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Introduction 

This chapter provides a brief overview of causal-inference methods found in the health 

sciences. It is convenient to divide these methods into a few broad classes: Those based 

on formal models of causation, especially potential outcomes; those based on canonical 

considerations, in which causality is a property of an association to be diagnosed by 

symptoms and signs; and those based on methodologic modeling. These are by no means 

mutually exclusive approaches; for example, one may (though need not) base a 

methodologic model on potential outcomes, and a canonical approach may use modeling 

methods to address specific considerations. Rather, the categories reflect historical 

traditions that until recently had only limited intersection.  

Approaches Based on Causal Models 

Background: Potential Outcomes 

Most statistical methods, from orthodox Neyman-Pearsonian testing to radical subjective 

Bayesianism, have been labeled by their proponents as solutions to problems of inductive 

inference (Greenland, 1998), and causal inference may be classified as a prominent (if 
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not the major) problem of induction. It would then seem that causal-inference methods 

ought to figure prominently in statistical theory and training. That this has not been so has 

been remarked on by other reviewers (Pearl, 2000). In fact, despite the long history of 

statistics to that point, it was not until the 1920s that a formal statistical model for causal 

inference was proposed (Neyman, 1923), the first example of a potential-outcome model. 

Skeptical that induction in general and causal inference in particular could be given 

a sound logical basis, David Hume nonetheless captured the foundation of potential- 

outcome models when he wrote 

“We may define a cause to be an object, followed by another,… where, if the first 

object had not been, the second had never existed.” (Hume, 1748, p. 115) 

A key aspect of this view of causation is its counterfactual element: It refers to how a 

certain outcome event (the “second object,” or effect) would not have occurred if, 

contrary to fact, an earlier event (the “first object,” or cause) had not occurred. In this 

regard it is no different from standard frequentist statistics (which refer to sample 

realizations that might have occurred, but did not) and some forms of competing-risk 

models (those involving a latent outcome that would have occurred, but for the 

competing risk). This counterfactual view of causation was adopted by numerous 

philosophers and scientists after Hume (e.g., Mill, 1843; Fisher, 1918; Cox, 1958; Simon 

and Rescher, 1966; MacMahon and Pugh, 1967; Lewis, 1973).  

The development of this view into a statistical theory for causal inference is 

recounted by Rubin (1990), Greenland et al. (1999), Greenland (2000), and Pearl (2000). 

To describe that theory, suppose we wish to study the effect of an intervention variable X 

with potential values (range) x1,…,xJ on a subsequent outcome variable Y defined on an 

observational unit or a population. The theory then supposes that there is a vector of 

potential outcomes y = (y(x1),…,y(xJ))′, such that if X = xj then Y = y(xj); this vector is 

simply a mapping from the X range to the Y range for the unit. To say that intervention xi 

causally affects Y relative to intervention xj then means that y(xi) ≠ y(xj); and the effect 

of intervention xi relative to xj on Y is measured by y(xi)–y(xj) or (if Y is strictly positive) 

by y(xi)/y(xj). Under this theory, assignment of a unit to a treatment level xi is simply a 

choice of which coordinate of y to attempt to observe; regardless of assignment, the 

remaining coordinates are treated as existing pre-treatment covariates on which data are 
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missing (Rubin, 1978). Formally, if we define the vector of potential treatments x = 

(x1,…,xJ)′, with treatment indicators ri = 1 if the unit is given treatment xi, 0 otherwise, 

and r = (r1,…,rJ)′, then the actual treatment given is xa = r′x and the actual outcome is ya 

≡ y(xa) = r′y. Viewing r as the item-response vector for the items in y, causal inference 

under potential outcomes can be seen as a special case of inference under item 

nonresponse in which ∑iri = 0 or 1, i.e., at most one item in y is observed per unit (Rubin, 

1991). 

The theory extends to stochastic outcomes by replacing the y(xi) by probability 

mass functions pi(y) (Greenland, 1987; Robins, 1988; Greenland et al., 1999), so the 

mapping is from X to the space of probability measures on Y. This extension is embodied 

in the “set” or “do” calculus for causal actions (Pearl, 1995, 2000) described briefly 

below. The theory also extends to continuous X by allowing the potential-outcome vector 

to be infinite-dimensional with coordinates indexed by X, and components y(x) or px(y). 

Finally, the theory extends to complex longitudinal data structures by allowing the 

treatments to be different event histories or processes (Robins, 1987, 1997). 

