Quantifying Biases in Causal Models: Classical
Confounding vs Collider-Stratification Bias

Sander Greenland

Abstract: It has long been known that stratifying on variables
affected by the study exposure can create selection bias. More
recently it has been shown that stratifying on a variable that
precedes exposure and disease can induce confounding, even if
there is no confounding in the unstratified (crude) estimate.
This paper examines the relative magnitudes of these biases
under some simple causal models in which the stratification
variable is graphically depicted as a collider (a variable directly

affected by two or more other variables in the graph). The
results suggest that bias from stratifying on variables affected by
exposure and disease may often be comparable in size with bias
from classical confounding (bias from failing to stratify on a
common cause of exposure and disease), whereas other biases
from collider stratification may tend to be much smaller.

(EpPiDEMIOLOGY 2003;14:300-306)
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here is now an extensive theory of causal infer-

ence based on graphical probability models and

their relation to models for potential outcomes.!?
Most of this theory focuses on qualitative results; see
Greenland et al.,’> Robins,* Kaufman and Kaufman,’
Herndn et al.,° Cole and Herndn? and Greenland and
Brumback?® for epidemiologic examples. A central point
in this literature is that stratifying (conditioning) on a
variable C will alter associations among its causes. For
example, if X and Y are marginally independent (ie,
unassociated before stratification), then they will be
associated within at least one stratum of a variable that
they both affect.!®!?)

The simplest such situation is represented by an “in-
verted fork” X — C <Y, where the arrow represents a
direct effect of the tail variable on the head variable; C
is then called a “collider” on the X-C-Y pathway in the
graph, and stratifying on C will tend to change the
association of X and Y. Depending on the relation of X,
Y and C to the study exposure and disease, this change
can in turn lead to biases in effect estimation; these
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biases can be viewed as generalizations of Berkson’s bias’
beyond hospital-based studies. This paper examines the
sizes of these induced biases under some basic models for
studying the effect of an exposure E on a health outcome
D. The results suggest that the biases may tend to be
largest (comparable in size with classical confounding) if
the collider C is affected by E and D, smaller if C is
affected by E but not D, and even smaller if C is not
affected by E or D.

For the most part I will argue informally and consider
only binary variables whose effects can be well approx-
imated by a constant odds ratio model; I discuss techni-
cal details and more general models in the Appendix.
Parallel findings for linear structural models have re-
cently been presented by Peter Spirtes.?® All the biases
discussed are discrepancies between marginal (“crude”)
and conditional (stratum-specific) population associa-
tions, and hence correspond to large-sample (asymptot-
ic) biases. Issues of measurement error and sampling
variability will be addressed only briefly.

Classical Confounding and Berksonian Bias

Suppose we wish to estimate the causal effect on the
frequency of disease (D = 1) of having everyone exposed
(E = 1) us everyone unexposed (E = 0) in a population
that is both our source of study subjects and our target for
inference. Suppose also that we have observations on
some or all individuals in that population, but exposure
is not randomized. If we see the E-D association change
upon stratification by C, to what extent does this change
represent removal (control) of bias or, instead, introduc-
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tion of a bias in estimating this effect? It has long been
known that the answer depends on the direction of
causal relations among E, C and D.

In simple situations, a change upon stratification by
C corresponds to bias removal when C causally affects
both E and D (most simply depicted by the “causal fork”
E <« C — D). Most intuitions about covariate control
assume this situation, in which C is a “classical con-
(causal  confounder) of the E-D
ch6),3,10(ch8).11 Ty gccord with those intuitions,
causal-diagram theory implies that the C-specific E-D
associations will equal the C-specific effects of E on D
when C is a classical confounder, assuming no other
confounder or bias source is present.

Now suppose instead E and D both affect C, as when
C is a collider on the E-C-D path (most simply depicted
by E — C <= D) or is affected by a collider between E
and D. In this situation, we should expect at least one
C-specific E-D association to differ from the marginal
(“crude”) E-D association, so that it will appear as if C is
a confounder when in fact it is not; thus, any change in
the E-D association upon C-stratification represents bias
introduction.'? In a classic example, Berkson® considered
hospital-based studies of cholecystitis (E = 1) and dia-
betes (D = 1). Assuming a particular model for the joint
E-D effect on hospital admission (C = 1), he showed
that E and D would be negatively associated in the
“hospitalized” (C = 1) stratum if E and D were inde-
pendent in the original source population. Here, the
induced bias must be away from the null (no association)
because the true E-D effect (which here corresponds to
the marginal E-D association) is null.

