for Discrete Use Systems
b.      Time to Failure for Continuous Use Systems
c. 	 System Failure Diagnosis and Dynamic Bayesian Networks
d. 	 Dynamic Fault Trees (DFTs)
e.	Software Defect Predition

XIII. Bayes and the Law
a.   	The Case for Bayesian Reasoning about Legal Evidence
b. 	Building Legal Arguments Using Idioms
	1.    The Evidence Idiom
2.     The Evidence Accuracy Idiom
3. 	Idioms to Deal with the Key Notions of “Motive” and “Opportunity”
4. 	Alibi Evidence Idiom
5.	Explaining away Idiom
c.	Putting it All Together: Vole Example
d.	Using BNs to Expose Further Fallacies of Legal Reasoning.
1.	The Jury Observation Fallacy
2. 	The “Crimewatch UK” Fallacy
Appendices	
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