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ABSTRACT
The analysis of multiple time-to-event outcomes in a randomized controlled clinical trial can be accomplished with existing
methods. However, depending on the characteristics of the disease under investigation and the circumstances inwhich the study is
planned, it may be of interest to conduct interim analyses and adapt the study design if necessary. Due to the expected dependency
of the endpoints, the full available information on the involved endpointsmay not be used for this purpose.We suggest a solution to
this problem by embedding the endpoints in amultistatemodel. If this model isMarkovian, it is possible to take the disease history
of the patients into account and allow for data-dependent design adaptations. To this end, we introduce a flexible test procedure for
a variety of applications, but are particularly concernedwith the simultaneous consideration of progression-free survival (PFS) and
overall survival (OS). This setting is of key interest in oncological trials. We conduct simulation studies to determine the properties
for small sample sizes and demonstrate an application based on data from the NB2004-HR study.

1 Introduction

Adaptive clinical trial designs for a single primary time-to-event
endpoint are well established (see, e.g., Schäfer and Müller
2001; Wassmer 2006). These are based on the log-rank test by
exploiting its independent increments structure as exhibited in
Tsiatis (1981) and Sellke and Siegmund (1983) or in even broader
generality by Scharfstein, Tsiatis, and Robins (1997). As long as
only information on this single endpoint is used to inform an
adaptation of the design in an interim analysis, the nominal type
I error rate will be maintained. However, this no longer applies if
information of further endpoints is used from patients, who have
been recruited before this interim analysis and remain event-
free beyond it (Bauer and Posch 2004). This is because these
additional data can be used to predict the course of the disease
in those same patients. For example, information on progression

status can be used to predict individual mortality risk in a trial
with primary endpoint overall survival (OS). Such misuse of
surrogate interim data leads to inflation of the actual type I error
level. Approaches to solving this problemmake use of the strategy
of patient-wise separation (Jenkins et al. 2011; Irle and Schäfer
2012; Jörgens et al. 2019). Although the initial approaches in
Jenkins et al. (2011) and Irle and Schäfer (2012) have already been
improved by Jörgens et al. (2019), some disadvantages cannot be
resolved, such as partial discarding of primary endpoint data in
the final analysis. Alternatively, worst-case adjustments can be
made to avoid a type I error inflation (Magirr et al. 2016) that often
result in a conservative procedure.

Similar issues arise as well for trials with multiple primary time-
to-event endpoints. For one-sample studies, this situation has
already been addressed by Danzer et al. (2022). Single-stage
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procedures for the simultaneous assessment of multiple time-to-
event endpoints in randomized trials have already been proposed
in Wei and Lachin (1984). Roughly speaking, this method can be
described as performing separate log-rank tests simultaneously
for all endpoints involved. A final test decision is made based
on an examination of the joint distribution of the individual
test statistics. Corresponding group sequential procedures were
introduced in Lin (1991). At first glance, an extension of Lin
(1991) to adaptive designs seems obvious by following the strategy
of Wassmer (2006), since the multivariate test statistic also has
a property of independent increments. However, this property
only applies to each component of the multivariate test statistic
separately and not for the multivariate process as a whole. The
reason for this is closely linked to the problem mentioned in
Bauer and Posch (2004) because, again, information about some
endpoints might be used to predict future outcome of other
endpoints. At the same time, patients who are known to be in
different disease states are compared to each other. We will solve
this problem by taking into account the available information
on all endpoints when calculating the test statistics, thus only
comparing patients who have the same prognosis of disease
course given the available information.

To this end, it is central to our approach that we can easily
embed different time-to-event endpoints into a time continuous
multistate model. Especially in oncology, which is of central
importance to us as an area of application for our methods,
such models can be very helpful in being able to depict different
courses of disease (Le-Rademacher et al. 2018). Two of the
most important endpoints in this field of clinical research are
given by progression-free survival (PFS)/event-free survival (EFS)
and OS. While the latter one is the most objectively defined
endpoint, the former can often be regarded as its surrogate and
has certain advantages in terms of time- and cost-effectiveness.
The exact definition of the endpoint and its suitability as a
primary endpoint strongly depends on the tumor entity and the
patient collective to be considered (Bellera et al. 2013). Those
two endpoints can be embedded in a simple illness-death model,
which has been discussed extensively inMeller, Beyersmann, and
Rufibach (2019). Provided that this model is a time continuous
Markov chain, we can perform a two-group comparison that
addresses the aforementioned issues. As in Lin (1991), this
results in a consideration that refers to the clinical endpoints
with the aid of a transition-wise consideration as in Tattar and
Vaman (2014).

The paper is organized as follows. It starts with a presentation
of the procedure for the prominent example of PFS and OS.
Sections 3 and 4 introduce the general notation and generalize
the procedure for broader applications. Building on that, plan-
ning and execution of a clinical trial are briefly sketched in
Section 5. An application of the proposedmethod is demonstrated
in Section 6 using the data from the NB2004-HR trial (NCT
number NCT03042429). Properties of the method in practically
relevant scenarios are studied by simulation in Section 7. We
conclude with a discussion of our findings and prospects for
future research.

Proofs of mathematical statements, further simulation results,
and a further case study can be found in the Supporting
Information.

FIGURE 1 Representation of the PFS/OS scenario as a multistate
model.

2 Main Application Example: PFS and OS

We illustrate our procedure using the example of a trial with the
primary time-to-event endpoints PFS and OS. In a randomized
clinical trial, PFS is defined as time from randomization to
progression of the disease or death, whatever occurs first. OS
denotes the time from randomization to death. While OS is
obviously the most objectively defined time-to-event endpoint,
the use of other endpoints such as PFS may also be justified in
oncological Phase III clinical trials, depending on the nature of
the disease and the mechanism of action of the experimental
treatment. Outcome improvement can first be associated with
longer PFS time or an increase of the rate of patients without
tumor progression. In addition, there may be other advantages
concerning death without prior progression or postprogression
survival, which then additionally affect OS. The methods pro-
posed here cover all of these aspects by allowing to use both
of these endpoints as primary endpoints under exploitation of
their dependence structure in a multistate model that is a time
continuous Markov chain.

Such a model as presented in Meller, Beyersmann, and Rufibach
(2019) establishes the corresponding probabilistic structure. The
multistate model is visualized in Figure 1. A patient’s history of
disease from start of the therapy corresponds to a path along the
arrows in this figure. At the beginning of the treatment, a patient
starts in state 0. He may die directly without progression. This is
represented by a jump to state 2. Otherwise, he may experience a
progression of the disease, which is represented by a jump to state
1 and die afterwards which is represented to a subsequent jump
to state 2.

In accordance with our general framework, we denote the
random time of transition to node 1 of some patient 𝑖 by 𝑇{1}

𝑖
and

the time of transition to node 2 by 𝑇{2}

𝑖
. Accordingly, the random

time of PFS, which is the first hitting time of the set of nodes
{1, 2}, can be defined as 𝑇PFS

𝑖
∶= 𝑇

{1}

𝑖
∧ 𝑇

{2}

𝑖
, where 𝑎 ∧ 𝑏 denotes

the minimum of two real numbers 𝑎, 𝑏. The random time of OS,
which is the first hitting time of node 2, is given by 𝑇OS

𝑖
∶= 𝑇

{2}

𝑖
.

Such a model fulfills the Markov assumption if the conditional
probability of future transitions does only depend on the present
state. To introduce this more formally, let 𝑋𝑖 ∶ ℝ+ → {0, 1, 2}

denote the state occupation function for some patient 𝑖, that is,
𝑋𝑖(𝑠) yields the state of patient 𝑖 at time 𝑠 since randomization of
that patient. The sample paths are assumed to be right continu-
ous with left limits. These left limits 𝑋𝑖(𝑠−) ∶= limℎ↘0 𝑋𝑖(𝑠 − ℎ)
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denote the state of the patient just before 𝑠. Now, if

ℙ
[
𝑋𝑖(𝑠2) ∈ 𝑆|(𝑋𝑖(𝑢))𝑢∈[0,𝑠1]

]
= ℙ[𝑋𝑖(𝑠2) ∈ 𝑆|𝑋(𝑠1)] (1)

for any subspace of the state space 𝑆 ⊂ {0, 1, 2} and any 0 ≤ 𝑠1 <

𝑠2, the stochastic process (𝑋𝑖(𝑠))𝑠≥0 is said to be a time continuous
Markov chain. If this term is a function of 𝑠2 − 𝑠1, the process is
called time-homogeneous. However, we do not require this as we
also deal with the time-inhomogeneous case.

Given the current state of a patient, its instantaneous rate of
transition to another state does only depend on the time elapsed
since randomization. Hence, each of the transitions represented
by the arrows is equipped with a univariate transition hazard or
intensity function 𝜆𝑗𝑘 ∶ ℝ+ → ℝ+ with 0 ≤ 𝑗 < 𝑘 ≤ 2. These are
defined by

𝜆𝑗𝑘(𝑠) ∶= lim
ℎ↘0

ℙ[𝑋𝑖(𝑠 + ℎ) = 𝑘|𝑋𝑖(𝑠−) = 𝑗]

ℎ
. (2)

Given those functions, the joint distribution of PFS andOS is fully
specified. As we want to explore any kind of possible differences
in the joint distribution of the two endpoints between the two
groups, our testing procedure investigates the null hypothesis

𝐻0 ∶ 𝐹
0
PFS,OS = 𝐹1

PFS,OS, (3)

where 𝐹𝑔

PFS,OS denotes the joint distribution function of the time-
to-event endpoints PFS and OS in group 𝑔 ∈ {0, 1}.

Following Tattar and Vaman (2014), this could also be reformu-
lated in terms of the cumulative intensity matrices (𝚲𝑔(𝑠))𝑠≥0 ∶=
(Λ

𝑗𝑘
𝑔 (𝑠))𝑗,𝑘∈{0,1,2},𝑠≥0, which is a 2 × 2 matrix of the transition-

specific cumulative intensity functions. This means that at time
𝑠 the (𝑗, 𝑘)-th entry for 𝑗 ≠ 𝑘 of this matrix is the cumulative
intensity for the transition from state 𝑗 to 𝑘 for the respective
group 𝑔. This quantity is given by the integral

Λ
𝑗𝑘
𝑔 (𝑠) ∶= ∫

𝑠

0

𝜆
𝑗𝑘
𝑔 (𝑢) 𝑑𝑢, (4)

where the additional index 𝑔 ∈ {0, 1} describes a possible depen-
dence from the treatment group. The diagonal entries are given
so that each row and column sums to zero at any time 𝑠 ≥ 0. The
corresponding hypothesis is then given by

𝐻0 ∶ 𝚲0(𝑠) = 𝚲1(𝑠) ∀𝑠 ≥ 0. (5)

Differing from Tattar and Vaman (2014), we do not compare the
estimated transition intensity matrices, but pursue an approach
that is motivated by the clinically relevant endpoints.