As another example, let E represent an unopposed-
estrogen therapy indicator, D an endometrial-cancer in-
dicator and C an indicator of uterine bleeding (or of
endometrial dilation and curettage, which may be per-
formed in response to bleeding problems). In the 1970s,
some authors recommended estimating the effect of
therapy on cancer among bleeders only or among
women undergoing dilation and curettage (C = 1), to
account for the effects of bleeding on ascertainment of
estrogen use and cancer."? It was shown, however, that
the relative risk among these women would be much
smaller than the true causal relative risk because of the
strong effects of both the therapy and the cancer on
bleeding risk, and this downward bias would be much
larger than the upward bias attributable to differential
disease ascertainment.'*!> This differed from Berkson’s
example in that therapy had a large effect on endome-
trial cancer risk, and hence the downward bias induced
by C-stratification was toward the null.

founder”
association.!(

Quantifying the Biases
Many authors have described how bias attributable to
classical confounding (bias attributable to ignoring C
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when C is a cause of E and D) is limited by the strength
of the association of C with D given E and the associ-
ation of C with E.'6~?! In particular, let Rgp, Rep, and R
be the odds ratios for E-D given C, for C-D given E and
for C-E given D (each assumed constant across strata of
the given variable). Then the ratio of the marginal E-D
odds ratio to the C-specific odds ratio Ry, will tend to be
much closer to 1 (on the ratio scale) than either Ry, or
Rep; for examples, see Breslow and Day, Table 3.4,"
which allows R as large as 36, and Table 1 in
Yanagawa.?

The amount of classical confounding or Berksonian
bias depends not only on the associations among C, E
and D, but also on the distribution of C. This may be
seen by noting that if C = 1 were rare (say, under 5%)
in all E-D categories, the E-D odds ratio in the C = 0
stratum (which equals Rgp) would approximate the mar-
ginal E-D odds ratio, and hence bias from improperly
ignoring or stratifying on C would be negligible; sym-
metrically, the bias would be negligible if C = 0 were
always rare. These and further results follow from exam-
ining the ratio of the marginal to the C-specific E-D
odds ratio (“crude”/Rgp), which equals:

Bias(Rcp,Ree,p) = (RepReep + 1 — p)/
([Repp + 1 = pl[Regp + 1 — p) (1)

where p = P(C = 11D = E = 0) (see Appendix?°).
Given R¢p and R, the ratio formula 1 approaches 1 as
P(C = 1) approaches 1 or 0. To apply formula 1 to
measure confounding by C, one must assume D = 1 is
rare in all C-E categories, or that the parameters refer to
a case-cohort study in which the time of D is ignored.
This limitation arises because formula 1 measures non-
collapsibility of the study odds ratio, which does not
equal confounding by C when D = 1 is common.!!

Let G = (RopRep)? be the geometric mean of Ry
and Rgg. Given R¢p and R, the log of formula 1 has its
largest absolute value when P = 1/(G + 1). Substitution
of 1/(G + 1) for p in formula 1 yields

Biasyay(Rep,Rep) = (G + 1)¥/(Rep + 2G + Rep) (2)

for the maximal ratio of the marginal to the C-specific
E-D odds ratio,0torollay ) where “maximal” means max-
imally distant from 1 on the ratio scale. This maximum
will be closer to 1 (in ratio terms) than either of R, and
Reg, and approaches 1 as either R, or R approaches 1
with the other held fixed. Furthermore, for a fixed G this
maximum is maximized when R, = Rz = R, in which
case formula 2 becomes (R + 1)?/4R (see Appendix). For
Rep = Reg = 2, 4, 8 and 16 the respective maximal
biases are only 1.13, 1.56, 2.53 and 4.52; these are also
the maxima when R-;, = R = 1/2, 1/4, 1/8 and 1/16.
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Given a hypothesized value H for confounding by an
unmeasured indicator C, we may equate H to formula 1
and see what combinations of p, R, and R produce H.
Solving H = (R + 1)?/4R for R yields the values for Rgp
= Rgz = R closest to 1 that could produce H. For
example, the estrogen-endometrial cancer odds ratios
initially observed were around 10. To find the R closest
to 1 needed to completely explain those observations,
we solve H = 10 = (R + 1)%/4R, which yields R = 1/38
or 38; thus, a 10-fold bias requires at least one of R, or
Reg (or their inverses) be at least 38. Such computations
provide a quick check on the plausibility of claims that
an association is only attributable to an uncontrolled
factor.

