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ABSTRACT

Big Data bring new opportunities to modern society and challenges to data scientists. On the one hand,
Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not

possible with small-scale data. On the other hand, the massive sample size and high dimensionality of

Big Data introduce unique computational and statistical challenges, including scalability and storage

bottleneck, noise accumulation, spurious correlation, incidental endogeneity and measurement errors.
These challenges are distinguished and require new computational and statistical paradigm. This paper
gives overviews on the salient features of Big Data and how these features impact on paradigm change on

statistical and computational methods as well as computing architectures. We also provide various new

perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the

sparsest solution in high-confidence set and point out that exogenous assumptions in most statistical
methods for Big Data cannot be validated due to incidental endogeneity. They can lead to wrong statistical
inferences and consequently wrong scientific conclusions.

Keywords: Big Data, noise accumulation, spurious correlation, incidental endogeneity, data storage,

scalability

INTRODUCTION

Big Data promise new levels of scientific discovery
and economic value. What is new about Big Data
and how they differ from the traditional small- or
medium-scale data? This paper overviews the oppor-
tunities and challenges brought by Big Data, with
emphasis on the distinguished features of Big Data
and statistical and computational methods as well as
computing architecture to deal with them.

BACKGROUND

We are entering the era of Big Data—a term that
refers to the explosion of available information. Such
a Big Data movement is driven by the fact that mas-
sive amounts of very high-dimensional or unstruc-
tured data are continuously produced and stored
with much cheaper cost than they used to be. For
example, in genomics we have seen a dramatic drop
in price for whole genome sequencing [1]. This is
also true in other areas such as social media analysis,
biomedical imaging, high-frequency finance, analy-
sis of surveillance videos and retail sales. The ex-

isting trend that data can be produced and stored
more massively and cheaply is likely to maintain
or even accelerate in the future [2]. This trend will
have deep impact on science, engineering and busi-
ness. For example, scientific advances are becom-
ing more and more data-driven and researchers will
more and more think of themselves as consumers
of data. The massive amounts of high-dimensional
data bring both opportunities and new challenges to
data analysis. Valid statistical analysis for Big Data is
becoming increasingly important.

GOALS AND CHALLENGES
OF ANALYZING BIG DATA

‘What are the goals of analyzing Big Data? According
to [3], two main goals of high-dimensional data anal-
ysis are to develop effective methods that can accu-
rately predict the future observations and at the same
time to gain insight into the relationship between the
features and response for scientific purposes. Fur-
thermore, due to large sample size, Big Data give rise
to two additional goals: to understand heterogeneity
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and commonality across different subpopulations.
In other words, Big Data give promises for: (i) ex-
ploring the hidden structures of each subpopulation
of the data, which is traditionally not feasible and
might even be treated as ‘outliers’ when the sample
size is small; (ii) extracting important common fea-
tures across many subpopulations even when there
are large individual variations.

What are the challenges of analyzing Big Data?
Big Data are characterized by high dimensionality
and large sample size. These two features raise three
unique challenges: (i) high dimensionality brings
noise accumulation, spurious correlations and inci-
dental homogeneity; (ii) high dimensionality com-
bined with large sample size creates issues such as
heavy computational cost and algorithmic instabil-
ity; (iii) the massive samples in Big Data are typi-
cally aggregated from multiple sources at different
time points using different technologies. This creates
issues of heterogeneity, experimental variations and
statistical biases, and requires us to develop more
adaptive and robust procedures.

PARADIGM SHIFTS

To handle the challenges of Big Data, we need new
statistical thinking and computational methods. For
example, many traditional methods that perform
well for moderate sample size do not scale to massive
data. Similarly, many statistical methods that per-
form well for low-dimensional data are facing signif-
icant challenges in analyzing high-dimensional data.
To design effective statistical procedures for explor-
ing and predicting Big Data, we need to address Big
Data problems such as heterogeneity, noise accumu-
lation, spurious correlations and incidental endor-
geneity, in addition to balancing the statistical accu-
racy and computational efficiency.

In terms of statistical accuracy, dimension reduc-
tion and variable selection play pivotal roles in an-
alyzing high-dimensional data. This is designed to
address noise accumulation issues. For example, in
high-dimensional classification, [4] and [S] showed
that conventional classification rules using all fea-
tures perform no better than random guess due to
noise accumulation. This motivates new regulariza-
tion methods [6-10] and sure independence screen-
ing [11-13]. Furthermore, high dimensionality in-
troduces spurious correlations between response
and unrelated covariates, which may lead to wrong
statistical inference and false scientific conclusions
[14]. High dimensionality also gives rise to inci-
dental endogeneity, a phenomenon that many unre-
lated covariates may incidentally be correlated with
the residual noises. The endogeneity creates statisti-
cal biases and causes model selection inconsistency

that lead to wrong scientific discoveries [15,16]. Yet,
most statistical procedures are based on unrealistic
exogenous assumptions that cannot be validated by
data (see the ‘Incidental endogeneity” section and
[17]). New statistical procedures with these issues
in mind are crucially needed.

In terms of computational efficiency, Big Data
motivate the development of new computational in-
frastructure and data-storage methods. Optimiza-
tion is often a tool, not a goal, to Big Data analy-
sis. Such a paradigm change has led to significant
progresses on developments of fast algorithms that
are scalable to massive data with high dimension-
ality. This forges cross-fertilizations among differ-
ent fields including statistics, optimization and ap-
plied mathematics. For example, the authors of [ 18]
showed that the non-deterministic polynomial-time
hard (NP-hard) best subset regression can be re-
cast as an L;-norm penalized least-squares prob-
lem which can be solved by the interior point
method. Alternative algorithms to accelerate this
L,-norm penalized least-squares problems, such as
least angle regression [19], threshold gradient de-
scent [20] and coordinate descent [21,22], itera-
tive shrinkage-thresholding algorithms [23,24], are
proposed. Besides large-scale optimization algo-
rithms, Big Data also motivate the development
of majorization-minimization algorithms [25-27],
‘large-scale screening and small-scale optimization’
framework [28], parallel computing methods [29-
31] and approximate algorithms that are scalable to
large sample size.

ORGANIZATION OF THIS PAPER

The rest of this paper is organized as follows. The
section ‘Rises of Big Data’ overviews the rise of Big
Data problem from science, engineering and social
science. The ‘Salient Features of Big Data’ section ex-
plains some unique features of Big Data and their im-
pacts on statistical inference. Statistical methods that
tackle these Big Data problems are given in the ‘Im-
pact on statistical thinking’ section. The ‘Impact on
computing infrastructure’ section gives an overview
on scalable computing infrastructure for Big Data
storage and processing. The ‘Impact on computa-
tional methods’ section discusses the computational
aspect of Big Data and introduces some recent pro-
gresses. The ‘Conclusions and future perspectives’
section concludes the paper.

RISE OF BIG DATA

Massive sample size and high dimensionality char-
acterize many contemporary datasets. For example,
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in genomics, there have been more than 500 000 mi-
croarrays that are publicly available with each array
containing tens of thousands of expression values
of molecules; in biomedical engineering, there have
been tens of thousands of terabytes of functional
magnetic resonance images (fMRIs) with each im-
age containing more than 50 000 voxel values. Other
examples of massive and high-dimensional data in-
clude unstructured text corpus, social medias, and fi-
nancial time series, e-commerce data, retail transac-
tion records and surveillance videos. We now briefly
illustrate some of these Big Data problems.