In univariate survival analysis, one-dimensional compensated
counting processes form the basis for constructing adaptive
designs. For the two endpoints considered here, these are given
by (�̃�PFS

𝑖
(𝑠))𝑠≥0 respectively (resp.) (�̃�OS

𝑖
(𝑠))𝑠≥0 with

�̃�𝐸
𝑖
(𝑠) ∶= 𝟙{𝑇𝐸

𝑖
≤𝑠∧𝐶𝑖 } − ∫

𝑠∧𝑇𝐸
𝑖
∧𝐶𝑖

0

𝜆𝐸(𝑢) 𝑑𝑢 (6)

for 𝐸 ∈ {PFS,OS} and any 𝑠 ≥ 0. The positive real-valued random
variable𝐶𝑖 denotes the random censoring time, which is assumed
to be independent from the process 𝑋𝑖 . The endpoint-specific
hazards 𝜆PFS and 𝜆OS do not take into account the current state
of the patient. Since we have to do exactly this when constructing
adaptive designs where all information on PFS and OS is allowed
to be used at an interim analysis, we will instead consider
the multivariate compensated counting processes (𝐌𝑖(𝑠))𝑠≥0
with

𝐌𝑖(𝑠) ∶=
(
𝑀PFS

𝑖
(𝑠)

𝑀OS
𝑖
(𝑠)

)
=
(
�̃�PFS

𝑖
(𝑠)

𝑀OS
𝑖
(𝑠)

)

and

𝑀OS
𝑖
(𝑠) ∶= 𝟙{𝑇OS

𝑖
≤𝑠∧𝐶𝑖 } − ∫

𝑠∧𝐶𝑖∧𝑇
PFS
𝑖

0

𝜆02(𝑢) 𝑑𝑢

− ∫
𝑠∧𝐶𝑖∧𝑇

OS
𝑖

𝑠∧𝐶𝑖∧𝑇
PFS
𝑖

𝜆12(𝑢) 𝑑𝑢 (7)

for any 𝑠 ≥ 0. The component for PFS can be adopted from the
univariate setting (according to (6)) as there is no additional
information to be taken into account for this endpoint. As
soon as any transition occurs in our simple model, the process
automatically stops.

In order to state the test statistics that arise in this way, we need
to introduce some more notation. First, let 𝑍𝑖 ∈ {0, 1} denote the
treatment indicator variable and 𝑅𝑖 ∈ ℝ+ the random time of trial
entry of patient 𝑖. As we aim for adaptive sequential designs, we
need to deal with two different time scales: We will always denote
the calendar time by 𝑡 and the individual time in trial by 𝑠. In this
way, we can define the event counting processes

𝑁PFS
𝑖

(𝑡, 𝑠) ∶= 𝟙{𝑇PFS
𝑖

≤𝑠∧𝐶𝑖∧(𝑡−𝑅𝑖)+} and

𝑁OS
𝑖
(𝑡, 𝑠) ∶= 𝟙{𝑇OS

𝑖
≤𝑠∧𝐶𝑖∧(𝑡−𝑅𝑖)+}

counting events that happen before calendar time 𝑡 and trial time
𝑠. For any state 𝑗 ∈ {0, 1, 2} of our model from Figure 1, we can
also define the corresponding at-risk processes

𝑌
𝑗

𝑖
(𝑡, 𝑠) ∶= 𝟙{𝑋𝑖(𝑠−)=𝑗} ⋅ 𝟙{𝑠≤𝐶𝑖∧(𝑡−𝑅𝑖)+} and

𝑌
𝑗,𝑍=1
𝑖

(𝑡, 𝑠) ∶= 𝑍𝑖 ⋅ 𝑌
𝑗

𝑖
(𝑡, 𝑠),

which indicate at some calendar time 𝑡 whether patient 𝑖 is
known to be in state 𝑗 just before trial time 𝑠 and (for the
latter one) whether the patient also is in treatment group 1.
While these quantities are defined for each patient, the aggregates
𝑁PFS, 𝑁OS, 𝑌𝑗 , and 𝑌𝑗,𝑍=1 over the whole study sample are given
by summing the corresponding quantities over all patients 𝑖

from 1 to 𝑛. In what follows, we will regularly obtain stochastic
integrals of the form ∫ 𝑡

0
𝐻𝑖(𝑡, 𝑠)𝑁𝑖(𝑡, 𝑑𝑠). In the present cases,

these equal 𝐻𝑖(𝑡, 𝑇𝑖) ⋅ 𝑁𝑖(𝑡, 𝑇𝑖) where 𝑇𝑖 is the time at which 𝑁𝑖

makes a jump.
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At calendar time 𝑡, the component of our unstandardized
multivariate test statistic concerning PFS is then given by

𝑈PFS(𝑡) ∶= 1√
𝑛

𝑛∑
𝑖=1

∫
𝑡

0

(
𝑍𝑖 −

𝑌0,𝑍=1(𝑡, 𝑠)

𝑌0(𝑡, 𝑠)

)
𝑁PFS

𝑖
(𝑡, 𝑑𝑠),

which is just the common unstandardized log-rank statistic for
PFS. For the second component, concerning the endpoint OS, we
need to take the additional information of prior progressions into
account. It is defined by

𝑈OS(𝑡) ∶= 1√
𝑛

𝑛∑
𝑖=1

∫
𝑡

0

(
𝑍𝑖 − 𝑌0

𝑖
(𝑡, 𝑠)

𝑌0,𝑍=1(𝑡, 𝑠)

𝑌0(𝑡, 𝑠)

− 𝑌1
𝑖
(𝑡, 𝑠)

𝑌1,𝑍=1(𝑡, 𝑠)

𝑌1(𝑡, 𝑠)

)
𝑁OS

𝑖
(𝑡, 𝑑𝑠).

These can also be expressed as sums. Let 𝐾𝑗𝑘(𝑡) denote the
number of transitions from state 𝑗 to state𝑘 that could be observed
until calendar time 𝑡. For each of the three transitions in this
model, let 𝑠𝑗𝑘

(1)
< ⋯ < 𝑠

𝑗𝑘

(𝐾𝑗𝑘(𝑡))
denote the ordered event times of

these transitions and let 𝑍𝑗𝑘

(1)
, … , 𝑍

𝑗𝑘

(𝐾𝑗𝑘(𝑡))
denote the treatment

groups of the corresponding individuals. Then, the test statistics
at calendar time 𝑡 amount to

𝑈PFS(𝑡) = 1√
𝑛

(
𝐾01(𝑡)∑
𝑗=1

(
𝑍01
(𝑗)

−
𝑌0,𝑍=1(𝑡, 𝑠01

(𝑗)
)

𝑌0(𝑡, 𝑠01
(𝑗)
)

)

+
𝐾02(𝑡)∑
𝑗=1

(
𝑍02
(𝑗)

−
𝑌0,𝑍=1(𝑡, 𝑠02

(𝑗)
)

𝑌0(𝑡, 𝑠02
(𝑗)
)

))

resp.

𝑈OS(𝑡) = 1√
𝑛

(
𝐾02(𝑡)∑
𝑗=1

(
𝑍02
(𝑗)

−
𝑌0,𝑍=1(𝑡, 𝑠02

(𝑗)
)

𝑌0(𝑡, 𝑠02
(𝑗)
)

)

+
𝐾12(𝑡)∑
𝑗=1

(
𝑍12
(𝑗)

−
𝑌1,𝑍=1(𝑡, 𝑠12

(𝑗)
)

𝑌1(𝑡, 𝑠12
(𝑗)
)

))
.

Analogously to the adopted compensated counting process in (7),
we need to distinguish between patients who did not experience
a progression of the disease yet (𝑌0

𝑖
(𝑡, 𝑠) = 1) and those who did

(𝑌1
𝑖
(𝑡, 𝑠) = 1). In contrast to Lin (1991), this distinction enables

adaptive design changes based on all information from the
illness-death model from Figure 1.

The variance of 𝑈PFS(𝑡) and 𝑈OS(𝑡) can be estimated by

�̂�PFS(𝑡) = 1

𝑛

𝑛∑
𝑖=1

∫
[0,𝑡]

𝑌0,𝑍=1(𝑡, 𝑠)

𝑌0(𝑡, 𝑠)

(
1 − 𝑌0,𝑍=1(𝑡, 𝑠)

𝑌0(𝑡, 𝑠)

)
𝑁PFS

𝑖
(𝑡, 𝑑𝑠)

= 1

𝑛

𝐾01(𝑡)∑
𝑗=1

𝑌0,𝑍=1(𝑡, 𝑠01
(𝑗)
)

𝑌0(𝑡, 𝑠01
(𝑗)
)

(
1 −

𝑌0,𝑍=1(𝑡, 𝑠01
(𝑗)
)

𝑌0(𝑡, 𝑠01
(𝑗)
)

)

+ 1

𝑛

𝐾02(𝑡)∑
𝑗=1

𝑌0,𝑍=1(𝑡, 𝑠02
(𝑗)
)

𝑌0(𝑡, 𝑠02
(𝑗)
)

(
1 −

𝑌0,𝑍=1(𝑡, 𝑠02
(𝑗)
)

𝑌0(𝑡, 𝑠02
(𝑗)
)

)

resp.

�̂�OS(𝑡) = 1

𝑛

𝑛∑
𝑖=1

∫
[0,𝑡]

𝑌0
𝑖
(𝑡, 𝑠)

𝑌0,𝑍=1(𝑡, 𝑠)

𝑌0(𝑡, 𝑠)

(
1 − 𝑌0,𝑍=1(𝑡, 𝑠)

𝑌0(𝑡, 𝑠)

)

+ 𝑌1
𝑖
(𝑡, 𝑠)

𝑌1,𝑍=1(𝑡, 𝑠)

𝑌1(𝑡, 𝑠)

(
1 − 𝑌1,𝑍=1(𝑡, 𝑠)

𝑌1(𝑡, 𝑠)

)
𝑁OS

𝑖
(𝑡, 𝑑𝑠)

= 1

𝑛

𝐾02(𝑡)∑
𝑗=1

𝑌0,𝑍=1(𝑡, 𝑠02
(𝑗)
)

𝑌0(𝑡, 𝑠02
(𝑗)
)

(
1 −

𝑌0,𝑍=1(𝑡, 𝑠02
(𝑗)
)

𝑌0(𝑡, 𝑠02
(𝑗)
)

)

+ 1

𝑛

𝐾12(𝑡)∑
𝑗=1

𝑌1,𝑍=1(𝑡, 𝑠12
(𝑗)
)

𝑌1(𝑡, 𝑠12
(𝑗)
)

(
1 −

𝑌1,𝑍=1(𝑡, 𝑠12
(𝑗)
)

𝑌1(𝑡, 𝑠12
(𝑗)
)

)
.