Formulas 1 and 2 measure the ratio of the marginal to
the C-specific E-D odds ratio, regardless of any causal
relations among the variables, and regardless of whether
C stratification is removing or adding bias. To apply
them to Berksonian bias, note that the C-specific odds
ratio Rgp is the biased one, and so formulas 1 and 2
become the inverse and maximum inverse bias. When
the biases are below 1, I will use these inverses as bias
measures. Formula 2 inverts when one argument is in-
verted, eg, Bias,, (Rcp,1/Rcg) = 1/Bias,, (Rep,Reg), and
so inverting both arguments leaves the expression
unchanged.

The above formulas can be used to quantify other
biases. For example, consider again the diagram E < C
— D for classical confounding, but applied to a situation
in which C is the correct (true) but unknown exposure
status and E is an imperfect measure or surrogate for C.
The marginal (unadjusted) C-D odds ratio is then the
target parameter, but we observe the marginal E-D odds
ratio in its place. In the diagram, E is not associated with
D upon stratification by C (ie, Rz, = 1), which means
the error in E as a measure of C is nondifferential with
respect to D; as a consequence, the E-specific C-D odds
ratio Rep equals the marginal C-D odds ratio. Because
Rgp = 1 and R, is the target parameter, formula 1 is
now the size of the marginal E-D odds ratio, rather than
the bias; we may compare it with R, to measure the bias
attributable to misclassification (ie, the bias attributable
to using E in place of C). As before, formula 1 is closer
to 1 than is Ry, and approaches 1 as P(C = 1) ap-
proaches O or 1; these properties are just the well-known
results that misclassification of a binary exposure pro-
duces bias toward the null when the classification (E) is
purely random given exposure (C), and that the bias
worsens as the exposure prevalence approaches 0 or 1.7

Bias Due to Adjustment for Exposure Effects
Suppose next that C is affected by E but not by D. If
C is an intermediate, as in the diagram E — C — D, the
C-specific associations will be biased for the net (total)
effect of E on D, in part because the adjustment removes
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FIGURE 1. The study exposure E affects a covariate C that
is also affected by an independent risk factor B for the disease
D. Arrows are direct causal effects and dashed line is an induced
association. (a), Relations before stratification on C (no con-
founding of the E-D association); (b), Relations after C strat-
ification (E-D association now confounded by B).

some of the E effect.?»** For example, to estimate the net
impact of medical interventions (E = 1) on health
outcomes, one must avoid adjusting for factors on the
pathway from the intervention to the outcome. In this
(as in the Berksonian) case, any change in the E-D
association upon C-stratification represents a bias for
estimating the net effect, and formula 1 is the inverse of
the bias introduced. This problem is one basis for cau-
tions against conventional adjustments for posttreat-
ment variables in experiments” and in observational
studies, 10(ch8).26

These cautions are often ignored, sometimes with the
rationale that the intermediate-adjusted association rep-
resents the “direct effect” of E on D (ie, the effect of E on
D outside the E-C-D pathway).?” This would be so if D
shared no causes with E or C; formula 1 would then be
the ratio of the net and direct effects of E on D. This
interpretation could be applied to critically analyze the
use of C as an “intermediate endpoint” in studies of
effects of E on D (for example, if E, C and D were
indicators of antihypertensive medication, hypertension
and stroke): the fact that formula 1 tends to be much
closer to 1 than are Rqp, or Rog shows how treatment
efficacy (the net E-D effect) can be weak even if there
are strong treatment effects on the intermediate (R far
from 1) and strong intermediate effects on the outcome
(Rep far from 1), and also shows how this problem
worsens for rare or ubiquitous intermediates (ie, P(C)
near O or 1).

