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We derive and use easily computable expressions for the mean and variance of R* in the standard 
linear regression model with fixed regressors. In respect to its probability limit R” is seriously 
biased upward in small samples; the ‘adJusted’ x2 does much better. But at sample sizes where 
these distinctions matter both measures are thoroughly unreliable because of their large disper- 
sion. R2 should not be quoted for samples of less than fifty observations. 

1. Introduction 

Ordinary least squares (OLS) estimation of linear regression equations is 
still an accepted tool of analysis among economists. The reported results 
invariably include R2 or the ‘adjusted’ x2. These measures of goodness of fit 
have a fatal attraction, Although it is generally conceded among insiders that 
they do not mean a thing, high values are still a source of pride and 
satisfaction to their authors, however hard they may try to conceal these 
feelings. 

To put these sample statistics in proper perspective we shall derive their 
means and variances for various sample sizes under the standard assumptions 
of econometric theory. This means that the regressor variables are regarded as 
given, non-random constants. In this respect the model differs from the 
classical treatment of correlation in the setting of a multivariate Normal 
distribution, and the results differ too. The mean of R2 converges to its 
probability limit from above, and in this sense it has an upward bias which 
can be substantial in small samples. In this respect E2 is superior. The 
standard errors show however that for sample sizes of up to 40 or 50 either 
measure is a very unreliable statistic. 

*I have benefited from the corrections and improvements suggested by several referees, Norman 
Draper, Joyce Meijering, and V. Srivastava. I owe particular debts to Roald Ramer and Jan 
de Leeuw for their help with the algebra and bibliography of section 4. 
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2. The moments of R2 in the standard model 

We consider the standard linear regression model with Normal disturbances 
as given in any textbook of econometrics, but we employ a slightly non-stan- 
dard presentation and notation. We write 

y cy + xp + E, 0) 

with y a (m x 1) vector of observed values of the dependent variable and E a 
vector of m independent N(0, u 2, disturbances. On the right c is a unit vector, 
y the intercept parameter, and X a matrix of (k - 1) regressor variables, 
which have all been measured as deviations from their sample means. This last 
property of X simplifies the notation in the sequel, like the use of m instead of 
n for the actual sample size. Note that we have merely reparametrized the 
systematic, non-random part of the right-hand side, without touching 
the definition of y and e; we have nor taken deviations from the mean for the 
dependent variable, and the elements of E are still stochastically independent. 

With ordinary least squares, the estimate of y is 

j = Lcfy, 
m 

(2) 

which is the sample mean of y, while the estimate of p is 

b = ( xfx)-‘xfy. (3) 

Upon defining the residual vector e as 

e=y-cj-Xb, (4) 

we have the identity 

or 

y’y = mj2 + b’X’Xb + e’e, 

(y’y - mj2) = b’X’Xb + e’e. (5) 

This is the familar decomposition of the sum of squares of y, on the left, into a 
systematic and a residual component. Their relative size determines the 
familar measure of goodness of fit 

R2=1_ e’e 
b’X’Xb 

y’y - mj* = b’X’Xb + e’e . (6) 
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We derive the density function of R2 and then its moments for the general 
case with p # 0. First consider the transformation 

R2 
G=----= 

b’X’Xb/a 2 

l-R2 e’e/a2 ’ 

G (which is halfway towards F) is the ratio of two independent &i-square 
variates. The numerator has a non-central &i-square distribution, 

b’X’Xb 
___ - x2(X, k - l), 

a2 

with (k - 1) degrees of freedom and non-centrality parameters 

x = P’XJXP 
a2 . 

For the denominator we have of course 

5 - x2(0, m - k). 