The covariance between the two random variables can be
estimated by

�̂�PFS,OS(𝑡) = 1

𝑛

𝑛∑
𝑖=1

∫
[0,𝑡]

𝑌0
𝑖
(𝑡, 𝑠)

𝑌0,𝑍=1(𝑡, 𝑠)

𝑌0(𝑡, 𝑠)

×
(
1 − 𝑌0,𝑍=1(𝑡, 𝑠)

𝑌0(𝑡, 𝑠)

)
𝑁OS

𝑖
(𝑡, 𝑑𝑠)

= 1

𝑛

𝐾02(𝑡)∑
𝑗=1

𝑌0,𝑍=1(𝑡, 𝑠02
(𝑗)
)

𝑌0(𝑡, 𝑠02
(𝑗)
)

(
1 −

𝑌0,𝑍=1(𝑡, 𝑠02
(𝑗)
)

𝑌0(𝑡, 𝑠02
(𝑗)
)

)
.

As we integrate over the process 𝑁OS
𝑖
(𝑡, 𝑑𝑠) and multiply each

summandby𝑌0
𝑖
(𝑡, 𝑠), we can see that the covariance is only driven

by transitions from state 0 to node 2, that is, by patients for which
PFS and OS happen simultaneously.

Wewill now consider the bivariate process (𝐔(𝑡))𝑡≥0 with𝐔(𝑡) ∶=
(𝑈PFS(𝑡), 𝑈OS(𝑡)) for all 𝑡 ≥ 0 and the 2 × 2-matrix–valued process
(�̂�(𝑡))𝑡≥0 with

�̂�(𝑡) =
(

�̂�PFS(𝑡) �̂�PFS,OS(𝑡)

�̂�PFS,OS(𝑡) �̂�OS(𝑡)

)

for all 𝑡 ≥ 0.

For the sake of simplicity, we only consider a design with one
interim analysis at calendar time 𝑡1 > 0 and a final analysis at
calendar time 𝑡2 > 𝑡1 here. First stage test statistics will be based
on 𝐔(𝑡1) and �̂�(𝑡1). Test statistics for the data from the second
stage will be based on the increments since calendar time 𝑡1,
that is, 𝐔(𝑡2) −𝐔(𝑡1) and �̂�(𝑡2) − �̂�(𝑡1). If the increments of the
asymptotic covariance matrix 𝐕, which is consistently estimated
by �̂� has full rank, the quadratic form of the increments of 𝐔
with the corresponding increments of �̂� is asymptotically 𝜒2

distributedwith 2 degrees of freedom. The stagewise test statistics
are thus given by

𝑆1 = 𝐔(𝑡1)
𝑇�̂�(𝑡1)

−1𝐔(𝑡1) resp.

𝑆2 = (𝐔(𝑡2) −𝐔(𝑡1))
𝑇(�̂�(𝑡2) − �̂�(𝑡1))

−1(𝐔(𝑡2) −𝐔(𝑡1)).

In analogy toWei andLachin (1984), we obtain stagewise𝑝-values
by

𝑝𝑟 = 1 − 𝐹𝜒2
2
(𝑆𝑟). (8)
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The stagewise 𝑝-values can then be further processed using the
standard methods for adaptive designs of clinical trials.

3 General Framework

In this section, we will introduce the framework and all its
components we need to construct the multivariate process and
resulting test statistics. This will allow us to expand upon the
example from the previous section by considering an arbitrary
number of composite events.

Let (Ω, , ℙ) denote the probability space uponwhich all random
variables are defined. Any patient 𝑖 enters the trial at the random
time 𝑅𝑖 ≥ 0 and is assigned to treatment group 𝑍𝑖 ∈ {0, 1}. During
the stay in the trial, the patients assume one state of the state space
{0, 1, … , 𝑙}. The assumed state may change in course of time. For
each 𝑖 and any 𝑠 ≥ 0, let 𝑋𝑖(𝑠) ∈ {0, 1, … , 𝑙} denote the individual
state of patient 𝑖 at time 𝑠 after its trial entry. We assume this
process to be a time continuous time-(in)homogeneous Markov
chain and 𝑋𝑖(0) = 0 for all 𝑖 ∈ {1, … , 𝑛}. In particular it fulfills
the Markov property from (1) and its transition intensities are
defined as in (2). In both formulas, the state space of the illness-
death model from Figure 1 needs to be replaced by the state
space {0, … , 𝑙}. For amore detailed treatment ofmultistagemodels
beyondwhat is required here, we refer to books on this topic (e.g.,
Hougaard 2000 or Beyersmann, Allignol, and Schumacher 2011).

On that basis, we can define hitting or first entry times for each
node 𝑗 ∈ {1, … , 𝑙} by

𝑇
{𝑗}

𝑖
∶= inf {𝑠 ≥ 0|𝑋𝑖(𝑠) = 𝑗}.

If the time of a composite event is of interest, this can be depicted
by the hitting time of a set of nodes 𝐸 ⊂ {1, … , 𝑙} with

𝑇𝐸
𝑖
∶= inf {𝑠 ≥ 0|𝑋𝑖(𝑠) ∈ 𝐸}.

However, the observations for all our patients can be censored,
either by administrative censoring at the time of an interim or
the final analysis or by random dropout. In the former case, an
analysis at calendar time 𝑡 induces an administrative censoring
at (𝑡 − 𝑅𝑖)+. The latter case is depicted by the random variable
�̃�𝑖 . Combining this information at calendar time 𝑡 yields the
censoring variable 𝐶𝑖(𝑡) ∶= �̃�𝑖 ∧ (𝑡 − 𝑅𝑖)+. Note that censoring by
some terminal event as, for example, death is not included here.

We assume the tuples (𝑅𝑖, 𝑍𝑖, �̃�𝑖 , (𝑋𝑖(𝑠))𝑠≥0) for 𝑖 ∈ {1, … , 𝑛} to
be independent replicates of some tuple (𝑅, 𝑍, �̃�, (𝑋(𝑠))𝑠≥0).
Additionally, we assume independent censoring and recruit-
ment mechanisms, that is, that the variables 𝑍, 𝑅, and �̃� are
mutually independent.

With the quantities given above, we can now define counting
processes and at-risk indicators for the occurrence of certain
events. First, for any event given via a set 𝐸 ⊂ {1, … , 𝑙}, the
multivariable process (𝑁𝐸

𝑖
(𝑡, 𝑠))𝑡≥0,𝑠≥0 defined by

𝑁𝐸
𝑖
(𝑡, 𝑠) ∶= 𝟙{𝑇𝐸

𝑖
≤𝑠∧𝐶𝑖(𝑡)}

indicates whether a visit of patient 𝑖 in the subset 𝐸 of the state
space (resp. the event associated with this set) has been observed
before calendar time 𝑡 and trial time 𝑠. We can also aggregate
these individual counting processes to obtain the overall number
of events 𝑁𝐸(𝑡, 𝑠) ∶=

∑𝑛

𝑖=1 𝑁
𝐸
𝑖
(𝑡, 𝑠) observed before calendar time

𝑡 and trial time 𝑠.

As indicated by the Markov property in (1), the current state
of a process at some trial time 𝑠 determines the probability of
future transitions. Hence, it will be of utmost importance for our
procedure to keep track of the current state of each individual.
The multivariable process (𝑌𝑗

𝑖
(𝑡, 𝑠))𝑡≥0,𝑠≥0 indicates whether it is

known at calendar time 𝑡 that individual 𝑖 has been in state 𝑗 just
before its trial time 𝑠. It is defined by

𝑌
𝑗

𝑖
(𝑡, 𝑠) ∶= 𝟙{𝑋𝑖(𝑠−)=𝑗} ⋅ 𝟙{𝑠≤𝐶𝑖(𝑡)}.

We can aggregate these indicators in the complete study sample
or in the subsample of treatment group 1 to obtain the processes
(𝑌𝑗(𝑡, 𝑠))𝑡≥0,𝑠≥0 resp. (𝑌𝑗,𝑍=1(𝑡, 𝑠))𝑡≥0,𝑠≥0 counting the number of
patients in state 𝑗 with

𝑌𝑗(𝑡, 𝑠) ∶=
𝑛∑
𝑖=1

𝑌
𝑗

𝑖
(𝑡, 𝑠) resp. 𝑌𝑗,𝑍=1(𝑡, 𝑠) ∶=

𝑛∑
𝑖=1

𝑍𝑖 ⋅ 𝑌
𝑗

𝑖
(𝑡, 𝑠).

(9)
As we only consider the first hitting time of a subset 𝐸 of the state
space, which corresponds to the event time of the corresponding
(composite) event for now, we need to restrict these at-risk
numbers to those patients, which did not already experience
the event 𝐸. Those quantities are given by (𝑌

𝑗→𝐸

𝑖
(𝑡, 𝑠))𝑡≥0,𝑠≥0

resp. (𝑌𝑗→𝐸,𝑍=1
𝑖

(𝑡, 𝑠))𝑡≥0,𝑠≥0 for any patient 𝑖. Those quantities are
defined by

𝑌
𝑗→𝐸

𝑖
(𝑡, 𝑠) ∶= 𝑌

𝑗

𝑖
(𝑡, 𝑠) ⋅ 𝟙{𝑇𝐸

𝑖
≥𝑠} resp.

𝑌
𝑗→𝐸,𝑍=1
𝑖

(𝑡, 𝑠) ∶= 𝑌
𝑗

𝑖,𝑍=1(𝑡, 𝑠) ⋅ 𝟙{𝑇𝐸𝑖 ≥𝑠}

and the aggregates (𝑌𝑗→𝐸(𝑡, 𝑠))𝑡≥0,𝑠≥0 resp. (𝑌𝑗→𝐸,𝑍=1(𝑡, 𝑠))𝑡≥0,𝑠≥0
over the whole study sample are defined analogously to (9).

In the construction of our testing procedure, we will regularly
obtain stochastic integrals of the form ∫ 𝑡

0
𝐻𝑖(𝑡, 𝑠)𝑁𝑖(𝑡, 𝑑𝑠). In the

present cases, these equal𝐻𝑖(𝑡, 𝑇𝑖) ⋅ 𝑁𝑖(𝑡, 𝑇𝑖) where 𝑇𝑖 is the time
at which 𝑁𝑖 makes a jump.