Limitations of Potential-Outcome Models 

The power and controversy of this formalization derives in part from defining cause 

and effect in simple terms of interventions and potential outcomes, rather than leaving 

them informal or obscure. Judged on the basis of number and breadth of applications, the 

potential-outcome approach is an unqualified success, as contributions to the present 

volume attest. Nonetheless, because only one of the treatments xi can be administered to 

a unit, for each unit at most one potential outcome y(xi) will become an observable 

quantity; the rest will remain counterfactual, and hence in some views less than scientific 

(Dawid, 2000). More specifically, the approach has been criticized for including 

structural elements that are in principle unidentifiable by randomized experiments alone. 

An example is the correlation among potential outcomes: Because no two potential 

outcomes y(xi) and y(xj) from distinct interventions xi ≠ xj can be observed on one unit, 

nothing about the correlation of y(xi) and y(xj) across units can be inferred from 

observing interventions and outcomes alone; the correlation becomes unobservable and 

hence by some usage “metaphysical.”  
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This sort of problem has been presented as if a fatal flaw of potential outcomes 

models (Dawid, 2000). Most commentators, however, regard such problems as indicating 

inherent limits of inference based on unrepeatable “black-box” observation: For some 

questions one must go beyond observations of unit responses, to unit-specific 

investigation of the mechanisms of action (e.g., dissection and physiology). This need is 

familiar in industrial statistics in the context of destructive testing, although there 

controversy does not arise because the mechanisms of action are usually well understood. 

The potential-outcomes approach simply highlights the limits of what statistical analyses 

can show absent background theory about causal mechanisms, even if treatment is 

randomized: Standard statistical analyses address only the magnitude of associations and 

the average causal effects those represent, not the mechanisms underlying those effects. 

Translating Potential Outcomes into Statistical Methodology 

Among the earliest applications of potential outcomes was in randomization tests for 

causal effects. These applications illustrate the transparency potential outcomes can bring 

to standard methods, and show their utility in revealing the assumptions needed to give 

causal interpretations to standard statistical procedures.  

Suppose we have N units indexed by n and we wish to test the strong (sharp) null 

hypothesis that treatment X has no effect on Y for any unit, i.e., for all i,j,n, yn(xi) = 

yn(xj). Under this null, the observed distribution of Y among the N units would not differ 

from its observed value, regardless of how treatment is allocated among the units. 

Consequently, given the treatment-allocation probabilities (propensity scores) we may 

compute the exact null distribution of any measure of differences among treatment 

groups. In doing so we can and should keep the marginal distribution of Y at its observed 

value, for with no treatment effect on Y, changes in treatment allocation cannot alter the 

marginal distribution of Y.  

The classic examples of this reasoning are permutation tests based on uniform 

allocation probabilities across units (simple randomization), such as Fisher’s exact test 

(Cox and Hinkley, 1974, sec. 6.4). For these tests the fixed Y-margin is often viewed as a 

mysterious assumption by students, but can be easily deduced from the potential-outcome 

formulation, with no need to appeal to obscure and controversial conditionality principles 

(Greenland, 1991). Potential-outcome models can also be used to derive classical 
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confidence intervals (which involve non-null hypotheses and varying margins), 

superpopulation inferences (in which the N units are viewed as a random sample from the 

actual population of interest), and posterior distributions for causal effects of a 

randomized treatment (Robins, 1988; Rubin, 1978). The models further reveal hidden 

assumptions and limitations of common procedures for instrumental-variable estimation 

(Angrist et al., 1996),  for intent-to-treat analyses (Goetghebeur and van Houwelingen, 

1998), for separating direct and indirect effects (Robins and Greenland, 1992, 1994; 

Frangakis and Rubin, 2002), for confounding identification (Greenland et al., 1999), for 

estimating causation probabilities (Greenland and Robins, 2000), for handling time-

varying covariates (Robins, 1987, 1998b; Robins et al., 1992), and for handling time-

varying outcomes (Robins et al., 1999a). 

A Case Study: G-Estimation 

 Potential-outcome models have contributed much more than conceptual 

clarification. As documented elsewhere in this volume, they have been used extensively 

by Rubin, his students, and his collaborators to develop novel statistical procedures for 

estimating causal effects. Indeed, one defense of the approach is that it stimulates insights 

which lead not only to the recognition of shortcomings of previous methods, but also to 

development of new and more generally valid methods (Wasserman, 2000). 

