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Abstract

Frequentist and Bayesian statistics represent two differing paradigms for analysis of data. 

Frequentist thinking became the dominant mode of statistical thinking in medical practice during 

the 20th century. The advent of modern computing has made Bayesian analysis techniques 

increasingly accessible, enabling growing use of Bayesian methods in a range of disciplines, 

including medical research. Rather than conceiving of probability as the expected frequency of 

an event (purported to be measurable and objective), Bayesian thinking conceives of probability 

as a measure of the strength of a belief (an explicitly subjective concept). Bayesian analysis 

combines prior information (represented by a mathematical probability distribution, the prior) 

with information from the study (likelihood) to generate an updated probability distribution 

(the posterior) representing the available information for clinical decision-making. Owing to its 

fundamentally different conception of probability, Bayesian statistics offers an intuitive, flexible, 

and informative approach that facilitates the design, analysis, and interpretation of clinical trials. 

Address for Correspondence: Dr. Ewan Goligher, Toronto General Hospital, 585 University Ave., 9-MaRS-9024, Toronto ON M5G 
2N2.
Contributors
E.C.G. developed the idea for this review. All authors contributed to the development of the proposed content. E.C.G. wrote the first 
draft of the review, and all authors contributed to and approved the final draft.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Search strategy and selection criteria
Data for this Review were identified by searches of MEDLINE, PubMed, and references from relevant articles using the search terms 
“Bayesian”, “probability theory”, and “frequentism”. Articles or books published in English between 1955 and 2023 were included.

HHS Public Access
Author manuscript
Lancet. Author manuscript; available in PMC 2025 September 14.

Published in final edited form as:
Lancet. 2024 September 14; 404(10457): 1067–1076. doi:10.1016/S0140-6736(24)01295-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Herein, we provide a brief account of the philosophical and methodlogical differences between 

Bayesian and frequentist approaches and survey the use of Bayesian methods for the design and 

analysis of clinical research.

“They say that Understanding ought to work by the rules of right reason. These 

rules are, or ought to be, contained in Logic; but the actual science of logic 

is conversant at present only with things either certain, impossible, or entirely 

doubtful, none of which (fortunately) we have to reason on. Therefore the true logic 

for this world is the calculus of Probabilities, which takes account of the probability 

which is, or ought to be, in a reasonable man’s mind.”

-James Clerk Maxwell1

“Bayes’ rule can be described in one sentence: by updating our initial beliefs with 

objective new information, we get a new and improved belief. To its adherents, 

it is an elegant statement about learning from experience. To its opponents, it is 

subjectivity run amok.”

-Sharon Bertsch McGrayne, The Theory that Would Not 
Die2

Introduction

In practicing medicine, the physician is often faced with considerable uncertainty, whether 

in making a diagnosis, offering a prognosis, or recommending a therapy. Where there is 

uncertainty, there is room for error. Skilled physicians are accustomed to dealing with 

uncertainty by reasoning in probabilistic terms, calibrating their strength of belief in a 

particular diagnosis or prognosis according to the available evidence (i.e., history, physical, 

laboratory, and imaging data). Diagnostic investigation is a process of progressively 

reducing uncertainty about the diagnosis by accumulating information to reach a conclusion 

with a sufficiently high probability to guide therapy. The Bayesian statistical framework 

conceives of clinical research as something closely analogous to diagnostic investigation—

an effort to progressively reduce uncertainty about a hypothesis. In this review, we will 

consider the emerging role of Bayesian statistics in the design and conduct of clinical 

research.

Statistical science is integral to clinical investigation. Over the 20th century, medical 

statistics came to be dominated by what is called the “frequentist” mode.3 Frequentism 

has bequeathed us the all-familiar p-value, the confidence interval, the notion of statistical 

significance, Type I and II errors, and the power calculation. Yet despite the fact that some 

modicum of exposure to conventional frequentist statistics is ubiquitous during scientific and 

clinical training, and although we are accustomed to interacting with frequentist statistical 

constructs when we read a scientific publication (p-values, etc.), comparatively few people 

can offer precise and accurate working definitions for these statistical constructs.4 The 

abstract and counterintuitive nature of these constructs belies their utility. The Bayesian 

framework offers an alternate, more intuitive paradigm for the design and analysis of 

clinical research. Indeed, Bayesian analysis may sometimes suggest a markedly different 

conclusion from frequentist analysis of the same data (see Panel 1). With the advent of 
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modern statistical computing, the practical application of Bayesian methods has become 

increasingly feasible in clinical research.

What is the Bayesian statistical framework, and how does it work?