4 Construction of the Multivariate Process and
Its Asymptotics

First, we consider only one composite event represented by a
subspace of the state space except the initial state 𝐸 ⊂ {1, … , 𝑙}.
For this event, we define the stochastic process

𝑈𝐸(𝑡) ∶= 1√
𝑛

𝑛∑
𝑖=1

∫
[0,𝑡∧𝑇𝐸

𝑖
]

(
𝑍𝑖 −

∑
𝑗∉𝐸

𝑌
𝑗→𝐸

𝑖
(𝑡, 𝑢)

𝑌𝑗→𝐸,𝑍=1(𝑡, 𝑢)

𝑌𝑗→𝐸(𝑡, 𝑢)

)

×𝑁𝐸
𝑖
(𝑡, 𝑑𝑢).
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This and further stochastic integrals below are of the form
∫ 𝑡

0
𝐻𝑖(𝑡, 𝑠)𝑁𝑖(𝑡, 𝑑𝑠). In the present cases, these equal 𝐻𝑖(𝑡, 𝑇𝑖) ⋅

𝑁𝑖(𝑡, 𝑇𝑖) where 𝑇𝑖 is the time at which 𝑁𝑖 makes a jump.

Different froma standard log-rank test for the composite endpoint
𝐸, we need to distinguish between the states from which a
transition to one of the component events belonging to 𝐸 occurs.

Now, let 𝑑 ∈ ℕ composite events of interest be given via some
subsets of the state space 𝐸1, … , 𝐸𝑑. Similar to the formulation
of the null hypothesis for the example in Section 2, we can now
formulate the null hypothesis in terms of the joint distribution
by

𝐻0 ∶ 𝐹
0

𝑇𝐸1 ,…,𝑇𝐸𝑑
= 𝐹1

𝑇𝐸1 ,…,𝑇𝐸𝑑
(10)

or in terms of the cumulative transition intensity matrix by

𝐻0 ∶ 𝚲0(𝑠) = 𝚲1(𝑠) ∀𝑠 ≥ 0. (11)

As in the case of Section 2, these are (𝑙 + 1) × (𝑙 + 1) matrices
containing the cumulative intensity functions (Λ𝑗𝑘

𝑔 (𝑠))𝑠≥0 as in (4).
To test these hypotheses,wewill consider themultivariate process
𝐔 ∶ ℝ+ → ℝ𝑑

𝐔(𝑡) = (𝑈𝐸1(𝑡), … ,𝑈𝐸𝑑 (𝑡)).

In Corollary 3 of the Supporting Information, it is shown that this
process is asymptotically equivalent to a martingale with respect
to the filtration incorporating any information about events in
the multistate model. Please note that it is the same as the
multivariate process introduced in Lin (1991) in a competing risks
setting, where each of the states 1, … , 𝑙 is a terminal state. In
this special case, there is no difference between the two methods
as there are no intermediate events that can be used to make
predictions about later events of the same patient. The variance
of 𝑈𝐸(𝑡) can then be estimated by

�̂�𝐸(𝑡) ∶= 1

𝑛

𝑛∑
𝑖=1

∫
[0,𝑡∧𝑇𝐸

𝑖
]

∑
𝑗∉𝐸

(
𝑌
𝑗→𝐸

𝑖
(𝑡, 𝑢) ⋅

𝑌𝑗→𝐸,𝑍=1(𝑡, 𝑢)

𝑌𝑗→𝐸(𝑡, 𝑢)

×

(
1 − 𝑌𝑗→𝐸,𝑍=1(𝑡, 𝑢)

𝑌𝑗→𝐸(𝑡, 𝑢)

))
𝑁𝐸

𝑖
(𝑡, 𝑑𝑢).

If at least two of the sets 𝐸1, … , 𝐸𝑑 have a nonempty intersec-
tion, that is, if two of the composite events may occur at the
same time, there is a nonzero covariance of the corresponding
entries in 𝐔(𝑡). Accordingly for 𝑏, 𝑐 ∈ {1, … , 𝑑}, the covariance
Cov(𝑈𝐸𝑏 (𝑡), 𝑈𝐸𝑐 (𝑡)) can be estimated by

�̂�𝐸𝑏𝐸𝑐 (𝑡) ∶= 1

𝑛

𝑛∑
𝑖=1

∫
[0,𝑡∧𝑇

𝐸𝑏∪𝐸𝑐
𝑖

]

∑
𝑗∉𝐸

(
𝑌
𝑗→𝐸𝑏∪𝐸𝑐
𝑖

(𝑡, 𝑢)

× 𝑌𝑗→𝐸𝑏∪𝐸𝑐,𝑍=1(𝑡, 𝑢)

𝑌𝑗→𝐸𝑏∪𝐸𝑐 (𝑡, 𝑢)

(
1 − 𝑌𝑗→𝐸𝑏∪𝐸𝑐,𝑍=1(𝑡, 𝑢)

𝑌𝑗→𝐸𝑏∪𝐸𝑐 (𝑡, 𝑢)

))

×𝑁
𝐸𝑏∩𝐸𝑐
𝑖

(𝑡, 𝑑𝑢).

The covariance of the process 𝐔 is thus estimated by the 𝑑 × 𝑑-
matrix–valued function �̂� ∶ ℝ+ → ℝ𝑑×𝑑

+ with

�̂�(𝑡) =
(
�̂�𝐸𝑏𝐸𝑐 (𝑡)

)
1≤𝑏,𝑐≤𝑑.

Invertibility of increments of the variance matrix 𝐕 (which are
estimated by the corresponding increments of �̂�) should be
checked first by applying the results in section B of the Supporting
Information. Invertibility is of course not given if, for example,
𝐸𝑏 = 𝐸𝑐 for some 𝑏 ≠ 𝑐 and 𝑏, 𝑐 ∈ {1, … , 𝑑}. However, in the
Supporting Information, we provide criteria for invertibility of𝐕.
In most relevant cases as, for example, in those mentioned in the
main paper, this can easily be ensured.

In a group sequential design, there is a sequence of calendar dates
𝑡1, … , 𝑡𝑚 at which analyses shall be conducted. The asymptotic
multivariate independent increments property of the process 𝐔
is closely related to general results as presented, for example,
in Scharfstein, Tsiatis, and Robins (1997), but also requires the
Markov property. The covariance matrix of these increments can
consistently be estimated by increments of �̂�.

As in Section 2, we can consider the quadratic forms of the
increments of 𝐔 and �̂� as stagewise test statistics. Hence, with
reference to Wei and Lachin (1984), we propose

𝑆𝑟 ∶= (𝐔(𝑡𝑟) −𝐔(𝑡𝑟−1))
𝑇(�̂�(𝑡𝑟) − �̂�(𝑡𝑟−1))

+(𝐔(𝑡𝑟)

−𝐔(𝑡𝑟−1))

→𝜒2

𝑑
∀𝑟 ∈ {1, … ,𝑚}

as a natural test statistic for testing𝐻0 in stage 𝑟 ∈ {1, … ,𝑚}. Here,
𝐀+ denotes the Moore–Penrose inverse of a quadratic matrix 𝐀.
Following Corollary 3 in the Supporting Information, 𝑆1, … , 𝑆𝑚
are asymptotically independent and asymptotically follow a 𝜒2-
distribution with 𝑑 degrees of freedom. Stagewise 𝑝-values can
accordingly be computed by

𝑝𝑟 ∶= 1 − 𝐹𝜒2
𝑑
(𝑆𝑟) (12)

for any 𝑟 ∈ {1, … ,𝑚}.

Going beyond the joint assessment of PFS/EFS andOS,which has
been explained in Section 2, the general framework can be used
beyond this example. For example, it might also be of interest to
assess long-term efficacy (PFS) and long-term safety (as time to
life-threatening toxicity or death). This results in a slightly more
complex illness-death model as depicted by Figure 2 with 𝑘 =
3, 𝑑 = 2, 𝐸1 = {2, 3} (PFS) and 𝐸2 = {1, 3} (safety). Additionally,
it is notable, that this framework contains an adaptive design
for a single-primary endpoint as a special case (𝑙 = 𝑑 = 1) and
coincides with the procedure of Lin (1991) in a competing risks
setting (𝑙 = 𝑑 and 𝐸𝑐 = {𝑐} ∀𝑐 ∈ {1, … , 𝑑}).

5 Group Sequential and Adaptive Designs

Based on the results obtained in the previous sections, we outline
the procedure of a two-stage adaptive design for testing the null
hypothesis (3) resp. (5) in the illness-death model from Figure 1.
Procedures with more than two stages and/or different endpoints

6 of 16 Biometrical Journal, 2024
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FIGURE 2 Representation of the simultaneous assessment of effi-
cacy and toxicity as a multistate model.

can be constructed analogously. Stagewise 𝑝-values computed as
in (12) can be used with any kind of combination function and
decision boundary to set up a group sequential testing procedure.
An extensive overview on these topics is, for example, given in
Wassmer and Brannath (2016).

We do not consider stopping for futility here. Hence, an adaptive
level 𝛼 test can be specified by values 0 < 𝛼1 < 𝛼 < 1 where 𝛼 is
the overall significance level and 𝛼1 the rejection level of the first
stage, together with a conditional error function 𝛼2 ∶ (𝛼1, 1] →

[0, 1], which is monotonically decreasing and fulfills the equality

∫
1

𝛼1

𝛼2(𝑥) 𝑑𝑥 = 𝛼 − 𝛼1.

In terms of the stagewise 𝑝-values, this leads to the rejec-
tion region {𝑝1 ≤ 𝛼1} ∪ {𝑝1 > 𝛼1, 𝑝2 ≤ 𝛼2(𝑝1)}. With regard to the
stagewise increments of themultivariate process𝐔, 𝛼1 and 𝛼2(𝑝1)
induce an ellipse as the decision boundary (see Figure 3). At the
interim analysis, the design of the trial (e.g., its sample size) may
be adapted based on observations concerning PFS- andOS-events
observed until this analysis date.

5.1 Theoretical Properties of the Multivariate
Test Statistic

Decisive factors for the asymptotic behavior of the multivariate
process (𝐔(𝑡))𝑡≥0 introduced in Section 2 are the transition
intensities in the illness-death model from Figure 1, the differ-
ences between the treatment groups concerning those intensities
and the recruitment and censoring mechanism of the study to
be planned. Transition-wise consideration in multistate models
are, for example, presented in Le-Rademacher et al. (2018) and
employed for planning purposes in Erdmann, Beyersmann, and
Rufibach (2023).