(8) 

(9) 

00) 

The density function of G can be found, for example, in Johnson and Kotz 
(1970, II, p. 191).’ Upon introducing the transformation (7) and relabelling the 
parameters we obtain the density of R2, with argument r, from the transfor- 
mation theorem. This yields 

fb-1 = I? w(j) B(u +;, u _ u) P+‘-yl- ry-l, 
J=o 

with 

w(j) = 
e-fX($X)J 

j! ’ 

(114 

(lib) 

u= +(k-1), (114 

.!I = +(m - 1). (lid) 

‘A misprint in the first line of (5) gives v1 where v2 is intended 
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Making use of the properties of the Beta function [see Abramovitz and 
Stegun (1964, pp. 256-258)] we obtain the moments of R* as 

E(R’) = E w(j)z, 
j=O 

E(R2)‘= f w(j)% -;, 
;=o 

024 

W) 

and so forth. Their dependence on the three parameters A, k and m is clear. 
We shall shortly see that they are quite easy to compute. 

3. X and the probability limit of RZ 

Eq. (9) defines the parameter X as the ratio of the systematic variation 
P’X’Xfi to the disturbance variance u 2. These magnitudes differ by a factor 
m, as can be seen by taking expectations on both sides of eq. (5) 

y’y - mj* = b’X’Xb + e’e. 

Neglecting the loss of degrees of freedom among the residuals, we find the 
expected sum of squares of Y as 

SSY = p’X’X/3 + mo*. 03) 

By analogy to the passage from (5) to (6) this naturally suggests 

p’x’xp 

‘= /3'X'Xj3+ma2' (14) 

for a measure of the quality of fit as determined by the underlying conditions 
of the observations, itself free from sampling variation. This magnitude is 
commensurate with R*, and it is related to A of (9) by 

x G 

‘=X+m’ 
X=m- 

l-+’ 
(15) 

This parametrization is standard in earlier analyses of R* with fixed, 
non-random X, as opposed to the case of a joint multivariate Normal 
distribution of the elements of y and the regressor variables of X. Barten 
(1962) defined + without further ado as the ‘parent multiple correlation 
coefficient’ that is estimated by R2, and Schbnfeld (1969, p. 71) equally relies 
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entirely on intuitive appeal when he labels + the ‘theoretical measure of fit’. 
Press and Zellner (1978) take the parameter from Barten as they lay the basis 
for a Bayesian analysis. 

We shall follow the example of Koerts and Abrahamse (1970) and derive C#I 
as the probability limit of R . 2 ’ To do so we introduce sample size n as a 
variable which has the value m for the sample actually observed. We also 
rewrite (6) in self-evident notation as 

R;= 
b,‘( n-lx;xn)bn 

b;( nplX;XI,)bn + n-‘e’e ’ 
n n 

06) 

In passing to the limit for n ---) co, the main difficulty is the behaviour of X, 
since this consists of non-random constants. We resort to the device of 
Hotelling (1940) to treat the regressors as ‘constant in repeated samples’. This 
means that the virtual sample size n is given by 

n =pm, (17) 

with integer p, and that the matrix X,, consists of p replications of X= X,, 
stacked on top of one another. We vary n by varying p, and thus obtain, just 
like Theil (1971, p. 363) 

i 

P 

plim (n- ‘X,lX,) = lim p-l 1 mP’X;X, = m-‘X’X. 

1 
(18) 

n-+oo P-m j=l 

With X, behaving in this fashion and i.i.d. disturbances (as assumed) the OLS 
estimate is consistent, 

and 

plim b, = R, 
n4cC 

plim n -‘eLe, = cf2. 
n--tm 

09) 

(20) 

Upon substitution of these three probability limits into (15) we obtain, by 

(14) 

plimRi= 
p’(m-1X’X)/3 

n+a; /3’(m-‘X’X)j3+a2 =” 

which is the desired result. 

(21) 

‘Some of these authors pursue the same questions as we do. Barten derives an approximate 
expression for the bias of R2 relative to +. and suggests corrections, but he does not examine 
dispersion. Koerts and Abrahamse establish the distribution of RZ for given e2, /3 and X, and 
show that this is very sensitive to changes in .I’. The distribution is determined numerically, and it 
must be computed anew for each new matrix I’. 
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This provides a direct link of the parameter + with R2 in the model under 
consideration. The identification with a probability limit is particularly ap- 
propriate as we shall examine the behaviour of R2 at different sample sizes. 