Bayesian statistics is based on Bayes’ theorem, which describes the fundamental 

relationship between evidence (data) and explanation (hypothesis). The theorem is given 

by:

P(Hypotℎesis ∣ Data) = P(Data ∣ Hypotℎesis)
P(Data) P(Hypotℎesis)

Where “P” stands for “probability” and “|” stands for “given.” This framework for 

evaluating probability is attributed to the Rev. Thomas Bayes, an 18th century Presbyterian 

minister and mathematician.5,6 It was independently described a few decades later by the 

famous French mathematician, Pierre-Simon Laplace, and for this reason is sometimes 

referred to as the Bayes-Laplace theorem.2

As is evident from the relation above, there are three components to Bayesian statistical 

reasoning: the “prior” probability of a given explanation (denoted as P[Hypothesis]), 

the likelihood of obtaining the observed data given that explanation (denoted as P[Data|

Hypothesis]), and the posterior probability of a given explanation after combining the prior 

with the observed likelihood (denoted as P[Hypothesis|Data]). This theorem was originally 

referred to as “inverse probability” in that it allows one to “invert” the probability of 

data under a given hypothesis (P[Data|Hypothesis])—what we can measure—to obtain 

the probability of a hypothesis given data (P[Hypothesis|Data]). Indeed, this was the 

significance of Bayes’ discovery of the theorem: it provided a formal method for drawing 

inferences about hypotheses based on observed probabilities in data.7 That is, one could 

make claims about hypotheses, not just claims about observed data.

It is helpful to appreciate that, mathematically, the prior, likelihood, and posterior are 

usually represented not as single numbers but rather as probability density functions 

(or distributions) (Figure 1).3 Using probability distributions allows us to quantify the 

uncertainty about a parameter (e.g., mortality rate). Suppose we have followed 100 people 

with a given disease state for one year, and 30 have died at follow-up. Using a beta 

distribution, combined with binomial data, we can generate a distribution for the range 

of possible values for the one-year mortality rate in the population (Figure 1). With this 

distribution, we can, for example, estimate the probability that the true value for the 

mortality rate in the population lies between 0·25 and 0·35 (by computing the area under 

the curve in this region). The spread of the distribution tells us how much information 

or uncertainty is represented by the data: as information (e.g. sample size and number of 

events) increases, the distribution narrows (lower variance), signifying greater information 

and decreased uncertainty.

Bayesian statistics proceeds by combining a probability density distribution representing 

prior information (the “prior”) with a probability density distribution representing the data 

(the “likelihood”) to obtain an updated probability density distribution (the “posterior”) 
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(Figure 2).3,7 The likelihood function must be selected for both Bayesian and frequentist 

analyses and is computed directly from the available data. The major challenge in Bayesian 

analysis is to determine how the prior should be defined.8 The role of priors is an important 

source of controversy and resistance to the Bayesian approach, and we will consider this 

further below.

Fundamental conceptual differences between Bayesian and frequentist 

statistics

To understand why the Bayesian approach might be preferred to frequentist statistics, we 

need to briefly explore a number of deeper philosophical issues in scientific epistemology 

(theory of knowledge) (summarized in Table 1).

Frequentist statistical inference focuses entirely on the probability of observing data (P[Data|

Hypothesis]).9 In evaluating a statistical association (quantified by, for example, an odds 

ratio), it asks the question, “Given a null hypothesis of no association (odds ratio = 1), 

what is the probability of obtaining data with an odds ratio as or more extreme as the point 

estimate observed in this sample of data?” The idea is that if this probability is very low, 

then the null hypothesis can be rejected (an inferential process referred to as “null hypothesis 

significance testing”).10 For frequentists, the concept of “probability” has a very specific 

meaning—it refers to the frequency of observing the results in a hypothetical infinite series 

of repeated trials.11 The frequentist null hypothesis is defined in terms of a sampling 

distribution (Figure 2), which represents the range of frequencies at which data would be 

expected under the null hypothesis, if the study was repeated over and over ad infinitum 
in precisely the same manner. Although the study is conducted only once, the inference 

relies on the expectation that the study was hypothetically repeated many times in the same 

way, and the calculated probability equates to the frequency of the observed result in those 

hypothetical repeated trials.12 For frequentists, probability statements are always and only 

statements about frequencies of data. Thus the “p-value” is the frequency at which data as or 

more extreme than that observed in the study would be expected if the null hypothesis were 

true and the study was repeated an infinite number of times.12 The “confidence interval” 

is the interval generated from a sample of data such that in repeated samples, 95% of the 

time the estimated interval would contain the true value.13 Crucially, one cannot infer from a 

confidence interval that there is a 95% probability that the true value lies within the reported 

interval (despite a widespread propensity to do so) because that’s a statement about the 

strength of belief in a hypothesis, not about frequencies of obtaining data, and requires an 

implicit assumption of no prior information (see below).