In order to consider the theoretical properties of 𝐔, we first
take the transition intensity functions 𝜆0,01, 𝜆0,02, 𝜆0,12 in the
control group (𝑍 = 0) as given. Furthermore, we assume that the
intensities in the control and treatment group (𝑍 = 1) differ by
fixed, time-independent factors 𝛿01, 𝛿02, 𝛿12, that is,

𝜆
𝑗𝑘

1 (𝑠)

𝜆
𝑗𝑘

0 (𝑠)
= 𝛿𝑗𝑘 ∀ 𝑠 ≥ 0 , (𝑗, 𝑘) ∈ {(0, 1), (0, 2), (1, 2)}.

Hence, we start from the assumption of transition-wise propor-
tional hazards. Now, that transition intensities in both groups
are determined by the above quantities, transition probabilities
can be calculated. For our purposes, it is enough to calculate the
probability of being in some state 𝑗 at some time 𝑠 when starting
in state 0 at time 0, which is the case for all patients that will be
recruited. In each treatment group 𝑔 ∈ {0, 1}, these probabilities
are denoted by

𝑃
0𝑗
𝑔 (0, 𝑠) ∶= ℙ[𝑋(𝑠) = 𝑗|𝑋(0) = 0, 𝑍 = 𝑔].

They can be calculated from the matrix exponential of −Λ𝑔.
Explicit formulas for the illness-death model can also be found
in the Appendix of Meller, Beyersmann, and Rufibach (2019).
Concerning the recruitment and censoring mechanism, we
assume that patients are recruited at a uniform rate 𝑟 during the
accrual period of length 𝑎 and followed up for some additional
time 𝑓 after the end of the accrual period. They are assigned
to the treatment group 𝑍 = 1 with probability 𝜋 ∈ (0, 1) in a
randomized study. This information can be combined to compute
the proportion of all patients that are randomized to group 𝑔 and
for which it is known at calendar time 𝑡 that they are in state 𝑗 at
time 𝑠 since their recruitment. This is given by

𝑦𝑗,𝑍=𝑔(𝑡, 𝑢) ∶= ℙ[𝑍 = 𝑔, 𝑅 ≤ 𝑡 − 𝑢, 𝐶 ≥ 𝑢, 𝑋(𝑢) = 𝑗].

By omitting the index 𝑍 = 𝑔, we denote the sum over the two
expressions for the treatment groups. Given that, we can now
state the process (𝜽(𝑡))𝑡≥0 having two components, which describe
the asymptotic mean of the process𝐔. These two components are

𝜃PFS(𝑡) ∶= −
√
𝑛

2∑
𝑘=1

(1 − 𝛿0𝑘)∫
[0,𝑡]

(
1 −

𝑦0,𝑍=1(𝑡, 𝑢)

𝑦0(𝑡, 𝑢)

)
× 𝑦0,𝑍=1(𝑡, 𝑢)𝜆0𝑘0 (𝑢)𝑑𝑢 (13)

and

𝜃OS(𝑡) ∶= −
√
𝑛

1∑
𝑗=0

(1 − 𝛿𝑗2)∫
[0,𝑡]

(
1 −

𝑦𝑗,𝑍=1(𝑡, 𝑢)

𝑦𝑗(𝑡, 𝑢)

)

× 𝑦𝑗,𝑍=1(𝑡, 𝑢)𝜆
𝑗2

0 (𝑢)𝑑𝑢. (14)

The elements of the 2 × 2-matrix–valued asymptotic variance
function 𝐕 ∶ ℝ+ → ℝ2×2

+ with entries

𝐕(𝑡) =
(

𝑉PFS(𝑡) 𝑉PFS,OS(𝑡)

𝑉PFS,OS(𝑡) 𝑉OS(𝑡)

)
for all 𝑡 ≥ 0 are given by

𝑉PFS(𝑡) =
2∑

𝑘=1
∫
[0,𝑡]

(
𝑦0,𝑍=0(𝑡, 𝑢)𝜆0𝑘0 (𝑢) + 𝑦0,𝑍=1(𝑡, 𝑢)𝜆0𝑘1 (𝑢)

)

×
(
𝑦0,𝑍=1(𝑡, 𝑢)

𝑦0(𝑡, 𝑢)

)2

𝑑𝑢,

𝑉OS(𝑡) =
1∑

𝑗=0
∫
[0,𝑡]

(
𝑦𝑗,𝑍=0(𝑡, 𝑢)𝜆

𝑗2

0 (𝑢) + 𝑦𝑗,𝑍=1(𝑡, 𝑢)𝜆
𝑗2

1 (𝑢)
)

×
(
𝑦𝑗,𝑍=1(𝑡, 𝑢)

𝑦𝑗(𝑡, 𝑢)

)2

𝑑𝑢,
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FIGURE 3 Result of the evaluation of the NB2004-HR trial data without new method.

and

𝑉PFS, OS(𝑡) =
1∑

𝑗=0
∫
[0,𝑡]

(
𝑦𝑗,𝑍=0(𝑡, 𝑢)𝜆

𝑗2

0 (𝑢) + 𝑦𝑗,𝑍=1(𝑡, 𝑢)𝜆
𝑗2

1 (𝑢)

)

×
(
𝑦𝑗,𝑍=1(𝑡, 𝑢)

𝑦𝑗(𝑡, 𝑢)

)2

𝑑𝑢.

The incremental test statistics from (2) based on the quadratic
form now follow a noncentral 𝜒2

2 distribution with noncentrality
parameters

𝜂𝑟 ∶= (𝜽(𝑡𝑟) − 𝜽(𝑡𝑟−1))
𝑇(𝐕(𝑡𝑟) − 𝐕(𝑡𝑟−1))

−1(𝜽(𝑡𝑟) − 𝜽(𝑡𝑟−1))

for 𝑟 ∈ {0, 1}, 𝑡0 = 0, a calendar date 𝑡1 of the interim analysis,
and the calendar date 𝑡2 = 𝑎 + 𝑓 of the final analysis. It should
be noted that this can also be written as a multiple of the total
sample size 𝑛.

For some fixed adaptive design as described above, this can
directly be used to compute the distribution of stagewise 𝑝-values
under the assumed alternative and to compute the resulting
power based on the probability

ℙ[𝑝1 ≤ 𝛼1] + ℙ[𝑝1 > 𝛼1, 𝑝2 ≤ 𝛼2(𝑝1)]

= ℙ[1 − 𝐹𝜒2
2
(𝑆1) ≤ 𝛼1] + ℙ[1 − 𝐹𝜒2

2
(𝑆1) > 𝛼1, 1

− 𝐹𝜒2
2
(𝑆2) ≤ 𝛼2(1 − 𝐹𝜒2

2
(𝑆1))],

where 𝑆𝑟 ∼ 𝜒2
2 with noncentrality parameter 𝜂𝑟 for 𝑟 ∈ {1, 2}.

5.2 Initial Planning

In this subsection,we try to shed light on some practical aspects of
the power calculation sketched above. Fromhistorical data, it can
be possible to estimate transition intensity functions 𝜆010 , 𝜆

02
0 , 𝜆

12
0

or integrated transition intensity functions Λ01
0 , Λ

02
0 , Λ

12
0 of the

control group (𝑍 = 0). Such an estimation can be accomplished
either nonparametrically (as in Aalen and Johansen 1978) or
parametrically via standard maximum likelihood methods (as
described in Meller, Beyersmann, and Rufibach 2019). The sim-

plest case here may be a time-homogeneous model in which
𝜆010 , 𝜆

02
0 , and 𝜆

12
0 are constants. These can be estimated unbiased

and consistently by dividing the observed transitions between the
respective states by the total time spent by all individuals in the
first state. Hazard ratios that quantify the expected deviation of
the treatment from the control group can be determined sepa-
rately for each transition using prior data, external information,
or a minimal clinically relevant effect.

When assuming a uniform recruitment mechanism over a period
of length 𝑎 and no loss to follow-up beyond administrative
censoring, the computation of the functions 𝑦𝑗,𝑍=𝑔 simplifies as
follows under the independence assumption from Section 4:

𝑦𝑗,𝑍=𝑔(𝑡, 𝑢) ∶=ℙ[𝑍 = 𝑔, 𝑅 ≤ 𝑡 − 𝑢, 𝐶 ≥ 𝑢, 𝑋(𝑢) = 𝑗]

=ℙ[𝑅 ≤ 𝑡 − 𝑢] ⋅ ℙ[𝑋(𝑢) = 𝑗|𝑍 = 𝑔] ⋅ ℙ[𝑍 = 𝑔]

=
(𝑡 − 𝑢)+ ∧ 𝑎

𝑎
⋅ 𝑃

0𝑗
𝑔 (0, 𝑢) ⋅ ((1 − 𝜋) + 𝑔 ⋅ (2𝜋 − 1)).

However, usually in a clinical trial, the sample size 𝑛 cannot be
chosen arbitrarily if the accrual duration 𝑎 shall be fixed. The
recruitment rate 𝑟 = 𝑛∕𝑎 is rather given here, so that the accrual
duration must be adjusted so that a target power is reached. In
this case, the factor 𝑛 appearing in the stagewise noncentrality
parameters from the previous subsection shall be replaced by
𝑟 ⋅ 𝑎. As 𝑎 also plays a role in the calculation of 𝑦𝑗,𝑍=𝑔, a numerical
root finding procedure has to be applied to find an appropriate
accrual duration 𝑎 to reach the target power.

5.3 Sample Size Recalculation

At the time of interim analysis, the information received so
far can be used to adapt the design of the trial. Commonly,
the sample size is changed to meet a target of the conditional
power. This is the probability of rejecting the null hypothesis
given the 𝑝-value of the previous stages. Due to the construction
of our test method and the associated circumvention of the
problems mentioned in Bauer and Posch (2004), we can take
into account all the information on deaths and progressive events
that have taken place up to the interim analysis. In particular,
it would be allowed to apply an adaptation rule as presented in
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Bauer and Posch (2004). This is also confirmed by the results
of the simulation study presented in Section 7.1. At the same
time, no information needs to be discarded as it is the case
for the designs presented in Jenkins et al. (2011) and Irle and
Schäfer (2012).

Beyond that, this enables us to reassess all transition intensity
functions 𝜆𝑗𝑘𝑔 of the model. For the transition-wise hazard ratios,
which constitute the decisive effect sizes in our design different
approaches can be chosen. Themost common ones are presented
in section 7.4 of Wassmer and Brannath (2016). Of course, the
interim estimate from the interim data can be used. However, this
frequentlymade choice has been subject to some criticism (Bauer
and Koenig 2006).