Genomics

Many new technologies have been developed in ge-
nomics and enable inexpensive and high-throughput
measurement of the whole genome and transcrip-
tome. These technologies allow biologists to gen-
erate hundreds of thousands of datasets and have
shifted their primary interests from the acquisition
of biological sequences to the study of biological
function. The availability of massive datasets sheds
light towards new scientific discoveries. For exam-
ple, the large amount of genome sequencing data
now make it possible to uncover the genetic mark-
ers of rare disorders [ 32,33 ] and find associations be-
tween diseases and rare sequence variants [34,35].
The breakthroughs in biomedical imaging technol-
ogy allow scientists to simultaneously monitor many
gene and protein functions, permitting us to study
interactions in regulatory processes and neuron ac-
tivities. Moreover, the emergence of publicly avail-
able genomic databases enables integrative analysis
which combines information from many sources for
drawing scientific conclusions. These research stud-
ies give rise to many computational methods as well
as new statistical thinking and challenges [36].

One of the important steps in genomic data anal-
ysis is to remove systematic biases (e.g. intensity ef-
tect, batch effect, dye effect, block effect, among oth-
ers). Such systematic biases are due to experimental
variations, such as environmental, demographic, and
other technical factors, and can be more severe when
we combine different data sources. They have been
shown to have substantial effects on gene expression
levels, and failing to taking them into consideration
may lead to wrong scientific conclusions [37]. When
the data are aggregated from multiple sources, it re-
mains an open problem on what is the best normal-
ization practice.

Even with the systematic biases removed, an-
other challenge is to conduct large-scale tests to pick
important genes, proteins, or single-nucleotide poly-
morphism (SNP). In testing the significance of thou-

sands of genes, classical methods of controlling the
probability of making one falsely discovered gene
are no longer suitable and alternative procedures
have been designed to control the false discovery
rates [38-42] and to improve the power of the tests
[42]. These technologies, though high-throughput
in measuring the expression levels of tens of thou-
sands of genes, remain low-throughput in surveying
biological contexts (e.g. novel cell types, tissues, dis-
eases, etc.).

An additional challenge in genomic data analy-
sis is to model and explore the underlying hetero-
geneity of the aggregated datasets. Due to technol-
ogy limitations and resource constraints, a single lab
usually can only afford performing experiments for
no more than a few cell types. This creates a ma-
jor barrier for comprehensively characterizing gene
regulation in all biological contexts, which is a fun-
damental goal of functional genomics. On the other
hand, the National Center for Biotechnology Infor-
mation (NCBI) Gene Expression Omnibus (GEO)
[43] and other public databases have cumulated
more than 500 000 gene expression profiles, includ-
ing microarray, exon array and ribonucleic acid-
sequencing (RNA-seq) samples from thousands of
biological contexts. Public ChIP-chip and ChIP-
seq data generated by different labs for different pro-
teins and in different contexts are also steadily grow-
ing. Together, these public data contain enormous
amounts of information that have not been fully ex-
ploited so far. Massive data aggregated from these
public databases shed light on systematically study-
ing many biological contexts in a high-throughput
way. However, how to systematically explore the un-
derlying heterogeneity and unveil the commonal-
ity across different subpopulations remains an active
research area.

Neuroscience

Many important diseases, including Alzheimer’s dis-
ease, Schizophrenia, Attention Deficit Hyperactive
Disorder, Depression and Anxiety, have been shown
to be related to brain connectivity networks. Under-
standing the hierarchical, complex, functional net-
work organization of the brain is a necessary first step
to explore how the brain changes with disease. Rapid
advances in neuroimaging techniques, such as fMRI
and positron emission tomography as well as electro-
physiology, provide great potential for the study of
functional brain networks, i.e. the coherence of the
activities among different brain regions [44].

Take fMRI for example. It is a non-invasive tech-
nique for determining the neural correlates of men-
tal processes in humans. During the past decade, this
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technique has become a leading method in the fields
of cognitive and physiological neuroscience and kept
producing massive amounts of high-resolution brain
images. These images enable us to explore the asso-
ciation between brain connectivity and potential re-
sponses such as disease or psychological status. The
fMRI data are massive and very high dimensional.
Due to its non-invasive feature, everyday many fMRI
machines keep scanning different subjects and con-
stantly produce new imaging data. For each data
point, the subject’s brain is scanned for hundreds of
times. Therefore, it is a 3D time-course image which
contains more than hundreds of thousands of voxels.
At the same time, the fMRI images are noisy due to
its technological limit and possible head motion of
the subjects. Analyzing such high-dimensional and
noisy data poses great challenges to statisticians and
neuroscientists.

Similar to the field of genomics, an important
Big Data problem in neuroscience is to aggregate
datasets from multiple sources. Brain imaging data
sharing is becoming more and more frequent nowa-
days [45]. Primary sources of fMRI data arise from
the International Data Sharing Initiative and the
1000 Functional Connectomes Project [46], Autism
Brain Imaging Data Exchange (ABIDE) [47] and
ADHD-200 [48] datasets. These international ef-
forts have compiled thousands of resting-state fMRI
scans along with complimentary structural scans.
The largest of the datasets is the 1000 Functional
Connectomes Project, which focuses on healthy
adults and includes limited covariate information
on age, gender, handedness and image quality. The
ADHD-200 dataset is similarly structured; yet, it
includes diagnostic information on disease status
such as human IQ. The ABIDE dataset is similar
to the ADHD-200 dataset, with diagnostic autism
and symptom severity information. However, ithasa
greater balance between diseased and non-diseased
subjects. These large datasets pose great opportuni-
ties as well as new challenges.

One of the main challenges, as in the area of ge-
nomics, is to remove the systematic biases caused
by experimental variations and data aggregations.
Moreover, statistically controlled inclusion of a sub-
ject in a group study, i.e. testing whether a per-
son should be rejected as outlier data, is often
poorly conducted [49] and voxels cannot be per-
tectly aligned across different experiments in differ-
ent laboratories. Therefore, the collected data con-
tain many outliers and missing values. These is-
sues make data preprocessing and analysis signifi-
cantly more complicated. Many traditional statisti-
cal procedures are not well suited in this noisy high-
dimensional settings, and new statistical thinking is
crucially needed.

Economics and finance

Over the past decade, more and more corpora-
tions are adopting the data-driven approach to con-
duct more targeted services, reduce risks and im-
prove performance. They are implementing special-
ized data analytics programs to collect, store, man-
age and analyze large datasets from a range of sources
to identify key business insights that can be ex-
ploited to support better decision making. For ex-
ample, available financial data sources include stock
prices, currency and derivative trades, transaction
records, high-frequency trades, unstructured news
and texts, consumers’ confidence and business sen-
timents buried in social media and internet, among
others. Analyzing these massive datasets helps mea-
suring firms risks as well as systematic risks. It re-
quires professionals who are familiar with sophis-
ticated statistical techniques in portfolio manage-
ment, securities regulation, proprietary trading, fi-
nancial consulting and risk management.

Analyzing a large panel of economic and finan-
cial data is challenging. For example, as an impor-
tant tool in analyzing the joint evolution of macroe-
conomics time series, the conventional vector au-
toregressive (VAR) model usually includes no more
than 10 variables, given the fact that the number of
parameters grows quadratically with the size of the
model. However, nowadays econometricians need
to analyze multivariate time series with more than
hundreds of variables. Incorporating all information
into the VAR model will cause severe overfitting and
bad prediction performance. One solution is to re-
sort to sparsity assumptions, under which new sta-
tistical tools have been developed [50,51].

Another example is portfolio optimization and
risk management [52,53]. In this problem, estimat-
ing the covariance and inverse covariance matrices of
the returns of the assets in the portfolio plays an im-
portant role. Suppose that we have 1000 stocks to be
managed. There are 500 500 covariance parameters
to be estimated. Even if we could estimate each indi-
vidual parameter accurately, the cumulated error of
the whole matrix estimation can be large under ma-
trix norms. This requires new statistical procedures.
See, for example, [ $4-66] on estimating large covari-
ance matrices and their inverse.