The Bayesian approach is markedly different: it conceives of probability primarily as a 

“degree of belief.”14,15 To assert something with a high probability is to profess confident 

belief and low uncertainty. To suggest that something has a 50% probability is to express 

maximum uncertainty. This Bayesian conception of probability aligns with the usage of 

the term in everyday parlance. We may speak of the probability of rain this afternoon, the 

probability of winning in sports tonight, or the probability of electoral success this year 

(all one-off, non-repeatable events which can have no “frequency”). In clinical medicine, 
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we speak of pre- and post-test probability to refer to our strength of belief in a given 

diagnosis and to describe how that strength of belief is modified by diagnostic testing.16 

These are not statements about frequencies of outcomes in repeated events, but about belief 

in the outcomes of one-time occurrences or cases. Given this conception of probability as 

a “degree of belief”, it is sensible to Bayesians to consider prior probability, because we 

approach studies with some degree of belief for or against a hypothesis before undertaking 

the study to test the hypothesis (even if we are maximally uncertain with a probability of 

50%). Indeed, the exercise of expressing prior beliefs mathematically as a prior distribution 

forces us to think carefully about the pre-existing evidence and the appropriate level of 

uncertainty in the face of that prior information.

Frequentists have traditionally rejected this conception of probability on philosophical 

grounds.9,11,12,14 They insist that scientific inference using probabilities should be based 

on objective (“world-based”) statements about data, rather than subjective (“mind-based”) 

statements about degrees of belief.14 But there is a certain irony in such insistence. 

Frequentist inference is based on the expected frequencies of data that would be obtained 

if the study was hypothetically repeated many times exactly according to the intentions 

of the investigator.17 So the interpretation of the data very much depends on the state of 

mind (intentions and expectations) of the investigator according to hypothetical (imaginary) 

repetitions of the study together with individual judgments about the exact analysis methods 

to be used.18 It’s not at all clear that we can separate statistical inference from human 

psychology, even under the frequentist paradigm.

Crucially, because frequentist inference is based on the expected frequency of observed data 

under many hypothetical repetitions of the study with the same sample size and primary 

outcome, frequentist study design requires that the study be conducted precisely according 

to the original intentions of the investigator: the sample size is fixed for the analysis, and the 

primary outcome (primary hypothesis test) must be pre-specified. If the actual study conduct 

deviates from those original intentions, the validity of statistical inference is seriously 

threatened.17

By contrast, in Bayesian inference, the “degree of belief” depends only on the available 

information from the study data and the prior. The available information from the study 

data is entirely encompassed by the likelihood function, a statistical axiom referred to 

as the “likelihood principle.”19–21 Under the likelihood principle, the intentions of the 

investigator are irrelevant to the information available in the study data. Hence, issues such 

as the original planned sample size and stopping rule, which outcome was deemed primary

—features of the investigators’ state of mind—are not relevant to assessing the hypothesis 

using the study data and do not affect the Bayesian posterior distribution. Provided the prior 

is appropriately specified, the computed posterior distribution is not affected by the reasons 

for stopping the study or whether the pre-specified sample size was obtained.

Specifying prior distributions

The incorporation of prior probabilities in Bayesian data analysis is a perpetually 

controversial issue. For some, using information from outside the study to evaluate the 
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study’s meaning risks making science more subjective than objective, particularly since 

investigators may disagree about the most appropriate prior by virtue of their differing biases 

and perspectives.

Yet anyone familiar with scientific endeavour will understand that data are always 

interpreted in a broader context. Journals invite editorials from experts who can set the study 

in context, and presentations of important new clinical trial data at international meetings 

are often accompanied by editorials and panel discussions. The “Research in Context” panel 

in most Lancet family journals suggests a Bayesian approach–there is “Evidence before this 

study” (the prior), the “Added value of the study” (the likelihood), and the “Implications 

of all the available evidence” (the posterior). Priors seem to have a real place in the 

interpretation of data, the major question is whether they can be specified quantitatively 

in a valid and reproducible manner that appropriately reflects prior information.

In general, the goal of specifying a prior is to represent the plausible and defensible degree 

of belief in a hypothesis amongst the clinical community prior to the reporting of new study 

results. The most basic prior is a neutral prior centered on the null with a relatively wide 

variance reflecting the appropriate level of uncertainty in a hypothesis.22,23 Such a prior is 

generally appropriate in the analysis of clinical trials since it reflects the clinical uncertainty 

and equipoise that motivated the trial. Alternately, non-informative (“flat”) priors, which 

regard all possible values of the parameter as equally likely, can be used. In theory, these 

priors result in posterior distributions that are entirely dependent on the likelihood function 

computed from the study results. In practice, defining these non-informative priors can be 

challenging but guidance is available to select reasonable non-informative priors.24 Because 

it is prima facie exceedingly unlikely that all possible values of the parameter are equally 

likely at the outset of a trial (e.g., an odds ratio of 0·1 seems much less likely than an odds 

ratio of 0·9 since very large effects are much less common than small treatment effects), the 

non-informative prior is generally not an appropriate prior for a primary analysis (though it 

may be useful as a sensitivity analysis to assess the posterior under the likelihood alone). 