4. The mean and standard deviation of R* 

We return to eq. (12) for the first two moments of R'. While (12a) may be 
developed a little further (as we shall presently see), we can evaluate both 

expressions to any desired degree of accuracy by summing the first J terms of 
the infinite series concerned. When we write the moments as given in (12) as 

the discrepancy involved in taking the first J terms only is 

i3= g w(j)z(j). (22) 
j-J+1 

For all moments the z(j) are positive and tend from below to 1 as j + cc, 
and w(j) is a Poisson density which sums to 1. Clearly, then, 

0<6<1- f: w(j). (23) 
j=O 

It requires no great programming skill to continue summing the w(j), z(j) for 
given parameter values until the right-hand side of (23) reduces 6 to the 
desired level of accuracy. In this sense (12) provides easily computable 
expressions for the moments of R2. ' 

In the event we have set 6 at lo-* in computing the first two moments for 
various values of +, m and k. The mean is overly accurate, and the standard 
deviation derived from the two moments is correct to three decimal places. 
The results are given in table 1, and illustrated in figs. 1 and 2. 

Fig. 1 shows that E(R’) converges rather quickly to $I from above. Some 
simulations, not further reported here, suggest that this also holds for the 
median and the mode. R2 thus has a definite upwards bias which is however 
rapidly reduced as the sample size increases. Very roughly the bias is about 
0.03 or less with twenty observations when we have one regressor (k = 2), or 
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0.0 10.0 20.0 3d.O 40.0 50.0 
M 

Fig. la. Expected value of R2 as a function of m for k = 2 and selected values of $J 

with thirty to forty observations with two regressors. But this is a rough 
indication only, as the exact values vary with 9. 

The reason for this brief dismissal of the bias is that it is completely 
swamped by the dispersion of R2: whenever the bias is at all noticeable, the 
standard error of R" is several times as large. Fig. 2 shows how the standard 
error varies with + and m and, to a much lesser extent, with k; the effect of + 
is particularly strong. For a standard error of R2 of 0.03 or less we must have 
at least twenty observations if r) = 0.9. Such high values of the true correlation 
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I 
i 1 1 I I 1 

0.0 10.0 20.0 30.0 40.0 50.0 
m 

Fig. lb. Expected value of R2 as a function of m for k = 3 and selected values of @ 

coefficient are probably exceptional (as opposed to sample R2 of 0.9); but with 
$I at 0.667, which is still quite respectable, nearly two hundred observations are 
needed to reduce the standard error to 0.03. It is this dependence of the 
dispersion of the sample R2 on the unknown (p which renders any judgment of 
accuracy so hazardous. The relationship is further illustrated in table 2, which 
shows how many observations are needed at various C$ to reduce the standard 
error of R2 to certain given levels. 
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k=2 

I I I I I 

0.0 10.0 20.0 m 30.0 40.0 50.0 

Fig. 2a. Standard deviation of R2 as a function of m for k = 2 and selected values of +, 

To sum up, R2 has an upward ‘bias which can be substantial in small 
samples, but it is anyhow very unreliable, even at moderate sample sizes, 
because of its dispersion. With less than fifty observations or so there is little 
point in quoting R2 at all, and once we are beyond such numbers the bias has 
virtually disappeared. The bias issue is a red herring. 