Other applications

Big Data have numerous other applications. Tak-
ing social network data analysis for example, mas-
sive amount of social network data are being
produced by Twitter, Facebook, LinkedIn and
YouTube. These data reveal numerous individual’s
characteristics and have been exploited in various
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fields. For example, the authors of [67] used
these data to predict influenza epidemic; those of
[68] used these data to predict the stock mar-
ket trend; and the authors of [69] used the so-
cial network data to predict box-office revenues
for movies. In addition, the social media and
Internet contain massive amount of information on
the consumer preferences and confidences, leading
economics indicators, business cycles, political atti-
tudes, and the economic and social states of a soci-
ety. It is anticipated that the social network data will
continue to explode and be exploited for many new
applications.

Several other new applications that are becoming
possible in the Big Data era include:

(i) Personalized services. With more personal data
collected, commercial enterprises are able to
provide personalized services adapt to individ-
ual preferences. For example, Target (a retail-
ing company in the United States) is able to
predict a customer’s need by analyzing the col-
lected transaction records.

(ii) Internet security. When a network-based attack
takes place, historical data on network traffic
may allow us to efficiently identify the source
and targets of the attack.

(iii) Personalized medicine. More and more health-
related metrics such as individual’s molecular
characteristics, human activities, human habits
and environmental factors are now available.
Using these pieces of information, it is possi-
ble to diagnose an individual’s disease and se-
lect individualized treatments.

(iv) Digital humanities. Nowadays many archives
are being digitized. For example, Google has
scanned millions of books and identified about
every word in every one of those books. This
produces massive amount of data and enables
addressing topics in the humanities, such as
mapping the transportation system in ancient
Roman, visualizing the economic connections
of ancient China, studying how natural lan-
guages evolve over time, or analyzing historical
events.

SALIENT FEATURES OF BIG DATA

Big Data create unique features that are not shared
by the traditional datasets. These features pose sig-
nificant challenges to data analysis and motivate the
development of new statistical methods. Unlike tra-
ditional datasets where the sample size is typically
larger than the dimension, Big Data are character-
ized by massive sample size and high dimensional-
ity. First, we will discuss the impact of large sam-
ple size on understanding heterogeneity: on the one

hand, massive sample size allows us to unveil hidden
patterns associated with small subpopulations and
weak commonality across the whole population. On
the other hand, modeling the intrinsic heterogene-
ity of Big Data requires more sophisticated statistical
methods. Secondly, we discuss several unique phe-
nomena associated with high dimensionality, includ-
ing noise accumulation, spurious correlation and in-
cidental endogeneity. These unique features make
traditional statistical procedures inappropriate. Un-
fortunately, most high-dimensional statistical tech-
niques address only noise accumulation and spuri-
ous correlations issues, but not incidental endogene-
ity. They are based on exogeneity assumptions that
often cannot be validated by collected data, due to
incidental endogeneity.

Heterogeneity

Big Data are often created via aggregating many data
sources corresponding to different subpopulations.
Each subpopulation might exhibit some unique fea-
tures not shared by others. In classical settings where
the sample size is small or moderate, data points
from small subpopulations are generally categorized
as ‘outliers’, and it is hard to systematically model
them due to insufficient observations. However, in
the Big Data era, the large sample size enables us to
better understand heterogeneity, shedding light to-
ward studies such as exploring the association be-
tween certain covariates (e.g. genes or SNPS) and
rare outcomes (e.g. rare diseases or diseases in small
populations) and understanding why certain treat-
ments (e.g. chemotherapy) benefit a subpopulation
and harm another subpopulation. To better illus-
trate this point, we introduce the following mixture
model for the population:

Mpr (y;01(0) + -+ A pu (30 (x)) (1)

where A; > 0 represents the proportion of the jth
subpopulation, p; (y; 8 (x)) is the probability dis-
tribution of the response of the jth subpopulation
given the covariates x with @ (x) as the parameter
vector. In practice, many subpopulations are rarely
observed, i.e. A; is very small. When the sample size
n is moderate, nA; can be small, making it infeasible
to infer the covariate-dependent parameters 6 ; (x)
due to the lack of information. However, because
Big Data are characterized by large sample size n,
the sample size nA; for the jth subpopulation can be
moderately large even if A; is very small. This en-
ables us to more accurately infer about the subpop-
ulation parameters @ (-). In short, the main advan-
tage brought by Big Data is to understand the het-
erogeneity of subpopulations, such as the benefits of
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certain personalized treatments, which are infeasible
when sample size is small or moderate.

Big Data also allow us to unveil weak common-
ality across whole population, thanks to large sam-
ple sizes. For example, the benefit of one drink of
red wine per night on heart can be difficult to assess
without large sample size. Similarly, health risks to
exposure of certain environmental factors can only
be more convincingly evaluated when the sample
sizes are sufficiently large.

Besides the aforementioned advantages, the het-
erogeneity of Big Data also poses significant chal-
lenges to statistical inference. Inferring the mix-
ture model in (1) for large datasets requires so-
phisticated statistical and computational methods.
In low dimensions, standard techniques such as the
expectation-maximization algorithm for finite mix-
ture models can be applied. In high dimensions,
however, we need to carefully regularize the estimat-
ing procedure to avoid overfitting or noise accumu-
lation and to devise good computation algorithms
[70,71].

Noise accumulation

Analyzing Big Data requires us to simultaneously es-
timate or test many parameters. These estimation er-
rors accumulate when a decision or prediction rule
depends on alarge number of such parameters. Such
a noise accumulation effect is especially severe in
high dimensions and may even dominate the true
signals. It is usually handled by the sparsity assump-
tion [2,72,73].

Take high-dimensional classification for in-
stance. Poor classification is due to the existence of
many weak features that do not contribute to the
reduction of classification error [4]. As an example,
we consider a classification problem where the data
come from two classes:

X1, oo, Xy ~ Na(p, 1)

anle, e, Y~ Nd(le,Id). (2)
We want to construct a classification rule which clas-
sifies a new observation Z € R? into either the first
or the second class. To illustrate the impact of noise
accumulation in classification, we set n = 100 and
d = 1000. We set t; = 0 and pt, to be sparse, i.e.
only the first 10 entries of ft, are nonzero with value
3, and all the other entries are zero. Figure 1 plots
the first two principal components by using the first
m =2, 40, 200 features and the whole 1000 features.
As illustrated in these plots, when m = 2 we obtain
high discriminative power. However, the discrimi-
native power becomes very low when m is too large

due to noise accumulation. The first 10 features con-
tribute to classifications and the remaining features
do not. Therefore, when m > 10, procedures do not
obtain any additional signals, but accumulate noises:
the larger the m, the more the noise accumulates,
which deteriorates the classification procedure with
dimensionality. For m = 40, the accumulated signals
compensate the accumulated noise, so that the first
two principal components still have good discrimi-
native power. When m =200, the accumulated noise
exceeds the signal gains.

The above discussion motivates the usage of
sparse models and variable selection to overcome
the effect of noise accumulation. For example, in
the classification model (2), instead of using all the
features, we could select a subset of features which
attain the best signal-to-noise ratio. Such a sparse
model provides more improved classification per-
formance [72,73]. In other words, variable selec-
tion plays a pivotal role in overcoming noise ac-
cumulation in classification and regression predic-
tion. However, variable selection in high dimensions
is challenging due to spurious correlation, inciden-
tal endorgeneity, heterogeneity and measurement
errors.

Spurious correlation

High dimensionality also brings spurious correla-
tion, referring to the fact that many uncorrelated ran-
dom variables may have high sample correlations
in high dimensions. Spurious correlation may cause
false scientific discoveries and wrong statistical infer-
ences.