We now look at the most obvious way of sample size reassess-
ment. If the recruitment rate 𝑟 remains the same, only the
recruitment period 𝑎 is to be adjusted, whereby we assume that
recruitment has already taken place until the time of the interim
analysis 𝑡1. Furthermore, the duration of the follow-up period
𝑓 starting after the end of the recruitment period shall remain
unchanged.One cannow recalculate the noncentrality parameter
𝜂2, inserting the newly estimated transition probabilities into
formula (5.2), replacing the parameter 𝑎with 𝑎add + 𝑡1 and setting
𝑡2 = 𝑡1 + 𝑎add + 𝑓. The duration of the accrual period beyond
the interim analysis 𝑎add is now the only free parameter when
calculating the conditional power

ℙ
[
1 − 𝐹𝜒2

2
(𝑆2) ≤ 𝛼2(𝑝1)

]
with 𝑆2 ∼ 𝜒2

2

with non-centrality parameter 𝜂2

under the new assumptions. It can be chosen in such a way that
this expression meets the targeted conditional power, which is
often set to 80%. Please note that the first stage 𝑝-value 𝑝1 is
inserted in this expression.

Such a sample size recalculation procedure is also applied in our
simulation studies in Section 7.

6 Application Example

For further illustration of the methods introduced above, we
now apply it to the data of the NB2004-HR trial (NCT number
NCT03042429). This was an open-label, multicenter, prospective
randomized controlled Phase III trial for treatment of children
with high-risk neuroblastoma. The patients received six (control
intervention) resp. eight (experimental intervention) cycles of
induction chemotherapy. Afterwards, both groups received the
same high-dose chemotherapy with autologous stem cell rescue
and a consolidation therapy afterwards (see Berthold et al. 2020
for further details). The NB2004-HR trial had only one primary
endpoint: EFS, defined as time from diagnosis to progression,
recurrence, secondary malignant disease or death, whatever
occurs first. Nevertheless, postprogression survival is of key
interest both here and in many other studies with EFS as primary
endpoint aswell. In particular, the interaction of first- and second-
line therapy given after progression is of special interest. The
analysis did not reveal a relevant difference between the two
interventions, neither in the primary endpoint EFS nor in the

secondary endpoint OS. To illustrate our methodology, we will
reanalyze the NB2004-HR trial using our testingmethod as in the
context of Section 2 in order to compare the joint distribution of
EFS and OS between the two interventions.

The NB2004-HR trial was originally designed group-sequentially
according to Pampallona and Tsiatis (1994) including two interim
analyses with futility stops and was later amended to an inverse
normal adaptive design according to Wassmer (2006) using the
same rejection region as the initial group-sequential design.
On this basis, a data-dependent sample size recalculation was
performed at the second interim analysis. We mimic this design
by conducting interim analyses at the same time points. However,
we do not make any binding futility stops. Stage-wise decision
boundaries are determined by adopting the alpha-spending that
resulted from the original procedure. Stagewise 𝑝-values are
combined using the inverse normal combination function with
equal weights for all stages.

The results are displayed in Figure 3. Each of the three plots
in Figure 3 shows the value of the increment of

√
𝑛𝐔 for the

respective stage. As the test statistic
√
𝑛𝐔 is bivariate, its observed

value (as well as the corresponding rejection region) is located
in the two-dimensional plane. The OS component is plotted
in the vertical direction, the EFS component in the horizontal
one. For both components of

√
𝑛𝐔, negative values indicate an

advantage of the experimental therapy in comparison with the
control therapy. The red ellipses show the rejection bounds. If
one of the test statistic increments would have been localized
outside of the respective ellipse, the trial would have stoppedwith
rejection of 𝐻0. The exact shape of the ellipse that determines
the rejection bound for the increments of

√
𝑛𝐔 depends on

the sequential decision boundaries in terms of 𝑝-values, the
(estimated) variance of the increments of

√
𝑛𝐔 given by the

increments of �̂�, as well as the results of previous analyses. The
stagewise 𝑝-values resulting from our test turn out to be 𝑝1 =
0.536, 𝑝2 = 0.227, and 𝑝3 = 0.592. Thus, the null hypothesis of
no difference in the joint distribution of EFS and OS between the
interventions cannot be rejected. This is qualitatively consistent
with the results of the NB2004-HR trial as reported in Berthold
et al. (2020).

In the original study, only primary outcome data on EFS were
used for sample size recalculation as recommended by Wassmer
(2006). The interim results from the first two phases suggested
a slight benefit of the experimental treatment in terms of EFS,
which is also evident from Figure 3 in the form of a slight shift
to the left of the observed statistic. This led the researchers to
increase the number of events after which the final analysis
should take place. This increase resulted from the requirement to
achieve a conditional power of 80% to reject the null hypothesis
for EFS based on the original planning alternative. Information
going beyond EFS-events has not been considered at the interim
analyses. However, postprogression survival also plays a major
role for a final assessment of a treatment for this disease. As one
can see from the first two plots of Figure 3, a slightly unfavorable
effect of the experimental treatment on postprogression survival
has been observed at the interim analyses. This fact might have
led the investigators to a different conclusion at the second
interim analysis, if EFS and OS interim data had both been
available in the context of the NB2004-HR trial.
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7 Simulation Study

In our simulation studies, wewant to examinemultiple aspects of
our proposed procedure that were mentioned in our theoretical
considerations. The first part demonstrates the extent to which
the problem raised in Bauer and Posch (2004) also applies
to the setting discussed here. Then, the compliance with the
nominal type I error rate is checked in different settings and
under different sample size recalculation rules. Finally, type II
errors are assessed under correct specification and also under
misspecification of the initial planning assumptions of the trial.

In all parts of our simulations study, we consider the illness-
death model that has already been discussed in Section 2. Within
this simple multistate model, we mainly consider transition
intensities that have a Weibull form, that is, they will be given
by

𝜆𝑗𝑘(𝑠) = 𝜆𝑗𝑘 ⋅ 𝑠𝛾
𝑗𝑘−1 (15)

with shape parameter 𝛾𝑗𝑘 and scale parameter 𝜆𝑗𝑘 for any (𝑗, 𝑘) ∈
{(0, 1), (0, 2), (1, 2)}. In the special case in which 𝛾01 = 𝛾02 = 𝛾12 =
1, the transition intensities are constant over time and the model
is referred to as a time-homogeneous Markov model.

For sample size calculation and type II error considerations, we
assume that the groups differ in each transition by a proportional-
ity factor as in Section 5. Thismeans that the transition intensities
𝜆
𝑗𝑘

1 in the experimental treatment group (𝑍 = 1) are related to the
intensities 𝜆𝑗𝑘0 in the control group (𝑍 = 0) by

𝜆
𝑗𝑘

1 (𝑠) = 𝛿𝑗𝑘 ⋅ 𝜆
𝑗𝑘

0 (𝑠) ∀𝑠 ≥ 0

given hazard ratios 𝛿𝑗𝑘 .

The tests based on our procedure were carried out at an overall
significance level of 𝛼 = 5%. Stagewise 𝑝-values were combined
using the inverse normal combination function with equal
weights for the two stages.We applied sequential decision bound-
aries according to Pocock aswell asO’Brien-Fleming (abbreviated
by P resp. OF). For any constellation in the following subsections,
10,000 simulation runs were executed. For underlying true values
of 0.05 and 0.8, the half-width of the 95% confidence intervals
amount to 0.0043 and 0.0078, respectively. The simulation study
was performed with R 4.2.1 (see R Core Team 2014).

7.1 Type I Error Rate Inflation Due to
Informative Disease Progressions

As already mentioned in Section 5.3, we want to demonstrate
that the type I error rate of the group-sequential procedure of
Lin (1991) is inflated if information on disease progression is used
that is informative for the further course of the disease (see Bauer
and Posch 2004). Wewill show that this inflation goes beyond the
inflation of the type I error rate that is already caused by a data-
dependent redesign of a group-sequential testing procedure (cf.
Proschan and Hunsberger 1995). The simulation results confirm
that our approach simultaneously addresses both these aspects.
In particular, our adaptive procedure adheres to the nominal type

I error rate, even if information on the disease course is used to
determine design changes.

For this purpose, we create two scenarios. In the first one,
disease progression is not informative for the further course
of disease, that is, 𝜆02 ≡ 𝜆12. In particular, we set 𝛾02 = 𝛾12 = 2

and 𝜆02 = 𝜆12 = 0.05 in (15) for this scenario. In the second one,
disease progressionwill deteriorate survival chances, that is,𝜆02 <
𝜆12. Therefore, we set 𝜆12 = 3 and leave all other parameters
unchanged. In both scenarios, the intensity for the transition from
the initial state to the state of disease progression is chosen as

𝜆01(𝑠) = − log(0.5) ⋅ 𝟙[0,1)(𝑠)∀𝑠 ≥ 0.

This means that in the first year in the trial, disease progression
occurs at a constant rate of − log(0.5). After this first year, no
further progressions will occur. In particular, this means that
under the neglect of the other transitions, half of the patients
would have experienced a disease progression after 1 year in the
trial. In the case of informative disease progressions, this means
that in an interim analysis there are groups of approximately the
same size that have either good or poor chances of survival. In
this regard, this scenario mimics one key property of the didactic
scenario that has been sketched in Bauer and Posch (2004) to
illustrate the statistical problem.

In the first stage, patients will be recruited uniformly over
an interval of 𝑡1 = 3 years. Recruitment rates are set in such
a way that the number of recruited patients at the interim
analysis amounts to 𝑛 ∈ {50, 100, 200, 400, 1000}. The patients are
allocated to the two treatment groups with equal probability.

At the interim analysis, the study may be terminated for an
early success or continued. The adaptation rule used at this
point shall mimic the one discussed in Bauer and Posch (2004).
It is only based on the interim PFS test statistic 𝑍PFS(𝑡1) ∶=
𝑈PFS(𝑡1)∕

√
�̂�PFS(𝑡1). This quantity is standard normally dis-

tributed under the null hypothesis. If it shows a certain deviation
from its expected value of 0, recruitment will be stopped imme-
diately. This option will be chosen if 𝑍PFS(𝑡1) ∉ [𝑧�̃�, 𝑧1−�̃�] for
some �̃� ∈ [0, 0.5]. The values 𝑧�̃� and 𝑧1−�̃� denote the �̃� and 1 − �̃�

quantile of the standard normal distribution, respectively. We
consider values of �̃� ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.33}. The final
analysis will be executed after the follow-up period of 5 years.
Otherwise, the recruitment period will be extended by factor 10
under the same recruitment rate as in the initial stage. The final
analysis will be executed after the subsequent follow-up period of
5 years.