Methods for modeling effects of time-varying treatment regimes (generalized 

treatments, or “g-treatments”) provide a case study in which the potential-outcome 

approach led to a very novel way of attacking an exceptionally difficult problem. The 

difficulty arises because a time-varying regime may not only be influenced by antecedent 

causes of the outcome (which leads to familiar issues of confounding), but may also 

influence later causes, which in turn may influence the regime. Robins (1987) identified a 

recursive “g-computation” formula as central to modeling treatment effects under these 

feedback conditions and derived nonparametric tests based on this formula (a special case 

of which was first described by Morrison, 1985). These tests proved impractical beyond 

simple null-testing contexts, which led to development of  semiparametric modeling 

procedures for inferences about time-varying treatment effects (Robins, 1998).  

The earliest of these procedures were based on the structural-nested failure-time 

model (SNFTM) for survival time Y (Robins et al., 1992; Robins and Greenland, 1994; 
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Robins, 1998), a generalization of the strong accelerated-life model (Cox and Oakes, 

1984). Suppressing the unit subscript n, suppose a unit is actually given fixed treatment X 

= xa and fails at time Ya = y(xa), the potential outcome of the unit under X = xa. The basic 

causal accelerated-life model assumes the survival time of the unit when given X = 0 

instead would have been Y0 = exaβYa, where Y0 is the potential outcome of the unit under 

X = 0, and the factor exaβ is the amount by which setting X = 0 would have expanded (if 

xaβ>0) or contracted (if xaβ<0) survival time relative to setting X = xa.  

Suppose now X could vary and the actual survival interval S = (0,Ya) is 

partitioned into K successive intervals of length ∆t1,…,∆tK, such that X = xk in interval k, 

with a vector of covariates Z = zk in the interval. A basic SNFTM for the survival time of 

the unit had X been held at zero over time is then Y0 = Σkexp(xkβ)∆tk; the extension to a 

continuous treatment history x(t) is Y0 = ∫Sex(t)βdt. The model is semiparametric insofar as 

the distribution of Y0 across units is not completely specified, although this distribution 

may be further modeled as a function of baseline covariates.  

Likelihood-based inference on β is unwieldy, but testing and estimation can be 

easily done with a clever two-step procedure called g-estimation (Robins et al., 1992; 

Robins and Greenland, 1994; Robins, 1998). To illustrate the basic idea, assume no 

censoring of Y, no measurement error, and let Xk and Zk be the treatment and covariate 

random variables for interval k. Then, under the model, a hypothesized value βh for β 

produces for each unit a computable value Y0(βh) = Σkexp(xkβh)∆tk for Y0. Next, suppose 

that for all k Y0 and Xk are independent given past treatment history X1,…,Xk-1 and 

covariate history Z1,…,Zk (as would obtain if treatment were sequentially randomized 

given these histories). If β = βh, then Y0(βh) = Y0 and so must be independent of Xk given 

the histories. One may test this conditional independence of Y0(βh) and the Xk with any 

standard method. For example, one could use a permutation test or some approximation 

to one (such as the usual logrank test) stratified on histories; subject to further modeling 

assumptions, one could instead use a test that the coefficient of Y0(βh) is zero in a model 

for the regression of Xk on Y0(βh) and the histories. In either case, α-level rejection of 

conditional independence of Xk and Y0(βh) implies α-level rejection of β = βh, and the set 

of all βh not so rejected form a 1–α confidence set for β. Furthermore, the random 
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variable corresponding to the value b for β that makes Y0(b) and the Xk conditionally 

independent is a consistent asymptotically normal estimator of β (Robins, 1998).  

Of course, in observational studies g-estimation shares all the usual limitations of 

standard methods. The assignment mechanism is not known, so inferences are only 

conditional on an uncertain assumption of “no sequential confounding;” more precisely, 

that Y0 and the Xk  are independent given the treatment and covariate histories used for 

stratification or modeling of Y0 and the Xk. If this independence is not assumed then 

rejection of βh only entails that either β ≠ βh or that Y0 and the Xk are dependent given the 

histories (i.e., there is residual confounding). Also, inferences are conditional on the form 

of the model being correct, which is not likely to be exactly true, even if fit appears good. 