Consider the problem of estimating the coefhi-
cient vector 8 of a linear model

y=XB +¢€, Var(e) ="l 3)
where y € R” represents the response vector, X =
[x1,...,x,]T € R4 represents the design matrix,
€ € R" represents an independent random noise
vector and 1; is the d x d identity matrix. To cope
with the noise accumulation issue, when the dimen-
sion d is comparable to or larger than the sample
size n, it is popular to assume that only a small num-
ber of variables contribute to the response, i.e. B isa
sparse vector. Under this sparsity assumption, vari-
able selection can be conducted to avoid noise accu-
mulation, improve the performance of prediction, as
well as enhance the interpretability of the model with
parsimonious representation.

In high dimensions, even for a model as simple
as (3), variable selection is challenging due to the
presence of spurious correlation. In particular, [11]
showed that, when the dimensionality is high, the
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Figure 1. Scatter plots of projections of the observed data (n = 100 from each class) onto the first two principal components of the best m-dimensional
selected feature space. A projected data with the filled circle indicates the first class and the filled triangle indicates the second class.
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Figure 2. lllustration of spurious correlation. (a) Distribution of the maximum absolute sample correlation coefficients between X; and {X;};.+.
(b) Distribution of the maximum absolute sample correlation coefficients between X; and the closest linear projections of any four members of
{X;}1 10 X;. Here the dimension d'is 800 and 6400, the sample size nis 60. The result is based on 1000 simulations.

where Corr (Xl, X ]—) is the sample correlation
between the variables X; and Xj. We see that the
maximum absolute sample correlation becomes
higher as dimensionality increases.

Furthermore, we can compute the maximum
absolute multiple correlation between X; and lin-
ear combinations of several irrelevant spurious
variables:

R = max max |Corr Xy, BiX;
\SI=4{ﬂj}?:1 Z 7=

. (5)

jeSs

Using the same configuration as in Fig. 2 a, Fig. 2 b
plots the empirical distribution of the maximum ab-
solute sample correlation coeflicient between X; and
Zj c sB;Xj, where § is any size four subset of {2..,
d} and B is the least-squares regression coefficient
of X; when regressing X; on {X;}; c 5. Again, we see
that even though X is utterly independent of X, ...,
X, the correlation between X; and the closest linear
combination of any four variables of {X;}; to X;
can be very high. We refer to [14] and [74] about
more theoretical results on characterizing the orders
of 7.

The spurious correlation has significant impact
on variable selection and may lead to false scientific
discoveries. Let X5 = (X ;) jes be the sub-random
vector indexed by S and let S be the selected set
that has the higher spurious correlation with X; asin
Fig. 2. For example, when n = 60 and d = 6400, we
see that X is practically indistinguishable from X 3

foraset S with |S| = 4.If X, represents the expres-
sion level of a gene that is responsible for a disease,
we cannot distinguish it from the other four genes in
S that have a similar predictive power although they
are scientifically irrelevant.

Besides variable selection, spurious correlation
may also lead to wrong statistical inference. We ex-
plain this by considering again the same linear model
as in (3). Here we would like to estimate the stan-
dard error o of the residual, which is prominently
featured in statistical inferences of regression co-
efficients, model selection, goodness-of-fit test and
marginal regression. Let S be a set of selected vari-
ables and P5 be the projection matrix on the column
space of Xg. The standard residual variance estima-
tor, based on the selected variables, is

T In_PA
82=y ( As)y‘ (6)
n— S|

The estimator (6) is unbiased when the variables
are not selected by data and the model is correct.
However, the situation is completely different when
the variables are selected based on data. In particu-
lar, the authors of [14] showed that when there are
many spurious variables, 0% is seriously underesti-
mated, which leads further to wrong statistical infer-
ences including model selection or significance tests,
and false scientific discoveries such as finding wrong
genes for molecular mechanisms. They also propose
a refitted cross-validation method to attenuate the
problem.
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Incidental endogeneity

Incidental endogeneity is another subtle issue raised
by high dimensionality. In a regression setting
Y = Z?:l B;X; + ¢, the term ‘endogeneity’ [75]
means that some predictors {X;} correlate with the
residual noise €. The conventional sparse model
assumes

j
andE(eX;) =0 forj=1,....d, (7)

with a small set $ = {j: B; # 0}. The exogenous as-
sumption in (7) that the residual noise ¢ is uncorre-
lated with all the predictors is crucial for validity of
most existing statistical procedures, including vari-
able selection consistency. Though this assumption
looks innocent, it is easy to be violated in high di-
mensions as some of variables {X;} are incidentally
correlated with &, making most high-dimensional
procedures statistically invalid.

To explain the endogeneity problem in more de-
tail, suppose that unknown to us, the response Y'is
related to three covariates as follows:

Y =X +X,+ X; +e,

with [EeX; =0, forj=1,2,3.

In the data-collection stage, we do not know the true
model, and therefore collect as many covariates that
are potentially related to Y as possible, in hope to in-
clude all members in S in (7). Incidentally, some of
those X;s (for j # 1, 2, 3) might be correlated with
the residual noise ¢. This invalidates the exogenous
modeling assumption in (7). In fact, the more co-
variates are collected or measured, the harder this
assumption is satisfied.

Unlike spurious correlation, incidental endo-
geneity refers to the genuine existence of correla-
tions between variables unintentionally, both due to
high dimensionality. The former is analogous to find
two persons look alike but have no genetic relation,
whereas the latter is similar to bumping into an ac-
quaintance, both easily occurring in a big city. More
generally, endogeneity occurs as a result of selection
biases, measurement errors and omitted variables.
These phenomena arise frequently in the analysis of
Big Data, mainly due to two reasons:

* With the benefit of new high-throughput mea-
surement techniques, scientists are able to and
tend to collect as many features as possible. This
accordingly increases the possibility that some of
them might be correlated with the residual noise,
incidentally.

* Big Data are usually aggregated from multiple
sources with potentially different data generating

schemes. This increases the possibility of selection
bias and measurement errors, which also cause po-
tential incidental endogeneity.

Whether incidental endogeneity appears in real
datasets and how shall we test it in practice? We
consider a genomics study in which 148 microarray
samples are downloaded from GEO database and
ArrayExpress [76]. These samples are created un-
der the Affymetrix HGU133a platform for human
subjects with prostate cancer. The obtained dataset
contains 22 283 probes, corresponding to 12 719
genes. In this example, we are interested in the gene
named ‘Discoidin domain receptor family, member
1’ (abbreviated as DDR1). DDR1 encodes recep-
tor tyrosine kinases, which plays an important role
in the communication of cells with their microen-
vironment. DDRI is known to be highly related to
the prostate cancer [77] and we wish to study its as-
sociation with other genes in patients with prostate
cancer. We took the gene expressions of DDR1 as
the response variable Y and the expressions of all
the remaining 12 718 genes as predictors. The left
panel of Fig. 3 draws the empirical distribution of the
correlations between the response and individual
predictors.

To illustrate the existence of endogeneity, we fit
an L;-penalized least-squares regression (Lasso) on
the data, and the penalty is automatically selected
via 10-fold cross validation (37 genes are selected).
We then refit an ordinary least-squares regression on
the selected model to calculate the residual vector.
In the right panel of Fig. 3, we plot the empirical dis-
tribution of the correlations between the predictors
and the residuals. We see the residual noise is highly
correlated with many predictors. To make sure these
correlations are not purely caused by spurious corre-
lation, we introduce a ‘null distribution’ of the spuri-
ous correlations by randomly permuting the orders
of rows in the design matrix, such that the predic-
tors are indeed independent of the residual noise.
By comparing the two distributions, we see that the
distribution of correlations between predictors and
residual noise on the raw data (labeled ‘raw data’)
has a heavier tail than that on the permuted data
(labeled ‘permuted data’). This result provides stark
evidence of endogeneity in these data.