Unfortunately, the interpretation of the C-specific
E-D associations as direct effects can be limited by the
presence of other causes of the outcome. Even if E is
randomized, adjustment for a C affected by E can gen-
erate confounding, in which case the change in the E-D
association upon C-stratification will partly or wholly
represent bias introduction.®”** Consider Figure la. In
such a causal graph, the absence of an arrow between
two variables corresponds to absence of a direct effect
between them; these absences (along with arrow direc-
tions) are central assumptions encoded in a causal

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



EPIDEMIOLOGY  May 2003, Vol. 14 No. 3

graph.! Similarly, absence of a directed path (a head-to-
tail sequence of arrows) between two variables corre-
sponds to absence of any effect between them. For ex-
ample, Figure la asserts that E has no effect on B or D,
B has no effect on E and C has no effect on D. Further-
more, because the only path from B to E passes through
the collider C, B and E are marginally independent, and
hence B cannot confound the E-D association.'*!?
Nonetheless, because B and E both affect C, one should
expect E and B to be associated in one or more C strata.
Figure 1b illustrates that C-specific relation, using a
dashed line to represent the noncausal B-E association;
it shows that B will confound the C-specific E-D asso-
ciation, and hence a C-specific and C-adjusted associa-
tion will be biased for the direct effect of E on D.
Furthermore, because there is no C effect on D, there is
no indirect effect of E on D through C; thus, the net and
direct effects of E on D are equal, and so the C-adjusted
association will also be biased for the net E-D effect.

Another way to describe the problem is that B is a
classical confounder of the C-D association; thus, if one
fails to adjust for B, the estimated indirect E-effect being
“removed” by C-stratification will itself be confounded,
and the resulting estimate of the direct E-D effect will be
biased.*®?* This bias can occur whether or not C has an
effect on D. For example, in a randomized trial of an
appetite suppressant (E = 1) and mortality (D = 1) with
weight loss (C = 1) as the intermediate, to estimate the
direct drug effect one would have to control baseline
factors that affect both weight and mortality (such as
diabetes), despite the randomization of E.

To summarize, under Figure 1a the marginal E-D asso-
ciation is unconfounded, so it would properly reflect the
lack of an E effect on D (ie, it would be null). There is no
direct or indirect effect of E on D; thus, if stratification on
C alone accomplished its goal of estimating the direct E-D
effect, the C-specific E-D odds ratio Rg, should equal 1.
But instead it becomes biased away from 1 in a two-step
process: Because B and E are marginally independent and
affect C, we should expect a C-specific B-E association, as
in Berkson’s example; this association then couples with
the direct B-D effect to make B a confounder of the E-D
effect within C strata. The resulting bias can occur even if

E, B, or both E and B are randomized.

Quantifying the Bias

Using odds ratios to measure the effects in Figure 1a,
we can apply formula 2 repeatedly to bound the bias
produced by controlling C alone. For example, suppose
the causal odds ratios corresponding to the arrows in
Figure 1 are Rcp = Ry = Rgp = R > 1, and let Ry be
the (noncausal) C-specific B-E odds ratio. Because B
and E are marginally independent, the marginal B-E
odds ratio is 1; hence 1/Rp; has a maximum of Bias,,,, (R-
sosRep) = (R + 1)2/4R, and so Ry has a minimum of
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FIGURE 2. The relations of a nonconfounding covariate C
to E and D are confounded by independent covariates A and B,
respectively. (a), Relations before stratification on C (no con-
founding of the E-D association); (b), relations after stratifi-
cation on C (E-D association now confounded by B).

min(Rgz) = 4R/(R + 1)? < 1. Because E and D are
marginally independent, the marginal E-D odds ratio
equals 1 (which is the true E-D effect); hence the
C-specific E-D odds ratio is purely bias attributable to
ignoring B after stratifying on C, and a lower bound for
this odds ratio is  Bias,. (Rgp,min[Rgs]) =
Bias,..(R,4R/[R + 1]*) = (3R + 1)*/(R[R + 3]*) <1 (see
Appendix). This expression is near 1 unless the common
effect R is large; eg, for R = 2, 4, 8 and 16 its inverse is
only 1.02, 1.16, 1.55 and 2.41. The bound is thus much
smaller than R, yet it is conservative: it assumes the
factor prevalences could be such that the given bound is
attained. With actual prevalences the bias will be
smaller still; eg, with all the marginal prevalences set to
1/2, the actual inverse biases for R = 4, 8 and 16 are only
1.14, 1.43 and 1.93.