Nonetheless, as in many standard testing contexts (such as the classical t-test), under 

broad conditions the asymptotic size of the stratified test of the no-effect hypothesis β = 0 

will not exceed α if Y0 and the Xk are indeed independent given the histories (i.e., absent 

residual confounding), even if the chosen SNFTM for Y0 is incorrect, although the power 

of the test may be severely impaired by the model misspecification (Robins, 1998). In 

light of this “null-robustness” property, g-null testing can viewed as a natural extension 

of classical null testing to time-varying-treatment comparisons.  

If (as usual) censoring is present, g-estimation becomes more complex (Robins, 

1998).  As a simpler though more restrictive approach to censored longitudinal data with 

time-varying treatments, one may fit a marginal structural model (MSM) for the potential 

outcomes using a generalization of Horvitz-Thompson inverse-probability-of-selection 

weighting (Robins, 1999; Hernan et al., 2001). Unlike standard time-dependent Cox 

models, both SNFTM and MSM fitting require special attention to the censoring process, 

but make weaker assumptions about that process. Thus their greater complexity is the 

price one must pay for the generality of the procedures, for both can yield unconfounded 

effect estimates in situations in which standard models appear to fit well but yield very 

biased results (Robins et al., 1992; Robins and Greenland, 1994; Robins et al., 1999a; 

Hernan et al., 2001).  

Other Formal Models of Causation 

Most statistical approaches to causal modeling incorporate elements formally equivalent 

to potential outcomes (Pearl, 2000). For example, the sufficient-component cause model 
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found in epidemiology (Rothman and Greenland, 1998, Ch. 2) is a potential-outcome 

model. In structural-equation models (SEMs), the component equations can be 

interpreted as models for potential outcomes (Pearl, 1995, 2000), as in the SNFTM 

example. The identification calculus based on graphical models of causation (causal 

diagrams) has a direct mapping into the potential-outcomes framework, and yields the g-

computation algorithm as a by-product (Pearl, 1995). These and other connections are 

reviewed by Pearl (2000) and Greenland and Brumback (2002).  

It appears that causal models lacking a direct correspondence to potential 

outcomes have yet to yield generally accepted statistical methodologies for causal 

inference, at least within the health sciences. This may represent an inevitable state of 

affairs arising from a counterfactual element at the core of all commonsense or practical 

views of causation (Lewis, 1973; Pearl, 2000). Consider the problem of predictive 

causality: We can recast causal inferences about future events as predictions conditional 

on specific intervention or treatment-choice events. The choice of x for X is denoted “set 

X=x” in Pearl (1995) and “do X=x” in Pearl (2000); the resulting collection of predictive 

probabilities P{Y=y| set(X=xi)} or P{Y=y| do(X=xi)} is isomorphic to the set of 

stochastic potential outcomes pi(y). As Hume (1748) and Lewis (1973) noted, for causal 

inferences about past events we are typically interested in questions of the form “what 

would have happened if X had equaled xc rather than xa,” where the alternative choice xc 

does not equal the actual choice xa and so must be counterfactual; thus, consideration of 

potential outcomes seems inescapable when confronting historical causal questions, a 

point conceded by thoughtful critics of counterfactuals (Dawid, 2000). 

Canonical Inference 

Some approaches to causal inference bypass definitional controversy by not basing their 

methods on a formal causal model. The oldest of these approaches is traceable to John 

Stuart Mill in his to attempt to lay out a system of inductive logic based on canons or 

rules which causal associations were presumed to obey (Mill, 1843).  Perhaps the most 

widely cited of such lists today are the Austin Bradford Hill considerations (misnamed 

“criteria” by later writers) (Hill, 1965), which are discussed critically in numerous 

sources (e.g., Koepsell and Weiss, 2003; Phillips and Goodman, 2003; Rothman and 

Greenland, 1998, Ch. 2), and which will be the focus here.  



9 August 2004  9 of 16 

 The canonical approach usually leaves terms like “cause” and “effect” as 

primitives (formally undefined concepts) around which the self-evident canons are built, 

much like axioms are built around the primitives of “set” and “is an element of” in 

mathematics, although the terms may be defined in terms of potential outcomes. Only  

the canon of proper temporal sequence (cause must precede effect) is a necessary 

condition for causation. The remaining canons or considerations are not necessary 

conditions; instead, they are like diagnostic symptoms or signs of causation – that is, 

properties an association is assumed more likely to exhibit if it is causal than if it is not 

(Hill, 1965; Susser, 1988, 1991). Thus, the canonical approach makes causal inference 

appear more akin to clinical judgment than experimental science, although experimental 

evidence is among the considerations (Hill, 1965; Rothman and Greenland, 1998, Ch. 2; 

Susser, 1991). Some of the considerations (such as temporal sequence, association, dose-

response or predicted gradient, and specificity) are empirical signs and thus subject to 

conventional statistical analysis; others (such as plausibility) refer to prior belief, and thus 

(as with disease symptoms) require elicitation, and could be used to construct priors for 

Bayesian analysis.  