5. The adjusted multiple correlation coefficient E* 

The intuitive explanation of the upward bias of R2 is that OLS treats it as 
the sample maximand, and the reason why this bias occurs in small samples is 
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::‘--:_=,=O., 
c$ = 0.661 

1 +=0.5 

-~-----d=o.333 
0.0 10.0 20.0 30.0 40.0 50.0 M 

Fig. 2b. Standard deviation of R2 as a function of m for k = 3 and selected values of I#J 

that R* does not allow for the loss of degrees of freedom through estimation. 
This argument justifies the prevalent custom of ‘adjusting’ R* as in 

jp=l- 
de/( m - k) 

(r’v - m_F2)/(m - 1) 
m-l 

cl--- m_k(l-R2), (24) 

or 

x*=(1+ h)R'-h, (254 
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Table 2 

Minimum sample size which reduces the standard error of R* below a certain level a. 

k=2 k=3 

L-t= 0.03 0.05 0.10 0.03 0.05 0.10 

9 = 0.30 555 200 50 555 200 50 
0.40 512 184 46 512 184 46 
0.50 417 150 38 416 149 37 
0.60 301 108 27 298 107 26 
0.70 182 65 16 181 64 15 
0.75 130 47 11 129 46 10 
0.80 85 30 7 84 29 a 

0.85 48 17 _a 47 15 _= 
0.90 21 6 _a 19 a _a 

0.95 _a a a a a _a 

“All sample sizes >= k + 1 reduce the standard error below a. 

with 

k-l 
h=.----- 

m-k’ (25’4 

As the first expression in (24) shows, the sums of squares in the first 
definition of R2 in (6) .are ‘corrected for degrees of freedom’. This adjustment 
is common usage among economists, probably because of their unique habit of 
submitting quite small samples to regression analysis. The adjustment is 
recommended in most econometric textbooks, all the way back to Ezekiel 
(1930a), though generally without much theoretical justification and without a 
source reference. The issue of correcting R2 in some way dates from the 
1920’s, for Ezekiel (1930b) can quote three slightly different definitions of h of 
(25a) from that decade. The surviving definition (25b) is due to Fisher (1924), 
who justifies it with the standard argument about sums of squares around the 
mean that is implicit in the first expression of (24). 

More precise arguments in support of the adjustment (25) can be advanced. 
The adjusted g2 does not suffer from the defect of R2 that is automatically 
increases with the addition of new regressors; we shall show the E(R*) is 
indeed independent of the number of regressors. 

To begin with we must develop E( R2) from (11) a little further, rewriting it 
as 

E(R2)=e-~~~ y- 
i=(J /! u+j 

=e -9 UC 1 (NJ 
j j!(u+j) 

+$xX. 
(ix) j 

1 
j j!(o+l+j) . 

(26) 
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Upon consulting Slater (1964, p. 504, 13.1.2) we find that the summations 
within brackets are a special form of the Kummer function M(a, b, p), 
namely a -%(a, a + 1, #u). We introduce the notation 

g(~,a)a-‘M(a,a+l&)= f pJ 
‘-0 _/!(a +i> ’ 

(27) 

and observe from Slater (1964, p. 505, 13.2.1) that 

g(p, u) = /‘e@t”-‘dt. 
0 

(28) 

Integrating the right-hand side by parts we find 

pLg(p, a + 1) = ep- ag(p, u). (29) 

We now make the appropriate substitutions of these results in (26) and 
obtain 

or, 

BY 

E(R2)=1-(u-u)e-~Xg($h,u), 

by (11~) and (lid), 

E(R*)=l-((m-k)ie-~“g{~h,(~m-1)). 

(24), then, 

E(R2)=1-((m-1)~e-~Xg{~h,(~m-l)}, 

(30) 

(31) 

and this expression depends only on m and on $I (via A) but not on k: E(R2) 
is independent of the number of regressors. 

We finally note, with more relevance to our original purpose, that the 
adjustment very largely removes the upward bias of R2. By (25) we have 

E(R*) = (1 +lz)E(R2) -h, (32) 

and if this operation is applied to the entries of table 1 it will be seen that the 
bias virtually disappears; for low values of C#J, a slight downward bias occurs 
instead. But the dispersion remains, and is even increased, since 

s.d.( x2) = (1 + h)s.d.( R’) (33) 

while h is positive and sizeable in small samples. In smallish samples R2, 
though unbiased, is even more unreliable than R*. 
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