Specifying the prior to represent the prior belief of a skeptic or pessimist about treatment 

effect can also be a powerful means of showing the evidence is persuasive if the posterior 

probability of benefit remains high.25

Priors can be specified directly based on previous data.8,23 Data reported in previous clinical 

trials or meta-analyses can be used to construct the prior distribution. If the relevance of 

previous studies to the study under analysis is uncertain, the influence of the prior can be 

reduced (down-weighted) by inflating its variance.8 One modified example of such a prior is 

to borrow historical information on control group event rates.26,27 Priors can also be elicited 

empirically from stakeholders, including clinicians, researchers, and patient and caregiver 

representatives; a prior reflecting consensus can be generated by aggregating across these 

elicited distributions.28,29 One common strategy for prior construction is to specify a range 

of priors representing varying degrees of enthusiasm or skepticism to assess the sensitivity 

of the conclusion (the posterior) to varying prior beliefs.7,25,30 For example, the post hoc 

Bayesian re-analysis of EOLIA (see Panel 1) employed multiple strategies, including non-

informative prior, priors reflecting varying degrees of a priori enthusiasm and skepticism 

about the benefit of early ECMO, and a prior derived from a meta-analysis of previous 
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studies. Finding a high posterior probability of benefit across all these priors strengthens 

one’s confidence in the benefit of the intervention.

Prior specification requires a great deal of care and forethought, and each element of a prior 

distribution (its center, shape, and variance) should be carefully and explicitly justified.25 

Priors should be fully pre-specified in advance of unblinding the data to ensure that the prior 

is not influenced by knowledge of the study findings (i.e., it is a true prior).

Interpreting posterior distributions

Once the posterior distribution is estimated, a wide range of information can be gleaned 

from it. Typically, the “central tendency” of the posterior distribution is described using 

either the posterior mean or median value, depending on the shape of the distribution. The 

spread of the distribution is summarized by the credible interval. Unlike the frequentist 

confidence interval, the credible interval has a straightforward interpretation—the plausible 

range of values for the parameter given the available information.9 For example, the 95% 

credible interval can be interpreted as communicating that there is a 95% probability that 

the true value lies within the interval (Table 1). The 95% interval is often reported (mainly 

because we are used to seeing 95% confidence intervals designed to correspond to a Type 

I error rate of 5%). However, 90% or 99% credible intervals are also frequently reported in 

Bayesian analyses.

The posterior distribution can also be used to compute the probability of benefit or harm 

(e.g., odds ratio <1 or >1, respectively in Figure 2) based on the area under the curve 

above or below the chosen threshold. Often, a region of practical equivalence (or zone of 

indifference) will be specified based on the minimum clinically relevant effect (Figure 2).30 

The posterior distribution can be used to estimate the probability that the effect exceeds the 

minimum clinically relevant effect or possibly even larger effects if of interest. Conversely, 

the probability that the effect does not exceed the minimum clinically relevant effect 

(sometimes called, ‘futility’) or the probability of harm can also be computed. All these 

computations are obtained from the same posterior distribution, emphasizing the interpretive 

value of this approach.31

Drawing conclusions from Bayesian analyses

Bayesian methods provide both a challenge and an opportunity when we are aiming to 

draw definitive conclusions from data. The standardized p-value threshold of 0·05 allows a 

declaration of a “significant” study result, without considering the nuances of the clinical 

question. However, the flexibility of Bayesian methods allows (and requires) researchers to 

incorporate the clinical context into the analysis before declaring a substantive conclusion 

from the data.7,31

A key question in interpreting the results of a clinical trial is what posterior probability of 

benefit should be sufficient to drive change in practice. There are no arbitrarily defined 

standard thresholds for posterior probability to declare a “practice-changing” result.21 

Rather, study investigators must provide a context-specific interpretation of these values. 