The above discussion shows that incidental endo-
geneity is likely to be present in Big Data. The prob-
lem of dealing with endogenous variables is not well
understood in high-dimensional statistics. What is
the consequence of this endogeneity? The authors of
[16] showed that endogeneity causes inconsistency
in model selection. In particular, they provided thor-
ough analysis to illustrate the impact of endogene-
ity on high-dimensional statistical inference and
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Figure 3. lllustration of incidental endogeneity on a microarry gene expression data. Left panel: the distribution of the sample correlation (f()\rr(X,, Y)
(j=1,...,12718). Right panel: the distribution of the sample correlation Corr(X ;, ). Here € represents the residual noise after the Lasso fit. We
provide the distributions of the sample correlations using both the raw data and permuted data.

proposed alternative methods to conduct linear re-
gression with consistency guarantees under weaker
conditions. See also the following section.

IMPACT ON STATISTICAL THINKING

As has been shown in the previous section, massive
sample size and high dimensionality bring hetero-
geneity, noise accumulation, spurious correlation
and incidental endogeneity. These features of Big
Data make traditional statistical methods invalid. In
this section, we introduce new statistical methods
that can handle these challenges. For an overview,
see [72] and [73].

Penalized quasi-likelihood

To handle the noise-accumulation issue, we assume
that the model parameter § as in (3) is sparse. The
classical model selection theory, according to [78],
suggests to choose a parameter vector B that mini-
mizes negative penalized quasi-likelihood:

— QL(B) + AllBllo. (8)

where QL(f) is the quasi-likelihood of B and || - ||
represents the Ly pseudo-norm (i.e. the number of
nonzero entries in a vector). Here A > 0 is a regu-
larization parameter that controls the bias-variance
tradeoff. The solution to the optimization problem
in (8) has nice statistical properties [79]. However,

it is essentially combinatoric optimization and does
not scale to large-scale problems.

The estimator in (8) can be extended to a more
general form

d
6B+ Py (B ©)

j=1

where the term £, () measures the goodness of fit
of the model with parameter 8 and Z?:l Py, (B;)
is a sparsity-inducing penalty that encourages spar-
sity, in which A is again the tuning parameter that
controls the bias-variance tradeoff and y is a pos-
sible fine-tune parameter which controls the de-
gree of concavity of the penalty function [8]. Pop-
ular choices of the penalty function P; ,(-) in-
clude the hard-thresholding penalty [80,81], soft-
thresholding penalty [6,82], smoothly clipped ab-
solution deviation (SCAD, [8]) and minimax con-
cavity penalty (MCP, [10]). Figure 4 visualizes
these penalty functions for A = 1. We see that all
penalty functions are folded concave, but the soft-
thresholding (L;-)penalty is also convex. The pa-
rameter y in SCAD and MCP controls the degree of
concavity. From Fig. 4c and d, we see that a smaller
value of y results in more concave penalties. When
y becomes larger, SCAD and MCP converge to the
soft-thresholding penalty. MCP is a generalization of
the hard-thresholding penalty which corresponds to

y =1
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Figure 4. Visualization of the penalty functions. In all cases, A = 1. For SCAD and MCP, different values of y are chosen as

shown in graphs.

How shall we choose among these penalty func-
tions? In applications, we recommend to use either
SCAD or MCP thresholding, since they combine the
advantages of both hard- and soft-thresholding oper-
ators. Many efficient algorithms have been proposed
for solving the optimization problem in (9) with the
above four penalties. See the ‘Impact on computing
infrastructure’ section.

Sparsest solution in high confidence set

The penalized quasi-likelihood estimator (9) is
somewhat mysterious. A closely related method is
the sparsest solution in high confidence set, intro-

duced in the recent book chapter by [17], which has
much better statistical intuition. It is a generally ap-
plicable principle that separates the data information
and the sparsity assumption.

Suppose that the data information is summarized
by the function £,(B) in (9). This can be a likeli-
hood, quasi-likelihood or loss function. The underly-
ing parameter vector f8 usually satisfies ¢'(8¢) = O,
where £'(-) is the gradient vector of the expected
loss function £(B) = E£, (B). Thus, a natural con-

fidence set for B is

Co={BeR :€,(B)lle < ¥u}, (10)
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where ||| is the Loo-norm of a vector and y,, is
chosen, so that we have confidence level at least 1 —
8,, namely

(11)

The confidence set C, is called high-confidence set
since §,, — 0. In theory, we can take any norm in
constructing the high-confidence set. We opt for the
Lo, norm, as it produces a convex confidence set C,
when £,,(+) is convex.

The high-confidence set is a summary of the in-
formation we have for the parameter vector . It
is not informative in high-dimensional space. Take,
for example, the linear model (3) with the quadratic
loss £,(B) = |ly — XB||%. The high-confidence set

is then

Co={BeR": X" (y = XB)llc =< 71}
where we take , > ||XT¢&||oo, so that §, = 0. Ifin
addition B is assumed to be sparse, then a natural
solution is the intersection of these two pieces of in-
formation, namely, finding the sparsest solution in
the high-confidence set:

min [B]ly = ~ min Bl (12)

BeC, 1€, (B llco<Vu

This is a convex optimization problem when £(-) is
convex. For the linear model with the quadratic loss,
it reduces to the Dantzig selector [9].

There are many flexibilities in defining the spars-
est solution in high-confidence set. First of all, we
have a choice of the loss function £,,(-). We can re-
gard £/ (B) = 0 as the estimation equations [83]
and define directly the high-confidence set (10)
from the estimation equations. Secondly, we have
many ways to measure the sparsity. For example, we
can use a weighted L;-norm to measure the sparsity
of B in (12). By proper choices of estimating equa-
tions in (10) and measure of sparsity in (12), the au-
thors of [17] showed that many useful procedures
can be regarded as the sparsest solution in the high-
confidence set. For example, CLIME [84] for esti-
mating sparse precision matrix in both the Gaussian
graphic model and the linear programming discrim-
inant rule [85] for sparse high-dimensional classifi-
cation is the sparsest solution in the high-confidence
set. The authors of [17] also provided a general con-
vergence theory for such a procedure under a con-
dition similar to the restricted eigenvalue condition
in [86]. Finally, the idea is applicable to the prob-
lems with measurement errors or even endogeneity.
In this case, the high-confidence set will be defined
accordingly to accommodate the measurement er-
rors or endogeneity. See, for example, [87].

Independence screening

An effective variable screening technique based on
marginal screening has been proposed by the au-
thors of [11]. They aim at handling ultra-high-
dimensional data for which the aforementioned pe-
nalized quasi-likelihood estimators become compu-
tationally infeasible. For such cases, the authors of
[11] proposed to first use marginal regression to
screen variables, reducing the original large-scale
problem to a moderate-scale statistical problem, so
that more sophisticated methods for variable selec-
tion can be applied. The proposed method, named
sure independence screening, is computationally
very attractive. It has been shown to possess sure
screening property and to have some theoretical ad-
vantages over Lasso [13,88].

There are two main ideas of sure independent
screening: (i) it uses the marginal contribution of
a covariate to probe its importance in the joint
model; and (ii) instead of selecting the most impor-
tant variables, it aims at removing variables that are
not important. For example, assuming each covari-
ate has been standardized, we denote EIM the esti-
mated regression coeflicient in a univariate regres-
sion model. The set of covariates that survive the
marginal screening is defined as

S=1{j: 18"z (13)

fora given threshold §. One can also measure the im-
portance of a covariate X; by using its deviance re-
duction. For the least-squares problem, both meth-
ods reduce to ranking importance of predictors by
using the magnitudes of their marginal correlations
with the response Y. The authors of [11] and [88]
gave conditions under which sure screening prop-
erty can be established and false selection rates are
controlled.