 The canonical approach is widely accepted in the health sciences, subject to many 

variations in detail. Nonetheless, it has been criticized for its incompleteness and 

informality, and the consequent poor fit it affords to the deductive or mathematical 

approaches familiar to classic science and statistics (Rothman and Greenland, 1998, 

Ch.2). Although there have been some interesting attempts to reinforce or reinterpret 

certain canons as empirical predictions of causal hypotheses (e.g., Susser,1988; Weed, 

1986; Weiss, 1981, 2002; Rosenbaum, 2002), there is no generally accepted mapping of 

the entire canonical approach into a coherent statistical methodology; one simply uses 

standard statistical techniques to test whether empirical canons are violated. For example, 

if the causal hypothesis linking X to Y predicts a strictly increasing trend in Y with X, a 

test of this statistical prediction may serve as a statistical criterion for determining 

whether the hypothesis fails the dose-response canon. Such usage falls squarely in the 

falsificationist/frequentist tradition of 20th century statistics, but leaves unanswered most 

of the policy questions that drive causal research (Phillips and Goodman, 2003). 

Methodologic Modeling 
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In the second half of the 20th Century a third approach emerged from battles over the 

policy implications of observational data, such as those concerning the epidemiology of 

cigarette smoking and lung cancer. One begins with the idea that, conditional on some set 

of concomitants or covariates Z, there is a population association or relation between X 

and Y that is the target of inference, usually because it is presumed to accurately reflect 

the effect of X on Y in that population (as in the canonical approach, “cause” and “effect” 

may be left undefined or defined in other terms such as potential outcomes). 

Observational and analytic shortcomings then distort or bias estimates of this effect: 

Units may be selected for observation in a nonrandom fashion; conditioning on additional 

unmeasured covariates U may be essential for the X-Y association to approximate a 

causal effect; inappropriate covariates may be entered into the analysis; components of X 

or Y or Z may not be adequately measured; and so on.  

 One can parametrically model these methodologic shortcomings and derive effect 

estimates based on the models. If (as is usual) the data under analysis cannot provide 

estimates of the methodologic parameters, one can fix the parameters at specific values, 

estimate effects based those values, and see how effect estimates change as those values 

are varied (sensitivity analysis). One can also assign the parameters prior distributions 

based on background information, and summarize the effect estimates over these 

distributions (e.g., with the resulting posterior distribution). These ideas are well 

established in engineering and policy research and are covered in many books, albeit in a 

wide variety of forms and specialized applications. Little and Rubin (2002) focus on 

missing-data problems; Eddy et al. (1992) focus on medical and health-risk assessment; 

and Vose (2000) covers general risk assessment. Nonetheless, general methodologic or 

bias modeling has only recently begun to appear in epidemiologic research (Robins et al., 

1999b; Graham, 2000; Gustafson, 2003; Lash and Fink, 2003; Phillips, 2003; Greenland, 

2003), although more basic sensitivity analyses have been employed sporadically since 

the 1950s (see Rothman and Greenland, 1998, Ch. 19, for citations and an overview). 

 Consider again the problem of estimating the effect of X on Y, given a vector of 

antecedent covariates Z. Standard approaches are based on estimating E(Y|x,z) and taking 

the fitted (partial) regression of Y on X given Z as the effect of X on Y. Usually a 

parametric model r(x,z;β) for E(Y|x,z) is fit and the coefficient for X is taken as the effect 
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(this approach is reflected in common terminology that refers to such coefficients as 

“main effects”). The fitting is almost always done as if (1) within levels of X and Z, the 

data are a simple random sample and any missingness is completely at random, (2) the 

causal effect of X on Y is accurately reflected by the association of X and Y given Z (i.e., 

there is no residual confounding – as might be reasonable to assume if X were 

randomized within levels of Z), and (3) X, Y, and Z are measured without error. But, in 

reality, (1) sampling and missing-data probabilities may jointly depend on X,Y, and Z in 

an unknown fashion, (2) conditioning on certain unmeasured (and possibly unknown) 

covariates U might be essential for the association of X and Y to correspond to a causal 

effect of X on Y, and (3) X, Y and Z components may be mismeasured. 