In general, the bias from controlling C will be closer
to 1 (in ratio terms) than the responsible effects (R,
Rge, Ryp), and, given those effects, it will approach 1 as
either the confounder prevalence P(B = 1) or the col-
lider prevalence P(C = 1) approaches O or 1. For esti-
mating either the net or direct E-D effect under Figure
1a, large bias in the C-adjusted E-D association requires
both a large E-C effect and substantial confounding of
the C-D association. If Figure 1a is modified so that C
affects D (by adding an arrow from C to D, so that C is
an intermediate), the same conclusion applies to esti-
mation of the direct E-D effect. For estimating the net
E-D effect, however, the C-adjusted E-D association is
further biased by the removal of the indirect (E — C —
D) effect, although this further bias may add or subtract
from the collider bias (which equals the confounding of
the E-D association by B within C strata).

M Bias

The two collider-stratification biases described above
can be avoided by not controlling variables affected by
exposure or disease. Recent articles have emphasized
that bias can also arise from stratifying on variables
unaffected by E or D, including variables that temporally
precede E and D.>®!? Figure 2a is a simple structure in
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which this occurs, called an “M diagram” because of its
shape when events are temporally ordered from top
(earliest) to bottom (latest). Here, C is a collider on the
“back-door” path from E to D passing through A, C and
B (a back-door path from E to D is a path that begins with
an arrow pointing to E; such paths are sources of con-
founding).>!? This diagram is of special interest when A
and B are not used for adjustment (perhaps because they
were unmeasured, or because they were discarded by a
variable-selection algorithm), but a variable C affected
by A and B is used or affects subject selection. For
example, if C = 1 represented study participation, A
would be a factor that affected participation and expo-
sure E but did not affect disease D except through E, and
B would be an independent factor that affected partici-
pation and D but not E; in an environmental exposure
study, candidates for A and B might include neighbor-
hood and sex, respectively.

In Figure 2a, E and D share no cause or other source
of covariation. Thus, the graph implies an absence of
confounding of the E-D association, so that E and D
(like A and B) will be marginally independent under this
graph, properly reflecting the absence of an effect be-
tween them. Any stratification that moves the E-D
association away from the null must be introducing bias
for the true E effect on D, just as in Berkson’s hospital
example.

One should expect to see a confounded E-D associ-
ation within C strata. First, C is a collider on the A-C-B
path; hence, A and B should be associated within some
C strata, as in Figure 2b. Second, one should expect this
C-specific A-B association to couple with the effects of
A on E and B on D to produce confounding of the E-D
association.!? A more traditional way to explain the
confounding within C strata views it as the result of a
three-component process: if one does not control A, one
should expect a spurious association of C and E attrib-
utable to confounding by A; if one does not control B,
one should expect a spurious association of C and D
attributable to confounding by B; finally, these spurious
associations can make the C-specific E-D associations
differ from the marginal E-D association (which is un-
confounded). In the absence of data on A or B, the dual
confounding (of C-E by A and of C-D by B) gives C the
spurious appearance of being a classical confounder of
the E-D association.

[ will use the term “M bias” to refer to the bias in
C-specific or C-adjusted E-D associations arising from
an M pattern within the underlying causal structure (in
which all or part of the C-E association arises from
shared causes A of C and E, and all or part of the C-D
association arises from shared causes B of C and D). Like
earlier examples of collider-stratification bias, M-bias
arises from adjustment for a variable C that numerically
behaves like a classical confounder (in that the effect
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estimate changes upon adjustment for C). Unlike those
examples, however, the bias attributable to C-adjust-
ment may not be apparent from the time order of the
events, for C may be determined before E or D; hence,
one may be led to adjust for C (and thus introduce bias)
if one uses traditional confounder-selection criteria,
even if one takes care to not adjust for variables affected
by E or D. It thus seems imperative to ask how large M
bias can be relative to the causal effects that produce it.