Since the computational complexity of sure
screening scales linearly with the problem size, the
idea of sure screening is very effective in the dra-
matic reduction of the computational burden of
Big Data analysis. It has been extended in various
directions. For example, generalized correlation
screening was used in [12], nonparametric screening
was proposed by [89] and principled sure indepen-
dence screening was introduced in [90]. In addition,
the authors of [91] utilized the distance correlation
to conduct screening, [92] employed rank correla-
tion and [28] proposed an iteratively screening and
selection method.

Independent screening has never examined the
multivariate effect of variables on the response vari-
able nor has it used the covariance matrix of vari-
ables. An extension of this is to use multivari-
ate screening, which examines the contributions of
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small groups of variables together. This allows us to
examine the synergy of small groups of variables to
the response variable. However, the bivariate screen-
ing already involves O(d”) submodels, which can
be prohibitive in computation. Covariance assist
screening and estimation in [93] can be adapted
here to prevent examining all bivariate or multivari-
ate submodels. Another possible extension is to de-
velop conditional screening techniques, which rank
variables according to their conditional contribu-
tions given a set of variables.

Dealing with incidental endogeneity

Big Data are prone to incidental endogeneity that
makes the most popular regularization methods in-
valid. It is accordingly important to develop meth-
ods that can handle endogeneity in high dimen-
sions. More specifically, let us consider the high-
dimensional linear regression model (7). The au-
thors of [16] showed that for any penalized estima-
tors to be variable selection consistent, a necessary
condition is

E(eX;) =0 for j=1,...,d. (14)

As discussed in the ‘Salient features of Big Data’ sec-
tion, the condition in (14) is too restrictive for real-
world applications. Letting S = {j: 8 # 0} be the set
of important variables, with non-vanishing compo-
nentsin 8, amore realistic model assumption should

be

E(e{X;}jes) = E<Y - Zﬂ;‘X;’HXj}jes)

jE€S

=0. (15)

In the paper by the authors of [ 16], they considered
an even weaker version of Equation (15), called the
‘over identification’ condition, such as

EeX; =0 and ]ESX? =0 forjesS.
(16)

Under condition (16), the authors of [16] showed
that the classical penalized least-squares methods,
such as Lasso, SCAD and MCP, are no longer con-
sistent. Instead, they introduced the focused gener-
alized methods of moments (FGMM:s) by utilizing
the over identification conditions and proved that
the FGMM consistently selects the set of variables
S. We do not go into the technical details here but
illustrate this by an example.

We continue to explore the gene expression
data in the ‘Incidental endogeneity’ section. We
again treat gene DDRI1 as response and other genes
as predictors, and apply the FGMM instead of
Lasso. By cross validation, the FGMM selects 18
genes. The left panel of Fig. S shows the distribu-
tion of the sample correlations between the genes
Xi(j=1,...,12718) and the residuals € after the
FGMM fit. Here we find that many correlations
are nonzero, but it does not matter, because we re-
quire only (16). To verify (16), the right panel of
Fig. 5 shows the distribution of the sample corre-
lations between the 18 selected genes (and their
squares) and the residuals. The sample correlations
between the selected genes and residuals are zero,
and the sample correlations between the squared
covariates and residuals are small. Therefore, the
modeling assumption is consistent to our model
diagnostics.

IMPACT ON COMPUTING
INFRASTRUCTURE

The massive sample size of Big Data fundamentally
challenges the traditional computing infrastructure.
In many applications, we need to analyze internet-
scale data containing billions or even trillions of data
points, which even makes a linear pass of the whole
dataset unaffordable. In addition, such data could
be highly dynamic and infeasible to be stored in a
centralized database. The fundamental approach to
store and process such data is to divide and conquer.
The idea is to partition a large problem into more
tractable and independent subproblems. Each sub-
problem is tackled in parallel by different process-
ing units. Intermediate results from each individual
worker are then combined to yield the final output.
In small scale, such divide-and-conquer paradigm
can be implemented either by multi-core computing
or grid computing. However, in very large scale, it
poses fundamental challenges to computing infras-
tructure. For example, when millions of computers
are connected to scale out to large computing tasks,
it is quite likely some computers may die during
the computing. In addition, given a large computing
task, we want to distribute it evenly to many com-
puters and make the workload balanced. Design-
ing very large scale, high adaptive and fault-tolerant
computing systems is extremely challenging and mo-
tivates the outcome of new and reliable computing
infrastructure that supports massively parallel data
storage and processing. In this section, we take
Hadoop as an example to introduce basic soft-
ware and programming infrastructure for Big Data
processing.

102 ‘Tg snBny uo ARliqi] meT Assse |\ - AisIBAIUN 1igepue A e /B10°s[eulnopioxo:su//:dny woly papeojumoq


http://nsr.oxfordjournals.org/

306 | National Science Review, 2014, Vol. 1, No. 2

Count

70.4

1000 =
500 =
0 -

Count

O.U [).2 [).4 -0.2
Correlation

REVIEW

Al

Correlanon
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represents the residual noise after the FGMM fit.

Hadoop is a Java-based software framework for
distributed data management and processing. It
contains a set of open source libraries for dis-
tributed computing using the MapReduce program-
ming model and its own distributed file system called
HDFS. Hadoop automatically facilitates scalability
and takes cares of detecting and handling failures.
Core Hadoop has two key components:

Core Hadoop = Hadoop distributed file system
(HDFS) + MapReduce
* HDFS is a self-healing, high-bandwidth, clustered

storage file system, and
* MapReduce is a distributed programming model
developed by Google.

Cloudera’s Distribution for Hadoop
| [ s

Workflow Scheduling

Data
Integration

Languages, Compilers Fast
read/write
access

Figure 6. An illustration of Cloudera’s open-source Hadoop distribution (source: cloud-

era website).

, 12, 718). Right panel: Distribution of the sample correlations Corr(X,,") and Corr()(z ¢) for only 18 selected genes. Here &

We dart with explaining HDFS and MapReduce
in the following two subsections. Besides these two
key components, a typical Hadoop release contains
many other components. For example, as is shown
in Fig. 6, Cloudera’s open-source Hadoop distribu-
tion also includes HBase, Hive, Pig, Oozie, Flume
and Sqoop. More details about these extra compo-
nents are provided in the online Cloudera technical
documents. After introducing the Hadoop, we also
briefly explain the concepts of cloud computing in
the ‘Cloud computing’ section.

Hadoop distributed file system

HDEFS is a distributed file system designed to host
and provide high-throughput access to large datasets
which are redundantly stored across multiple ma-
chines. In particular, it ensures Big Data’s durabil-
ity to failure and high availability to parallel applica-
tions.

As a motivating application, suppose we have a
large data file containing billions of records, and we
want to query this file frequently. If many queries are
submitted simultaneously (e.g. the Google search
engine), the usual file system is not suitable due to
the I/O limit. HDFS solves this problem by dividing
alarge file into small blocks and store them in differ-
ent machines. Each machine is called a DataNode.
Unlike most block-structured file systems which use
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HDFS client

Figure 7. An illustration of the HDFS architecture.

a block size on the order of 4 or 8 KB, the default
block size in HDFS is 64MB, which allows HDFS
to reduce the amount of metadata storage required
per file. Furthermore, HDEFS allows for fast stream-
ing reads of data by keeping large amounts of data se-
quentially laid out on the hard disk. The main trade-
off of this decision is that HDFS expects the data to
be read sequentially (instead of being read in a ran-
dom access fashion).

The data in HDFS can be accessed via a ‘write
once and read many’ approach. The metadata struc-
tures (e.g. the file names and directories) are allowed
to be simultaneously modified by many clients. It is
important that this meta information is always syn-
chronized and stored reliably. All the metadata are
maintained by a single machine, called the NameN-
ode. Because of the relatively low amount of meta-
data per file (it only tracks file names, permissions
and the locations of each block of each file), all such
information can be stored in the main memory of
the NameNode machine, allowing fast access to the
metadata. An illustration of the whole HDES archi-
tecture is provided in Fig. 7.