For example, in a clinical area with comparatively fewer effective interventions, clinicians 
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might accept a lower posterior probability of efficacy for a new and inexpensive therapy 

than when considering an expensive novel intervention in a clinical area with a range of 

currently available effective interventions. For example, such considerations are essential to 

interpreting the results of the EOLIA trial (Panel 1), where a complex, invasive, and costly 

intervention offers a high probability of reducing the risk of death. Is a 96% probability of 

any reduction in mortality sufficient to justify widespread implementation of routine early 

ECMO in very severe ARDS? And how might patients, caregivers, clinicians, health system 

administrators, and health economists all answer that question differently? Importantly, by 

reporting the prior and posterior probabilities directly, the analysis allows all stakeholders to 

come to their own conclusions about whether the prior is consistent with their understanding 

of prior evidence and whether the posterior probability is sufficient to change their practice 

or change the clinical guidelines.

An additional tool in the Bayesian toolkit, known as decision theory, can formalize this 

process of combining key external factors to determine the best decision based on the 

available data. The goal of Bayesian decision analysis is to combine information across 

different outcomes (including outcomes, costs, and patient priorities) to determine an overall 

measure of the “value” of each intervention. The intervention with the maximum “value” 

after accounting for uncertainty (maximum expected value) can be taken to be the optimal 

intervention for use in clinical practice.32

What difference does it make? Interpretation of clinical trials

Bayesian analysis can clarify the meaning of data from clinical trials (Table 2).7,33,34 

A frequentist analysis of data may fail to reject a null hypothesis of no effect for two 

reasons: because the treatment effect is absent or harmful, or because the information in the 

study (sample size) was insufficient. Computing the posterior probability of benefit would 

clarify whether benefit had been ruled out (low probability of benefit) or not (moderate-

high probability of benefit).34 In a systematic re-analysis of trials, Wijeysundera et al. 

demonstrated that in 49 studies with non-significant p-values, the posterior probability of 

benefit ranged between 2%−97%; the posterior probability of benefit was >80% in 15/49 

studies.33 In these cases, Bayesian analysis clarifies the meaning of a non-significant result. 

The case of EOLIA (Panel 1) serves as an especially striking example where the Bayesian 

perspective can alter the meaning of non-statistically significant findings.358

On the other hand, a “statistically significant” result may not equate to a high probability 

of a “clinically significant’ benefit. The ability to estimate the probability of benefit for 

clinically relevant effect sizes is especially important for costly, invasive, and burdensome 

interventions. Wijeysundera et al. reported that 9/39 “statistically significant” studies had a 

posterior probability of benefit <70% for large effect sizes (hazard ratio <0·8).33 In these 

cases, certain treatments may not be of meaningful benefit even if the null hypothesis of no 

effect can be rejected (i.e., p<0·05). Consequently, Bayesian analysis often permits a more 

nuanced and informative interpretation of trial results.34
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What difference does it make? Design of clinical trials

Since Bayesian analysis can clarify the information in clinical trials, using Bayesian 

statistics to design clinical trials can help to ensure that the information generated by 

clinical trials is sufficient to reach a definitive conclusion for or against an intervention. The 

Bayesian approach is especially well-suited to the design of adaptive trials that discontinue 

enrolment once a clear conclusion is reached (Table 2).3,21 When designing clinical trials, 

we are generally accustomed to fixing sample size. Stopping a trial after an interim analysis 

before the pre-specified sample size was reached (“early stopping”) has traditionally been 

regarded as a serious methodological error to be avoided if at all possible because the trial 

did not conform to the pre-specified intentions of the investigator.36 Yet the claim that the 

information obtained from analysis depends on the stopping rule, and not just the data, 

merits scrutiny. Jerome Cornfield, an eminent NIH statistician involved in the development 

of the modern clinical trial, once wrote that “To most scientists without previous exposure 

to statistics, as well as to most intelligent laymen, any dependence on stopping rules…

seems like a violation of common sense.”37 And if the likelihood principle underpinning 

Bayesian statistics can be embraced as common sense, then Cornfield’s observation rings 

true. Bayesian statistics envisions information accumulating during a trial (Figure 3); since 

the information in the study depends only on the data (per the likelihood principle) and 

is independent of the investigators intentions vis-à-vis data analysis, study conclusions 

can be updated at any time until sufficient information is available to reach a conclusion, 

irrespective of the original intentions of the investigator.38 It should be noted that trial 

adaptations can also be specified based on the frequentist paradigm, though this requires 

application of complex rules (e.g. “alpha spending functions”) to account for inflated risk of 

a false positive conclusion (Type I error).39

Due to the dominance of the frequentist paradigm, particularly for regulatory bodies such 

as the FDA in the US, Bayesian trials (adaptive or otherwise) are often tested through 

simulation to ensure that they exhibit good control of frequentist error rates, i.e., Type 

I and II errors.40,41 These are often known as hybrid trial designs as they preserve the 

Bayesian interpretation of the analysis but rely on predicted frequentist error rates (assessed 

through simulation) to appraise trial operating characteristics. Bayesian methods for sample 

size calculation have also been developed.31,42 These do not consider the power that can 

be achieved by the study but aim to control the precision with which we can estimate 

the parameter of interest, i.e., the treatment effect.43 These methods for determining the 

sample size of a study align closely with the Bayesian interpretation of research, which 

aims to gather information and build on their information with each subsequent study. 