In Table 1, empirical type I error rates for both scenarios (nonin-
formative and informative disease progression), different choices
of 𝛼, and sequential decision bounds (Pocock and O’Brien-
Fleming) from our simulations with 10,000 runs are shown. We
display the results for the case where 100 patients per group
are recruited up to the interim analysis. Results for different
sample sizes look similar and can be found in the Supporting
Information. First of all, it should be noted that the newly
proposed design adheres to the nominal type I error rate in all
constellations. Of course, even in the noninformative case, the
type I error rate of Lin’s design is inflated when the interim
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TABLE 1 Type I error rate inflation from informative disease progression for a sample size of 100 patients per group recruited up to the interim
analysis.

Adaptation
rule

Decision
bounds

Noninformative progression Informative progression

Lin’s design New design Lin’s design New design

�̃� = 0.05 P 0.0559 0.0511 0.0588 0.0547
OF 0.0600 0.0511 0.0678 0.0521

�̃� = 0.10 P 0.0602 0.0521 0.0623 0.0535
OF 0.0657 0.0520 0.0737 0.0517

�̃� = 0.15 P 0.0614 0.0529 0.0632 0.0523
OF 0.0673 0.0529 0.0759 0.0509

�̃� = 0.20 P 0.0615 0.0531 0.0635 0.0518
OF 0.0664 0.0528 0.0763 0.0513

�̃� = 0.25 P 0.0619 0.0531 0.0637 0.0522
OF 0.0656 0.0527 0.0755 0.0505

�̃� = 0.33 P 0.0610 0.0537 0.0625 0.0521
OF 0.0633 0.0537 0.0711 0.0508

TABLE 2 Parameter configurations and event rates for the three scenarios of the simulation study.

Scenario 𝜸𝟎𝟏 𝝀𝟎𝟏 𝜸𝟎𝟐 𝝀𝟎𝟐 𝜸𝟏𝟐 𝝀𝟏𝟐 𝝅PFS(𝒕𝟏) 𝝅OS(𝒕𝟏) 𝝅PFS(𝒕𝟐) 𝝅OS(𝒕𝟐)

1 1 0.6 1 0.075 1 0.9 0.431 0.241 0.889 0.745
2 1.3 0.85 1.3 0.1 1.3 0.3 0.522 0.189 0.980 0.694
3 1.5 0.57 0.5 0.065 0.85 1.1 0.441 0.235 0.957 0.772

PFS test statistic is used to make design adaptations. However,
this inflation compared to our design is much bigger if disease
progression is informative. This difference is most articulate for
�̃� = 0.2 and the O’Brien–Fleming decision bounds.While there is
an inflation of 1.64 percentage points for the noninformative case,
the inflation amounts to 2.63 percentage points in the informative
case. This underlines that the group sequential procedure is not
suitable to be applied in an adaptive setting from several points
of view.

7.2 Type I Error Rate Compliance

We study the type I error rate compliance of our testing procedure
in the illness-death model with parameter configurations as
presented inMeller, Beyersmann, and Rufibach (2019). These can
be found in Table 2. From our point of view, these configurations
form a good basis, as a time-homogeneous model as well as a
model with constant shape parameters across all transitions (as
in Li and Zhang 2015) as well as a model with different shape
parameters are considered. Initially, a sequential design with an
interim analysis after 𝑡1 = 2.5 and a final analysis after 𝑡2 = 5

years is planned. The duration of the accrual period is set to 𝑎 = 3.
The recruitment date of each trial participant is simulated as
uniformly distributed on the interval [0, 𝑎]. The trial participants
are allocated to each of the two treatment groups with probability
0.5. Under these conditions, the expected proportion of all trial
participants that will have experienced a PFS- or an OS-event by

calendar time 𝑡1 resp. 𝑡2 is given in the last four columns of Table 2
for each scenario. Hereby, we consider three different adaptation
strategies. First, a simple group-sequential procedure is applied
in which no adaptation is made and the analyses take place at
the initially planned dates. In addition, we inspect the decision
rule introduced in Section 7.1 with �̃� = 0.2. Finally, we apply an
adaptation strategy that is based on conditional power calculation
as lined out in Section 5.3. The recruitment period is adjusted
in such a way that the conditional power under the observed
treatment effects amounts to 80%. For the sake of realism, the
recruitment period is limited by twice the originally planned
recruitment period. If a recruitment stop (i.e., 𝑎add = 0 in terms of
Section 5.3) already yields a power of 80%, recruitment is stopped
and the final analysis is conducted at 𝑡2 = 𝑡1 + 𝑓. If no adjustment
of the recruitment duration leads to the conditional power target,
the maximum possible recruitment duration is selected and the
final analysis is conducted at 𝑡2 = 2𝑎 + 𝑓.

The empirical type I error rates obtained via 10,000 simulation
runs are shown in Table 3. For an initially planned sample size of
200 and above our procedure adheres to the nominal type I error
level of 𝛼 = 0.05 for any baseline scenario, sequential decision
boundary, and adaptation rule. It can also be concluded that the
presented method is slightly anticonservative for small sample
sizes (below 100). However, the deviation from the nominal
significance level is small. This tendency can also be observed
for the standard log-rank test (Heller and Venkatraman 1996),
which can be regarded as a special case of our framework (with
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TABLE 3 Empirical type I errors for different initially planned sample sizes, sequential decision bounds and scenarios in a group-sequential
design (GS), an adaptive design as inspired by the adaptation rule in Bauer and Posch (2004) (BP) and an adaptive design based on conditional power
calculations (CP).

Scenarios

1 2 3

𝒏 Type GS BP CP GS BP CP GS BP CP

50 P 0.0586 0.058 0.0544 0.0553 0.0557 0.0593 0.0546 0.0578 0.0598
OF 0.0568 0.0564 0.0576 0.0552 0.0557 0.0603 0.0566 0.0568 0.0565

100 P 0.0554 0.0539 0.0531 0.053 0.0524 0.0543 0.0559 0.0539 0.0512
OF 0.0535 0.0528 0.052 0.0512 0.052 0.0558 0.0544 0.0538 0.0518

200 P 0.0549 0.0525 0.053 0.0514 0.052 0.0498 0.0541 0.0519 0.0489
OF 0.0558 0.0515 0.0537 0.0513 0.0514 0.055 0.0516 0.0511 0.05

400 P 0.0482 0.051 0.0518 0.0494 0.0517 0.0471 0.0512 0.0502 0.0485
OF 0.0508 0.0515 0.0489 0.0493 0.0517 0.0549 0.0496 0.0505 0.0538

1000 P 0.0472 0.0508 0.0484 0.049 0.0508 0.0448 0.0526 0.0507 0.0493
OF 0.0503 0.0505 0.0488 0.0494 0.0505 0.0528 0.0505 0.0503 0.0493

𝑘 = 1, 𝑑 = 1, and𝑚 = 1 in terms of the framework introduced in
Section 4). The choice of sequential decision boundaries does not
seem to play a role for the actually achieved significance level.

7.3 Type II Error Rates Under Correct
Specification of Treatment Effects

For sample size calculation and type II error considerations, we
assume that the groups differ in each transition by a proportional-
ity factor as in Section 5. Thismeans that the transition intensities
in the experimental treatment group (𝑍 = 1) are given by

𝜆
𝑗𝑘

1 (𝑠) = 𝛿𝑗𝑘 ⋅ 𝜆
𝑗𝑘

0 (𝑠) ∀𝑠 ≥ 0

given hazard ratios 𝛿01, 𝛿02, and 𝛿12. In our simulation set-
tings, we assume values 𝛿02 = 1, 𝛿01 ∈ {0.8, 0.7, 0.6}, and 𝛿12 ∈

{0.85, 0.8, 0.75}. As in the previous subsection, a design with an
interim analysis at 𝑡1 = 2.5 and a final analysis at 𝑡2 = 5 years is
planned initially. The patients are planned to be recruited during
an accrual period of length 𝑎 = 3. For each combination of hazard
ratios 𝛿01 and 𝛿12, the sample size is calculated as lined out in
Section 5 to achieve a power of 80%.We considered a purely group
sequential plan without any adaptations as well as an adaptive
plan where all transitions of the multistate model were assessed
based on the interim data and the accrual duration was adjusted
to meet a conditional power of 80% as lined out in Section 5.3.
Sequential O’Brien–Fleming decision boundaries were applied
throughout this part of the simulation study.

For the parameter constellation of scenario 1 (see Table 2), the
results can be found in Table 4. First of all, they lead to the
conclusion that the analytical determination of the sample size
described above works reliably in terms of compliance with the
targeted power. Adjustment of the accrual length at an interim
analysis to meet a conditional power of 80% increases the overall
power of the procedure by a bit more than 10 percentage points

for the Pocock decision bounds and a bit less than 10 percentage
points for the O’Brien–Fleming decision bounds. This goes along
with an increase of the average sample size by 20%–25% and
15%–20%, respectively. Both increases can be attributed to the
fact that a conditional power of 80% at an interim analysis leads
to an overall power of more than 80% and the tendency of the
conditional power recalculation rule toward extreme decisions
when using interim effect estimates (see Bauer and Koenig 2006).

For the parameter constellations of the remaining scenarios 2 and
3 (see Table 2), the results do note deviate remarkably from the
observations we made here for the first scenario. Corresponding
tables can be found in the Supporting Information.

7.4 Type II Error Rates Under Misspecification
of Treatment Effects

Finally, we want to examine the behavior of the new procedure
if the hazard ratios are misspecified in the planning stage of
the trial. For the initial sample size calculation, we consider
the same planning assumptions as in the previous subsection.
In the simulation runs, the parameters for the control group
remain the same, too. However, the differences between the
two treatment groups in terms of the hazard ratios in the
simulations differ from the planning assumptions. We consider
settings in which the actual hazard ratios 𝛿01 and 𝛿12 used in
the simulations differ from the planning assumptions by values
in the set {−0.1,−0.05, 0, 0.05, 0.1}. We expect that some power
is recovered from a sample size recalculation via a conditional
power approach as in the previous subsection.