To access or manipulate a data file, a client con-
tacts the NameNode and retrieves a list of locations
for the blocks that comprise the file. These loca-
tions identify the DataNodes which hold each block.
Clients then read file data directly from the DataN-
ode servers, possibly in parallel. The NameNode is
not directly involved in this bulk data transfer, keep-
ing its workingload to a minimum. HDFES has a built-
in redundancy and replication feature which secures
that any failure of individual machines can be recov-
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ered without any loss of data (e.g. each DataNode
has three copies by default). The HDFS automati-
cally balances its load whenever a new DataNode is
added to the cluster. We also need to safely store the
NameNode information by creating multiple redun-
dant systems, which allows the important metadata
of the file system be recovered even if the NameN-
ode itself crashes.

MapReduce

MapReduce is a programming model for processing
large datasets in a parallel fashion. We use an exam-
ple to explain how MapReduce works. Suppose we
are given a symbol sequence (e.g. ‘ATGCCAATC-
GATGGGACTCC’), and the task is to write a pro-
gram that counts the number of each symbol. The
simplest idea is to read a symbol, add it into a hash
table with key as the symbol and set value to its num-
ber of occurrences. If the symbol is not in the hash
table yet, then add the symbol as a new key to the
hash and set the corresponding value to 1. If the sym-
bol is already in the hash table, then increase the
value by 1. This program runs in a serial fashion and
the time complexity scales linearly with the length of
the symbol sequence. Everything looks simple so far.
However, imagine if instead of a simple sequence,
we need to count the number of symbols in the
whole genomes of many biological subjects. Serial
processing of such a huge amount of information is
time consuming. So, the question is how can we use
parallel processing units speed up the computation.
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Figure 8. An illustration of the MapReduce paradigm for the symbol counting task.
Mappers are applied to every element of the input sequences and emit intermediate
(key, value)-pairs. Reducers are applied to all values associated with the same key.
Between the map and reduce stages are some intermediate steps involving distributed

sorting and grouping.

The idea of MapReduce is illustrated in Fig. 8. We
initially split the original sequence into several files
(e.g. two files in this case). We further split each file
into several subsequences (e.g. two subsequences in
this case) and ‘map’ the number of each symbol in
each subsequence. The outputs of the mapper are
(key, value)-pairs. We then gather together all out-
put pairs of the mappers with the same key. Finally,
we use a reduce’ function to combine the values for
each key. This gives the desired output:

#A = 5,#T = 4,#G = 5, #C = 6.

The Hadoop MapReduce contains three stages,
which are listed as follows.

First stage: mapping. The first stage of a MapRe-
duce program is called mapping. In this stage,
a list of data elements is provided to a ‘map-
per’ function to be transformed into (key,
value)-pairs. For example, in the above symbol-
counting problem, the mapper function sim-

ply transforms each symbol into the pair (sym-
bol, 1). The mapper function does not modify
the input data, but simply returns a new output
list.

Intermediate stages: shuffling and sorting. After
the mapping stage, the program exchanges the
intermediate outputs from the mapping stage to
different ‘reducers’. This process is called shuf-
fling. A different subset of the intermediate key
space is assigned to each reduce node. These
subsets (known as ‘partitions’) are the inputs to
the next reducing step. Each map task may send
(key, value)-pairs to any partition. All pairs with
the same key are always grouped together on the
same reducer regardless of which mappers they
are coming from. Each reducer may process sev-
eral sets of pairs with different keys. In this case,
different keys on a single node are automatically
sorted before they are fed into the next reducing
step.

Final stage: reducing. In the final reducing stage,
an instance of a user-provided code is called for
each key in the partition assigned to a reducer.
The inputs are a key and an iterator over all the
values associated with the key. These values re-
turned by the iterator could be in an undefined
order. In particular, we have one output file per
executed reduce task.

The Hadoop MapReduce builds on the HDFS
and inherits all the fault-tolerance properties of
HDFS. In general, Hadoop is deployed on very large
scale clusters. One example is shown in Fig. 9.

Cloud computing

Cloud computing revolutionizes modern comput-
ing paradigm. It allows everything—from hardware
resources, software infrastructure to datasets—to
be delivered to data analysts as a service wherever
and whenever needed. Figure 10 illustrates different
building components of cloud computing. The most
striking feature of cloud computing is its elasticity
and ability to scale up and down, which makes it suit-
able for storing and processing Big Data.

IMPACT ON COMPUTATIONAL
METHODS

Big Data are massive and very high dimensional,
which pose significant challenges on computing
and paradigm shifts on large-scale optimization
[29,94]. On the one hand, the direct application
of penalized quasi-likelihood estimators on high-
dimensional data requires us to solve very large scale
optimization problems. Optimization with a large
amount of variables is not only expensive but also
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Figure 9. A typical Hadoop cluster (source: wikipedia).

suffers from slow numerical rates of convergence
and instability. Such a large-scale optimization is
generally regarded as a mean, not the goal of Big
Data analysis. Scalable implementations of large-
scale nonsmooth optimization procedures are cru-
ciallyneeded. On the other hand, the massive sample
size of Big Data, which can be in the order of millions
or even billions as in genomics, neuroinformatics,
marketing, and online social medias, also gives rise
to intensive computation on data management and
queries. Parallel computing, randomized algorithms,
approximate algorithms and simplified implementa-
tions should be sought. Therefore, the scalability of
statistical methods to both high dimensionality and
large sample size should be seriously considered in
the development of statistical procedures.

In this section, we explain some new progress on
developing computational methods that are scalable
to Big Data. To balance the statistical accuracy and
computational efficiency, several penalized estima-
tors such as Lasso, SCAD, and MCP have been de-

Database

Figure 10. An illustration of the cloud computing paradigm.

Cloud computing
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scribed in the ‘Tmpact on statistical thinking’ section.
We will introduce scalable first-order algorithms for
solving these estimators in the ‘First-order methods
for nonsmooth optimization” section. We also note
that the volumes of modern datasets are exploding
and it is often computationally infeasible to directly
make inference based on the raw data. Accordingly,
to effectively handle Big Data in both statistical and
computational perspectives, dimension reduction as
an important data pre-processing step is advocated
and exploited in many applications [95]. We will ex-
plain some effective dimension reduction methods
in the ‘Dimension reduction and random projection’
section.

First-order methods for nonsmooth
optimization

In this subsection, we introduce several first-order
optimization algorithms for solving the penalized
quasi-likelihood estimators in (9). For most loss
functions £,(-), this optimization problem has
no closed-form solution. Iterative procedures are
needed to solve it.

When the penalty function Py ,(-) is convex
(e.g. the L;-penalty), so is the objective function
in (9) when ¢,(-) is convex. Accordingly, sophis-
ticated convex optimization algorithms can be ap-
plied. The most widely used convex optimization al-
gorithm is gradient descent [96], which finds aso-
lution sequence converging to the optimum f by
calculating the gradient of the objective function at
each point. However, calculating the gradient can
be very time consuming when the dimensionality
is high. Instead, the authors of [97] proposed to
calculate the penalized pseudo-likelihood estimator
using the pathwise coordinate descent algorithm,

) 1
e N

Q 1

.7 Mobile !

. 1
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which can be viewed as a special case of the gradient
descent algorithm. Instead of optimizing along the
direction of the full gradient, it only calculates the
gradient direction along one coordinate at each time.
A beautiful feature of this is that even though the
whole optimization problem does not have a closed-
form solution, there exist simple closed-form so-
lutions to all the univariate subproblems. The co-
ordinate descent is computationally easy and has
similar numerical convergence properties as gradi-
ent descent [98]. Alternative first-order algorithms
to coordinate descent have also been proposed
and widely used, resulting in iterative shrinkage-
thresholding algorithms [23,24]. Prior to the coor-
dinate descent algorithm, the authors of [19] pro-
posed the least angle regression (LARS) algorithm
to the L, -penalized least-squares problem.