Quantifying the Bias

Using odds ratios to measure the effects in Figure 2a,
we may apply formula 2 repeatedly to bound the bias
produced by controlling C alone. For example, suppose
the causal odds ratios corresponding to the arrows in
Figure 2a are R,z = Ry = Rye = Ryp = R > 1 then,
because C is independent of E given A, the marginal
C-E odds ratio is pure confounding by A and so has a
maximum of (R + 1)?/4R. For parallel reasons the max-
imum marginal C-D odds ratio is also (R + 1)*/4R.
Because E and D are marginally independent, the mar-
ginal E-D odds ratio equals 1 (which is the true E-D
effect); hence the C-specific E-D odds ratio is purely bias
from stratifying on C, and an approximate lower bound
for this odds ratio is 1/Bias, ([R + 1]*/4R,[R + 1]*/4R)
= 16R(R + 1)}/(R* 4+ 6R + 1)? (see Appendix). This
expression is very close to 1 unless the common effect R
is very large; eg, for R = 2, 4, 8 and 16 its inverse is only
1.003, 1.05, 1.23 and 1.68. The bound is thus much
smaller than R, yet it is conservative; it assumes the
factor prevalences could be such that the given bound is
attained. With actual prevalences the bias will be
smaller still; eg, setting all the marginal prevalences to
1/2, the actual inverse biases for R = 4, 8 and 16 are only
1.04, 1.16 and 1.39. More generally, under Figure 2a,
large bias in the C-adjusted E-D association requires
enormous confounding of both the C-E and C-D asso-
ciations. Thus, M bias is much closer to 1 than the
responsible effects, and, given those effects, will ap-
proach 1 as P(A = 1), P(B = 1) or P(C = 1) approaches
Oor 1.

Discussion

A traditional belief about classical confounding is
that “large values for relative risks are unlikely to be
explained by some uncontrolled variable.”'® This belief
might be rephrased as “it is unlikely some composite C of
all uncontrolled variables is at once strongly associated
with E and with D given E, and also neither too infre-
quent nor ubiquitous.” Only successful randomization of
E makes the “unlikely” in these sentences an objective
probability, because given enough subjects it will rarely
create an allocation with a large degree of confound-
ing.”® Otherwise, “unlikely” is a subjective judgment,
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FIGURE 3. The relations of a confounder C to E and D are
confounded by independent covariates A and B, respectively.
(a), relations before stratification on C (E-D association con-
founded by multiple paths); (b), relations after stratification on
C (E-D association now confounded by only one path).

and often more speculative than acknowledged (eg, fail-
ure to imagine an uncontrolled confounder is not evi-
dence that there is little or no uncontrolled confound-
ing, any more than imagining a possible uncontrolled
confounder is evidence that there is uncontrolled con-
founding). Hence, algebraic evaluations of uncontrolled
confounding will be most convincing when applied to
specific unmeasured variables (eg, smoking) for which
there is background information about their prevalence
and associations with E and D.

Although an evaluation of collider bias can employ
algebra developed for confounder analysis, it is some-
what less speculative insofar as the bias depends on the
strength of relations of one known variable, the collider
C, to the study variables E and D. For example, if control
of C is suspected of introducing bias (as in Figures 1 and
2), one can estimate the size of that bias by the change
in the E-D association upon C adjustment. Nonetheless,
whether the change represents collider bias (as opposed
to some other phenomenon) may remain quite specula-
tive, because the bias involves variables (A and B in
Figures 1 and 2) that may be unmeasured and may not
even be known to exist.