By controlling the precision of the estimated treatment effect, we control the amount 

of information available about the parameter, rather than our ability to make decisions 

following the study.

What difference does it make? Bayesian hierarchical models

The Bayesian approach leverages information outside the data (the prior) to enhance the 

information generated by analysis (the posterior). Bayesian hierarchical models employ an 

analogous approach to combining information between clusters of patients (also referred to 
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as subgroups or subtypes). Effectively, information from all clusters is employed to generate 

a data-driven posterior distribution for each individual cluster.44 “Pooling” or “borrowing” 

information between clusters (i.e. using information from one cluster to estimate treatment 

effect in another) in this way increases precision in estimated effects.45 The degree of 

pooling between clusters can depend on the similarity between those clusters. For example, 

in the Bayesian adaptive multiplatform trial of therapeutic anticoagulation for patients 

hospitalized for Covid-19, patients with moderate Covid-19 and severe Covid-19 were 

analyzed in a single hierarchical model.46–48 The patients with moderate Covid-19 were 

further subgrouped according to their baseline D-dimer (low, high, or unknown). The 

estimated effects for severe and moderate Covid-19 were very different, with minimal 

borrowing between them (Table 3). On the other hand, the estimated effects for subgroups 

within moderate Covid-19 were fairly similar, and an overall conclusion of benefit was 

reached in the pooled hierarchy of moderate Covid-19 (Table 3). This approach makes 

maximally efficient use of available information and can reduce sample size requirements 

(while maintaining a larger effective sample size as reflected by the precision of the credible 

intervals) when possible differences in treatment effect among groups are hypothesized but 

unknown.49

Conclusions

Joel Greenhouse records of the eminent statistician Jerome Cornfield that “[his] frustration 

with the prevailing frequentist methods of the time grew out of a need for a theory of 

statistics that would truly help advance scientific discovery and would provide meaningful 

measures of evidence.”19 As an enthusiast for Bayesian methods, Cornfield was ahead of 

his time. Subsequent technical developments in computing capacity, together with repeated 

historical lessons about the shortcomings of frequentist statistical inference, particularly for 

inference in clinical trials,12 suggest that routine implementation of Bayesian methods is 

warranted. Bayesian and frequentist methods should ultimately be seen as complementary, 

rather than as rivals (Panel 2). Bayesian analysis can supplement interpretation of data in 

studies designed on a frequentist basis, and can put the design of clinical trials on a more 

informative footing. Utilization of Bayesian inference is unquestionably growing, and will 

continue to grow, as familiarity with this framework grows, and the intuitive nature of 

Bayesian inference is increasingly appreciated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Panel 1.

Case study on the relevance of statistical paradigms to the meaning of 
data: extracorporeal membrane oxygenation in acute respiratory distress 

syndrome.

Frequentist and Bayesian statistics can sometimes entail nearly opposite conclusions 

from the same study. Extracorporeal membrane oxygenation (ECMO) for acute 

respiratory distress syndrome (ARDS) serves as a pertinent case. The ECMO to Rescue 

Lung Injury in Severe ARDS (EOLIA) trial compared a strategy of early ECMO to 

conventional rescue ECMO in patients with life-threatening hypoxemia or hypercapnia 

from severe ARDS. The original, planned sample size was 331 patients, but enrolment 

was discontinued after enrolling 249 patients because a planned interim analysis 

suggested that the trial was unlikely to reach a statistically significant conclusion of 

benefit.35 The effect of treatment was numerically large: observed mortality was 46% 

in the control group and 35% in the intervention group (11% absolute risk difference) 

yet the results were not statistically significant (relative risk 0·76, 95% confidence 

interval, 0·55 to 1·04, p=0·09). The authors were forced to conclude that the trial did 

not support the hypothesis that early ECMO reduces mortality in very severe ARDS. 

By contrast, a post hoc Bayesian re-analysis of these very same data found a high 

posterior probability of mortality benefit ranging between 88–99% depending on the 

prior,8 leading editorialists to conclude that ECMO should be regarded as efficacious.50 

In this case, the frequentist and Bayesian frameworks appear to give rise to opposing 

conclusions, raising fundamental questions about how we should approach statistical 

analysis and the interpretation of data.
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Panel 2.