When the penalty function P; ,(-) is noncon-
vex (e.g. SCAD and MCP), the objective function
in (9) is no longer concave. Many algorithms have
been proposed to solve this optimization problem.
For example, the authors of [8] proposed a local
quadratic approximation (LQA) algorithm for opti-
mizing nonconcave penalized likelihood. Their idea
is to approximate the penalty term piece by piece us-
ing a quadratic function, which can be thought as
a convex relaxation (majorization) to the noncon-
cave object function. With the quadratic approxima-
tion, a closed-form solution can be obtained. This
idea is further improved by using a linear instead of a
quadratic function to approximate the penalty term
and leads to the local linear approximation (LLA) al-
gorithm [27]. More specifically, given current esti-

mate ﬁ(k) = (,BI(k), A ﬂ‘gk))T at the kth iteration
for problem (9), by Taylor’s expansion,

Py (Bj) =~ Py (ﬁ,('k)>

+2;, (87) (181 -181). (7

Thus, at the (k + 1)th iteration, we solve

d
min 1 €, (8) + 3 w181 (18)

j=1

where wy ; = P; (ﬂ](k)) Note that problem (18)
is convex, so that a convex solver can be used. The au-
thors of [ 58] suggested using initial values B =o,
which corresponds to the unweighted L; penalty.
This algorithm shares a very similar idea as in [99],
both of which can be regarded as implementations
of the minimization of the folded-concave penal-
ized quasi-likelihood [8] problem (9). If one further
approximates the goodness-of-fit measure £, (#) in

(18) by a quadratic function via the Taylor expan-
sion, then the LARS algorithm [19] and pathwise co-
ordinate descent algorithm [97] can be used.

For the more general settings where the loss func-
tion £,,(-) may not be concave, the authors of [ 100]
proposed an approximate regularization path follow-
ing algorithm for solving the optimization problem
in (9). By integrating statistical analysis with com-
putational algorithms, they provided explicit statis-
tical and computational rates of convergence of any
local solution obtained by the algorithm. Compu-
tationally, the approximate regularization path fol-
lowing algorithm attains a global geometric rate of
convergence for calculating the full regularization
path, which is fastest possible among all first-order
algorithms in terms of iteration complexity. Statis-
tically, they show that any local solution obtained
by the algorithm attains the oracle properties with
the optimal rates of convergence. The idea on study-
ing statistical properties based on computational al-
gorithms, which combine both computational and
statistical analysis, represents an interesting future
direction for Big Data. We also refer to [101] and
[102] for research studies in this direction.

Dimension reduction and random
projection

We introduce several dimension (data) reduction
procedures in this section. Why do we need di-
mension reduction? Let us consider a dataset repre-
sented as an n X d real-value matrix D, which en-
codes information about n observations of d vari-
ables. In the Big Data era, it is in general compu-
tationally intractable to directly make inference on
the raw data matrix. Therefore, an important data-
preprocessing procedure is to conduct dimension re-
duction which finds a compressed representation of
D that is of lower dimensions but preserves as much
information in D as possible.

Principal component analysis (PCA) is the most
well-known dimension reduction method. It aims at
projecting the data onto a low-dimensional orthog-
onal subspace that captures as much of the data vari-
ation as possible. Empirically, it calculates the lead-
ing eigenvectors of the sample covariance matrix to
form a subspace Uy € R%**, We then project the n
% d data matrix D to this linear subspace to obtain
an n x k data matrix DUy. This procedure is opti-
mal among all the linear projection methods in min-
imizing the squared error introduced by the projec-
tion. However, conducting the eigenspace decom-
position on the sample covariance matrix is compu-
tational challenging when both n and d are large. The
computational complexity of PCA is O(d*n + d°)
[103], which is infeasible for very large datasets.
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Figure 11. Plots of the median errors in preserving the distances between pairs of data points versus the reduced dimension kin large-scale microarray
data. Here ‘RP’ stands for the random projection and ‘PCA’ stands for the principal component analysis.

To handle the computational challenge raised by
massive and high-dimensional datasets, we need to
develop methods that preserve the data structure
as much as possible and is computational efficient
for handling high dimensionality. Random projec-
tion (RP) [104] is an efficient dimension reduction
technique for this purpose, and is closely related to
the celebrated idea of compress sensing [105-109].
More specifically, RP aims at finding a k-dimensional
subspace of D, such that the distances between all
pairs of data points are approximately preserved. It
achieves this goal by projecting the original data D
onto a k-dimensional subspace using an RP matrix
with unit column norms. More specifically, let R €
R?** be a random matrix with all the column Eu-
clidean norms equal to 1. We reduce the dimension-
ality of D from d to k by calculating matrix multipli-
cation

DR = DR.

This procedure is very simple and the computational
complexity of the RP procedure is of order O(ndk),
which scales only linearly with the problem size.
Theoretical justifications of RP are based on two
results. The authors of [104] showed that if points
in a vector space are projected onto a randomly se-
lected subspace of suitable dimensions, then the dis-
tances between the points are approximately pre-
served. This justifies the RP when R is indeed a pro-
jection matrix. However, enforcing R to be orthogo-
nal requires the Gram-Schmidt algorithm, which is
computationally expensive. In practice, the authors
of [110] showed that in high dimensions we do not
need to enforce the matrix to be orthogonal. In fact,
any finite number of high-dimensional random vec-
tors are almost orthogonal to each other. This result
guarantees that RTR can be sufficiently close to the
identity matrix. The authors of [111] further simpli-

fied the RP procedure by removing the unit column
length constraint.

To illustrate the usefulness of RP, we use the
gene expression data in the ‘Incidental endogene-
ity’ section to compare the performance of PCA
and RP in preserving the relative distances between
pairwise data points. We extract the top 100, 500
and 2500 genes with the highest marginal stan-
dard deviations, and then apply PCA and RP to
reduce the dimensionality of the raw data to a
small number k. Figure 11 shows the median er-
rors in the distance between members across all
pairs of data vectors. We see that, when dimen-
sionality increases, RPs have more and more advan-
tages over PCA in preserving the distances between
sample pairs.

One thing to note is that RP is not the ‘optimal’
procedure for traditional small-scale problems. Ac-
cordingly, the popularity of this dimension reduc-
tion procedure indicates a new understanding of Big
Data. To balance the statistical accuracy and com-
putational complexity, the suboptimal procedures in
small- or medium-scale problems can be ‘optimal’ in
large scale. Moreover, the theory of RP depends on
the high dimensionality feature of Big Data. This can
be viewed as a blessing of dimensionality.

Besides PCA and RP, there are many other
dimension-reduction methods, including latent se-
mantic indexing (LSI) [112], discrete cosine trans-
form [113] and CUR decomposition [114]. These
methods have been widely used in analyzing large
text and image datasets.

CONCLUSIONS AND FUTURE
PERSPECTIVES

This paper discusses statistical and computational
aspects of Big Data analysis. We selectively overview
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several unique features brought by Big Data and
discuss some solutions. Besides the challenge of
massive sample size and high dimensionality, there
are several other important features of Big Data
worth equal attention. These include

(1) Complex data challenge: due to the fact that Big
Data are in general aggregated from multiple
sources, they sometime exhibit heavy tail behav-
iors with nontrivial tail dependence.

(2) Noisy data challenge: Big Data usually contain
various types of measurement errors, outliers
and missing values.

(3) Dependent data challenge: in various types of
modern data, such as financial time series, fMRI
and time course microarray data, the samples
are dependent with relatively weak signals.

To handle these challenges, it is urgent to develop
statistical methods that are robust to data complexity
(see, for example, [115-117]), noises [62-119] and
data dependence [51,120-122].
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