Unlike classical confounding, the biases in Figure 1
and 2 depend on
thus, for them to be large requires all their component

of component biases;

biases be even larger, which may strain credibility in
some contexts. This requirement seems especially severe
for M bias, and is relevant to situations like that in the
“bow-tie” diagram in Figure 3a, which has an M pattern
embedded within it.!? Here, C is a classical confounder,
but is also a “back-door” collider, as in Figure 2a. If we
cannot adjust for A or B, should we stratify on C?
C-stratification removes the classical confounding by A,
B, and C, at the cost of introducing M bias (Figure 3b,
which shows the confounding within C strata). The
above results suggest that the M bias would often be
slight, and, if the effects of C are even remotely compa-
rable with those of A and B, the introduced M bias
would be outweighed by the removed confounding.
Nonetheless, consideration of variance as well as bias
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might favor no adjustment for C, or adjustment that
minimizes mean-squared error.”’ Further study of more
general cases would help indicate whether M bias should
be of practical concern in such adjustment decisions.
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Appendix

Bias Expressions

For binary C, D, E, let Rgp, Rop and R be the E-D,
C-D, and C-E odds ratios given C = 0, E = 0, and D =
0, respectively, and let Rqg, be the ratio of E-D odds
ratios at C = 1 and C = 0. Then the ratio of the
marginal E-D odds ratio to Ry, is

(ReepRepRegr + 1)(r + 1)/([Repr + 1][Repr + 1])
(A1)

where r = p/(1 — p) (see Yanagawa,”® formula. 2.2).
formula 1 then follows when Rgz, = 1 (the constant
odds-ratio model) upon substituting p/(1 — p) for r.
Differentiation of formula 1 with respect to r shows that
its maximum is formula 2, with maximum at r = 1/G;
differentiation of formula 2 with respect to Q = (Rgp/
Rep)'? with G fixed shows that it is maximized when Q
=1 (ie, when Rcp = Rcg). The resulting maximum (R +
1)?/4R is a sharp bound on the bias given G.

Extensions to Figures 1 and 2

The bounds for the C-specific E-D odds ratios in
Figures 1 and 2 follow by two and three applications of
formula 2, respectively, under the given constant-effect
models. As formula 1 shows, the marginal E-D odds ratio
will equal the C-specific E-D odds ratio if C is indepen-
dent of E given D or of D given E. The R in formulas
1 and 2 is D-specific, but in the second application of
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formula 2 to Figure 1, Ry is substituted for R, where
Ryi is the C-specific B-E odds ratio (and is constant
across C). To see that Rpg is also C-D-specific, as
needed, denote the conditioning variables explicitly in
the subscripts, eg, Rgg is now Ryg| . From standard graph-
ical rules (eg, Pearl'?), Figures 1 and 2 imply that E and
D are independent given B and C (Ryp e = 1), which
in turn implies that the C-D-specific odds ratio Rgg|cp
equals Ryg | (substitute Ry pe and Ry cp into formula
1; the result equals 1 because Ry jpc = 1). A parallel
argument implies that Rg,cp equals Rag | in Figure 2.
These arguments are unnecessary if D = 1 is rare at all
B-E-C levels in the expected sample, for then Ryg will
approximate Rpg cp regardless of the E-D association.
The resulting bounds are not sharp, however, and be-
come more conservative as R increases. In addition, the
M-bias bound is obtained by substituting the uncondi-
tional maximum C-E and C-D odds ratio (R + 1)%/4R in
place of the conditional odds ratios Rogp and Rep g in
formula 2; nonetheless, in the examples the error from
this approximation is slight (even when R = 16) because
Regips Repie and Rgp ¢ are not large.

Extensions to Other Models

To ease sequential application of formula 2 in Figures
1 and 2, I assumed first-order logistic models for effects,
which imply absence of three-way log-linear interactions
under those diagrams (eg, under a logistic dependence of
C on D and E, the C-specific E-D odds ratio R is
constant across C). When moderate interactions are
present (eg, if Regp # 1 but is closer to 1 than each
lower-order relative R, Rop and Reg), the above results
may be viewed as approximations by reinterpreting the
conditional odds ratios (such as Rgp, Rep and Rep in
formulas 1 and 2) as odds ratios standardized to the
total-sample distribution. See the case-control results in
Greenland and Maldonado®® for examples of the approx-
imation confounding.
Yanagawa”(theorem 1) generalized formula 1 directly to al-
low Regp # 1, as in formula Al). Kitagawa’! gave a
formula for confounding of risk differences, whereas
Schlesselman'® and Flanders and Khoury?! gave formulas
for risk ratios and polytomous C; see also Gail et al.’? In
these extensions it remains the case that the confound-
ing is smaller than the smallest constituent effect, and
much smaller than the average constituent effect.

error  under  classical
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