Foes or Friends? Reconsidering the relationship between frequentist and 
Bayesian statistics

This paper emphasizes the strengths of Bayesian statistics over the possible weaknesses 

of frequentist statistics. However, frequentist methods have salient strengths. For one, 

they are computationally much simpler than Bayesian methods, and conventional 

frequentist trial design is straightforward, with a wide array of methods for estimating 

sample size and statistical power for different types of outcomes and estimands. The p-

value functions as a built-in decision analysis tool (“significant” versus “non-significant”) 

and given its logic it is well-suited to analyses where the primary goal is to test 

a hypothesis rather than to estimate the magnitude of treatment effect (e.g. tests of 

interaction), though it can still be criticized for disregarding prior information and 

the optimal p-value threshold to declare significance is debated. Bayesian methods for 

hypothesis testing are well-described. In trials designed based on frequentist statistics, 

Bayesian analysis can function to complement the interpretation of data without 

necessarily being the primary basis for analyzing the trial. Spiegelhalter et al. suggested 

that Bayesian analysis results could be presented in trial reports in an Interpretation 

section located between Results and Discussion.30 Used in this way, Bayesian analysis 

can help to establish whether meaningful benefit from an intervention has been ruled 

out when the trial results are not “significant”. The primary analysis of a clinical trial 

should always be conducted according to the pre-specified design. When the sample size 

is adequately large, frequentist and Bayesian analyses will converge towards the same 

conclusion.
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Figure 1. 
Example of a probability density distribution obtained in a hypothetical observational cohort 

study of mortality at one-year. In a sample of 100 patients, 30 were found to have died at one 

year of follow-up. These data are assumed to have a binomial likelihood. The probability 

density distribution computed from the likelihood function for these data, assuming a 

non-informative prior (constructed using a beta distribution), is shown in the plot. This 

data-based probability distribution represents the posterior distribution for this study. The 

distribution can be described in terms of its median value (solid vertical line) and 2·5th and 

97·5th percentiles (dashed vertical lines) representing the 95% credible interval. The area 

under the curve in the shaded red region gives the probability that the mortality rate lies 

between 0·25 and 0·35.
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Figure 2. 
Comparison of frequentist and Bayesian statistical inference. In a hypothetical study 

evaluating an association between intervention and mortality, 280 patients were randomized 

1:1 to intervention or control. Mortality in the control group was 38% and in the intervention 

group was 29%, yielding a point estimate for the odds ratio of 0·66. The sampling 

distribution for the null hypothesis in this study (top panel), defined based on the primary 

outcome and planned sample size (stopping rule), gives the expected frequency of obtaining 

data with a point estimate (vertical blue line) as or more extreme than the observed point 

estimate if the study was hypothetically repeated in precisely the same way many times 

(grey-shaded area). If this expected frequency is less than 5 out of 100 (“p<0·05”), the null 

hypothesis of no effect is generally rejected. In frequentist inference, the hypothesis is fixed 

(effect=null, vertical dashed line), and the expected data under the hypothesis are treated 

as a random variable with (hypothetical) repeated sampling (represented by the sampling 

Goligher et al. Page 17

Lancet. Author manuscript; available in PMC 2025 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution). In Bayesian inference, the observed data are treated as a fixed distribution 

(the likelihood function, middle panel) rather than as a point estimate and the hypothesis 

is treated as a random variable with a probability distribution (not as a point estimate). 

Information on the hypothesis prior to the study is represented by the prior distribution 

(green curve, bottom panels). Combining the prior with the likelihood yields a new random 

probability distribution for the updated hypothesis, the posterior distribution (red curve, 

bottom panels); the posterior distribution will vary according to the prior. The area under 

the posterior distribution may be used to estimate the probability of treatment effect below 

the region of practical equivalence which defines the minimum clinically relevant effect 

(blue-shaded region, bottom panels). The posterior distribution depends only on the prior 

and the likelihood; it is not determined by the analysis plan and stopping rule for the study 

(unlike the frequentist sampling distribution).

Goligher et al. Page 18

Lancet. Author manuscript; available in PMC 2025 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Bayesian sequential analysis of a clinical trial. A clinical trial was simulated by randomly 

sampling from a population where the true mortality rate at 28 days after randomization 

in the Intervention and Control Groups is 0·3 and 0·4, respectively. The prior distribution 

for the odds ratio is neutral, with information equivalent to a sample size of 50 patients. 