For the parameter constellation of scenario 1 (see Table 2) and
initial planning assumptions of 𝛿01 = 0.7 and 𝛿12 = 0.8, the results
can be found in Table 5. The power of the group sequential
procedure without adaptations is determined analytically while
the power of the adaptive procedure is determined by simulations
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TABLE 4 Results of simulations of type II error rates for scenario 1. Maximal sample size in group sequential design 𝑛max,GS, power of the group
sequential design 1 − 𝛽GS, average sample size in the group sequential design 𝔼[𝑛GS], power of the conditional power procedure 1 − 𝛽CP, and average
sample size of the conditional power procedure 𝔼[𝑛CP] are displayed.

𝜹𝟎𝟏, 𝜹𝟏𝟐 Type 𝒏max,GS 𝟏− 𝜷GS 𝔼[𝒏GS] 𝟏− 𝜷CP 𝔼[𝒏CP]

0.8, 0.85 P 620 0.7932 574.43 0.9169 711.57
0.8, 0.85 OF 577 0.7997 551.91 0.8957 652.99
0.7, 0.85 P 294 0.8012 271.08 0.9161 333.68
0.7, 0.85 OF 275 0.8087 262.38 0.8851 308.84
0.6 P 157 0.8055 144.35 0.9143 176.63
0.6, 0.85 OF 147 0.8003 140.26 0.8853 163.97
0.8, 0.8 P 512 0.7995 477.16 0.9182 587.76
0.8, 0.8 OF 473 0.8022 455.34 0.8963 542.86
0.7, 0 P 272 0.8036 251.09 0.9100 312.40
0.7, 0.8 OF 254 0.8033 243.01 0.8920 285.30
0.6, 0.8 P 153 0.8012 141.14 0.9151 175.19
0.6, 0.8 OF 143 0.8017 136.50 0.8872 161.03
0.8, 0.75 P 408 0.8025 381.70 0.9173 472.54
0.8, 0.75 OF 376 0.7992 363.47 0.8954 433.72
0.7, 0.75 P 244 0.7926 226.64 0.9132 281.34
0.7, 0.75 OF 227 0.8010 217.78 0.8930 258.67
0.6, 0.75 P 146 0.8026 134.85 0.9126 165.88
0.6, 0.75 OF 136 0.8030 130.10 0.8868 152.65

TABLE 5 Comparison of the power of a group-sequential design and an adaptive design with sample size recalculation based on the conditional
power for the observed effect sizes. The trial is initially planned with the parameter constellation of scenario 1 and hazard ratios 𝛿01 = 0.7 and 𝛿12 = 0.8.
A sample size of 254 patients per groupwould be required in this case to reach a power of 80%.Upper value in each cell refers to power of group-sequential
design, lower value refers to the adaptive design with the number in parentheses denoting the average sample size of the adaptive design.

𝜹𝟎𝟏

0.6 0.65 0.7 0.75 0.8

𝛿12 0.7 0.9864 0.9564 0.899 0.8183 0.7314
0.9871 (231.37) 0.9695 (246.11) 0.9451 (266.99) 0.9045 (288.53) 0.8642 (309.53)

0.75 0.9799 0.9348 0.8493 0.7319 0.6088
0.9828 (233.69) 0.9586 (251.14) 0.9133 (277.63) 0.8614 (303.89) 0.7779 (328.93)

0.8 0.9737 0.9141 0.8018 0.651 0.498
0.9787 (236.77) 0.9471 (257.23) 0.8879 (287.51) 0.8011 (318.43) 0.6779 (348.75)

0.85 0.9692 0.898 0.7641 0.5873 0.4133
0.9763 (238.7) 0.9382 (261.77) 0.8672 (293.41) 0.744 (326.68) 0.5723 (359.96)

0.9 0.9672 0.8892 0.7415 0.5473 0.3598
0.974 (238.45) 0.9384 (262.99) 0.8541 (295.93) 0.7067 (332.35) 0.4948 (368.92)

with 10,000 simulation runs. Results for the other baseline
scenarios and planning assumptions considered in the previous
subsection can be found in the Supporting Information.

As already seen before, the sample size recalculation inflates the
power by slightly less than 10 percentage points if the planning
assumptions agree with the actual values. The power does not

increase more than that of the group-sequential design if the
difference between the two treatments is initially underestimated.
In contrast, the power performance of the adaptive design is
better than that of the group-sequential design in case differences
between the two groups are overestimated. Especially when 𝛿01

is overestimated, the adaptive design can recover some of the
lost power if there is a relevant advantage in postprogression

13 of 16

 15214036, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202300181, W
iley O

nline L
ibrary on [17/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



survival. However, this may increase the average sample size
by about 50% compared to the maximal sample size of the
group-sequential trial.

8 Discussion

An adaptive group-sequential testing procedure for multiple
primary time-to-event endpoints has been introduced. It serves
as a generalization to the adaptive log-rank test as presented,
for example, by Wassmer (2006) and coincides with the group-
sequential procedure of Lin (1991) in case of a competing risks
setting. As a consequence of the concerns raised in Bauer and
Posch (2004), an extension of Lin (1991) to an adaptive design is
not straightforward. We do achieve that here by embedding these
endpoints in a multistate model under the assumption of Marko-
vianity of this model. Our approach enables data-dependent
interim design modifications based on the information about
all involved endpoints. Similar to the one-sample procedure
presented in Danzer et al. (2022), this is based on conditioning
on the prior history of each patient, which can be reduced to the
current disease state under the Markov assumption.

As a particularly relevant application example from a practical
point of view,we place a special focus on the joint consideration of
PFS andOS in the framework of a simple illness-deathmodel (see
Figure 1). Both endpoints play a major role in oncology clinical
trials. While OS is the most objectively defined endpoint, the
choice of PFS as the primary endpoint is already established in
many cases, depending on the specific indication. Often, as in our
example in Section 6, both endpoints are of crucial importance,
suggesting a joint consideration of both. For immunotherapies in
particular, it is possible that therapy effects only become apparent
or even after a progression event (Hoos 2012). This is another
reason why a joint consideration of the endpoints OS and PFS
appears helpful. Using the data from the NB2004-HR study, we
also show how the different aspects of ourmultivariate test can be
visualized and interpreted (see Figure 3). The benefits that can be
gained from our adaptive design in terms of interim, data-driven
design changes have also been demonstrated in Section 7.4.

Our simulation study has demonstrated that adherence to the
nominal type I error rate is not only given asymptotically in the
limit of large sample sizes, but is also acceptable at case numbers
of practical relevance. However, adherence to the nominal type I
error rate could be improved for small sample sizes by applying
a resampling procedure, as was carried out, for example, in
Ditzhaus and Friedrich (2020) for a test statistic that also results
from a quadratic form. We also considered effects of several
differences in the survival pattern between the two groups on
power and sample size of a corresponding study. In this regard, it
should be noted that our procedure appears particularly suitable
and superior to an adaptive test of the single endpoint PFS in
terms of power if there is a relevant effect for postprogression
survival. If no or only a very small effect with respect to OS is
expected, obviously, the restriction to a classical adaptive test of
the single endpoint PFS in the sense of Wassmer (2006) appears
more reasonable.

The methods presented here can be extended in several ways. To
this end, it should be noted that the components of our general

test statistic only take the first hitting time of some subset 𝐸 of the
state space into account. Hence, it is not only a test for the null
hypothesis (11) formulated in terms of the cumulative intensity
matrix, but also for the joint distribution of the 𝑑 different
endpoints as in (10). However, as an alternative to our approach,
one could also think of test statistics that incorporate any hitting
time of this set 𝐸 and not only the first one. The derivation of
such a procedure is analogous to the derivation of the procedure
on which we are focussing here. It is also carried out in full detail
in the Supporting Information. These two approaches are the
same for our illness-death model from Section 2 but can already
differ for slightly more complex cases as, for example, the setting
in Figure 2. However, the latter approach can only be used as
a test for the null hypothesis (11) as formulated in terms of the
transition intensities.

Furthermore, we want to point out that we assumed transition-
wise proportional hazards throughout our examples. Note that
this generally does not imply proportional hazards for the
endpoints (e.g., PFS and OS) considered within the multistate
model. In addition, settings are possible where the transition-
wise comparisons may also not be subject to the proportional
hazards assumption. If this is known, it might be beneficial to
apply weights as it is also common for the univariate log-rank
test (see, e.g., section V.2 in Andersen et al. 1993). Such a weight
can be selected separately for each individual transition. The
theory lined out in the Supporting Information allows any weight
fulfilling the standard assumptions.

An extension of our two-sample procedure to a 𝑘-sample pro-
cedure for some 𝑘 > 2 follows analogously to the way that the
multivariate testing procedure from Wei and Lachin (1984) is
extended by Palesch and Lachin (1994), and is thus possible
without further problems.

As stated in (10) resp. (11), we are testing a global null hypothesis.
In Wei and Lachin (1984) and Lin (1991), tests against a more
restricted alternative have also been suggested. These could be
adopted to detect an advantage in one of the involved endpoints.
However, these may be sensitive to undesirable alternatives as
demonstrated in Bloch, Lai, and Tubert-Bitter (2001). To protect
against this, methods such as those from Bloch, Lai, and Tubert-
Bitter (2001) and Perlman and Wu (2004) could also be used.
These are only sensitive to scenarios in which the new treatment
is superior to the control group in one endpoint and noninferior
in all other endpoints. However, a determination of transition-
specific noninferiority bounds would be required here. In any
case, rejection of the global null hypothesis should be followed by
more in-depth analyses. This could be achieved by a closed testing
procedure involving the various components of𝐌, similar to the
suggestions made in Lehmacher et al. (1991). A separate analysis
of the transition intensities as demonstrated in section IV.4.4 of
Andersen et al. (1993) is also recommendable.

The correctness of the procedure requires the Markov assump-
tion. This allows us to adequately incorporate the information
gathered so far into the testing procedure. Before use, the appro-
priateness of this assumption should therefore be investigated.
On the one hand, this can be based on the expertise of clinical
investigators. On the other hand, it can be examined in historical
data sets that reflect the population to be recruited for the present
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trial. Corresponding testing procedures have been developed for
the simple illness-death model of figure 1 in Rodríguez-Girondo
and de Uña-Álvarez (2012) as well as for general multistate
models in Titman and Putter (2020).

Considering the topics discussed here, we strive to further
develop and improve our framework in future research to
enhance applicability in clinical trials. In principle, analogous
methods can be developed in non-Markov settings, for example,
in the scenario of semi-Markov models (see, e.g., Meller, Bey-
ersmann, and Rufibach 2019 for details on the semi-Markovian
illness-death model). Furthermore, we aim to develop tests for
marginal distributions of time-to-event endpoints in Markovian
multistage models. Compared to the current methodology, these
should not only consider the conditional distribution of an
endpoint and still allow for the possibility of interim design
adaptations based on the disease history data of all patients.
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