As increasing numbers of patients are enrolled and randomized, sequential analyses reveal 

accumulating information about mortality in the Intervention and Control groups (left 

panels). This increase in information is represented by a progressive decrease in the 

variance of the probability distributions for mortality in each group (left panels). The 

increasing information about mortality allows more precise estimates of the difference in 

mortality between groups (quantified by the posterior odds ratio, right panels), yielding 

a progressively higher strength of belief that the intervention lowers mortality (posterior 

probability of superiority, Pr(OR<1)). Under the likelihood principle, the information in 

the posterior distribution is not affected by the number of interim analyses, facilitating 

adaptive decision-making in trial design (e.g., stop the trial once the posterior probability of 

superiority exceeds a pre-specified threshold).
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Table 1.
Conceptual differences between frequentist and Bayesian statistical inference

Concept Frequentist paradigm Bayesian paradigm

Meaning of 
“probability”

Expected frequency of events Degree of belief in a hypothesis

Basic approach Focus on the expected frequency of observing data under the 
null hypothesis to base scientific inference on “objective” data 
rather than “subjective” degree of belief

Represent available information and uncertainty 
(“degree of belief”) about a hypothesis 
quantitatively using probability distributions

Model of science Subject hypotheses to rigorous testing one-at-a-time, 
prioritizing avoidance of Type I error (false positive 
conclusions)

Progressive accumulation of information to 
reduce uncertainty

Determinants of 
statistical information 
about the hypothesis in a 
study

Statistical information in a study depends on both the study 
results and the investigator’s intentions represented in the pre-
specified statistical design (stopping rule, primary comparison, 
etc.)

Statistical information deriving from a study 
depends only on the study results (likelihood 
principle)

Primary question for 
statistical inference

Probability of observing data given the null hypothesis Probability of a hypothesis given the observed 
data

“Should the null hypothesis be rejected?” “How strongly should we believe the 
hypothesis?”

Inferential probability P-value: given the null hypothesis, expected frequency of 
observing data as or more extreme than that observed in the 
study if the exact same study is hypothetically repeated over 
and over in accordance with the original pre-specified intentions 
of the investigator

Posterior probability: probability statements 
about the parameter of interest, given the 
available information from the study data and 
prior

Inferential interval 95% confidence interval: an interval generated from a sample 
of data such that in repetitions of the same study, 95% of such 
intervals would contain the true value of the parameter

95% credible interval: the plausible range of 
values for the parameter of interest given the 
available information from the study and the 
prior

Pre-defined probability 
threshold for inference

Generally, p<0.05 No single value of posterior probability defines 
“belief” in a hypothesis

Considers prior 
information

No, insists that inference should be based on study data alone Yes, requires specification of prior probability 
to estimate posterior probability
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Table 2.
Practical application of frequentist and Bayesian statistical outputs.

Paradigm Output Application to data analysis Application to trial design

Frequentist p-value Determine whether evidence against the null hypothesis is 
sufficient to reject the null hypothesis and conclude “statistical 
significance”

Used in sample size calculations to 
determine that statistical power is sufficient

Generally fixed at <5%, i.e., p < 0.05 In adaptive designs, can be used to 
determine whether to stop the study

The p-value for stopping depends on the 
pre-specified study design (e.g., number of 
interim analyses, etc.)

Confidence 
interval

Determine whether the range of values for treatment effect 
compatible with the data includes or excludes the null

n/a

Does not account for prior information

Generally applied using 95% interval range

Bayesian Posterior 
probability

Quantify the appropriate strength of belief in favour of a given 
treatment effect based on the available information

In adaptive designs, can be used to 
determine whether to stop the study

No single fixed posterior probability used to declare 
“significance”, although fixed thresholds to conclude 
superiority are pre-specified in Bayesian trial design

The posterior probability criterion for 
stopping enrolment is fixed

Credible 
interval

Represent the plausible range of values for treatment effect 
given available information

Can be used in sample size determination to 
control precision of treatment effect estimate

Accounts for prior information

Multiple possible interval ranges can be reported to 
characterize the posterior distribution, depending on clinical 
context
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Table 3.
Borrowing between groups in a Bayesian hierarchical model of the multiplatform randomized clinical trial of 

therapeutic anticoagulation for patients hospitalized for Covid-19

Severity 
group

D-dimer 
group

With borrowing (primary analysis) Without borrowing (sensitivity 
analysis) Increase in effective 

sample size with 
borrowingAdjusted odds ratio 

(95% CrI)
Effective 

sample size*
Adjusted odds ratio 

(95% CrI)
Actual 

sample size

Moderate

Low 1·22 (0·93–1·57) 1516 1·12 (0·82–1·54) 1075 441

High 1·31 (1·00–1·76) 1272 1·39 (0·95–2·01) 630 642

Unknown 1·32 (1·00–1·86) 1228 1·47 (0·96–2·28) 514 714

Severe n/a 0·83 (0·67–1·03) 1098 0·82 (0·66-1·03) 1098 0

*
Effective sample size is the sample size required to generate the level of precision (variance) in the estimated effect (adjusted odds ratio). 

Information in this Table is derived from references 46 and 47.
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