 Let V = (X,Y,Z). One approach to sampling (selection) biases is to posit a model 

s(v;σ) for the probability of selection given v, then use this model in the analysis along 

with r(x,z;β), e.g., by incorporating s(v;σ) into the likelihood function (Eddy et al., 1992; 

Little and Rubin, 2002; Gelman et al., 2003) or by using s(v;σ)–1 as a weighting factor 

(Robins et al., 1994, 1999b). The joint parameter (β,σ) is usually not fully identified from 

the data under analysis, so one must either posit various fixed values for σ and estimate β 

for each chosen σ (sensitivity analysis), or else give (β,σ) a prior density and conduct a 

Bayesian analysis. A third approach, Monte-Carlo risk analysis or Monte-Carlo 

sensitivity analysis (MCSA), repeatedly samples σ from its marginal prior, resamples 

(bootstraps) the data, and re-estimates β using the sampled σ and data; it then gives the 

distribution of results obtained from this repeated sampling-estimation cycle. MCSA can 

closely approximate Bayesian results under certain (though not all) conditions 

(Greenland, 2001, 2004), most notably that β and σ are a priori independent and the prior 

for β is vague. The basic selection-modeling methods can be generalized (with many 

technical considerations) to handle missing data (Little and Rubin, 2002; Robins et al., 

1994, 1999b). 

 One approach to problem (2) is to model the joint distribution of U,V with a 

parametric model p(u,v;β,γ) = p(y|u,x,z;β)p(u,x,z;γ). Again, one can estimate β by 

likelihood-based or by weighting methods, but because U is unmeasured (latent), the 

parameter (β,γ) will not be fully identified from the data and so some sort of sensitivity 

analysis or prior distribution will be needed (e.g., Yanagawa, 1984; Robins et al., 1999b; 
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Greenland, 2003, 2004). Results will depend heavily on the prior specification given U. 

For example, U may be a specific unmeasured covariate (e.g., smoking status) with well 

studied relations to X, Y, and Z, which affords straightforward Bayesian and MCSA 

analyses (Steenland and Greenland, 2004). On the other hand, U may represent an 

unspecified aggregation of latent confounders, in which case the priors and hence 

inferences are more uncertain (Greenland, 2003).  

 Next, suppose that the “true” variable vector V = (X,Y,Z) has the corresponding 

measurement or surrogate W (a vector with subvectors corresponding to measurements of 

components of X, Y, and Z). The measurement-error problem (problem 3) can then be 

expressed as follows: For some or all units, at least one of the V components is missing, 

but the measurement (subvector of W) corresponding to that missing V component is 

present. If enough units are observed with both V and W complete, the problem can be 

handled by standard missing-data methods. For example, given a model for the 

distribution of (V,W) one can use likelihood-based methods (Little and Rubin, 2002), or 

impute V components where absent and then fit the model r(x,z;β) for E(Y|x,z) to the 

completed data (Cole et al., 2004), or fit the model to the complete records using weights 

derived from all records using a model for missing-data patterns (Robins et al., 1994, 

1999b). Alternatively, there are many measurement-error correction procedures that 

directly modify β estimates obtained by fitting the regression using W as if it were V; this 

is usually accomplished with a model relating V to W fitted to the complete records 

(Ruppert et al., 1995). 

 If a component of V is never observed on any unit (or, more practically, if there 

are too few complete records to support large-sample missing-data or measurement-error 

procedures), one may turn to latent-variable methods (Berkane, 1997). For example, one 

could model the distribution of (V,W) or a sufficient factor from that distribution by a 

parametric model; the unobserved components of V are the latent variables in the model. 

The parameters will not be fully identified, however, and sensitivity analysis or prior 

distributions will again be needed. In practice a realistic specification can become quite 

complex, with subsequent inferences displaying extreme sensitivity to parameter 

constraints or prior distribution choices (e.g., Greenland, 2004). Nonetheless, display of 
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this sensitivity can help provide an honest accounting for the large uncertainty that can be 

generated by apparently modest and realistic error distributions.  

Conclusion 

The three approaches described above represent separate historical streams rather than 

distinct methodologies, and can be blended in various ways. For example, methodologic 

models for confounding or randomization failure are often based on potential outcomes; 

the result of any modeling exercise is simply one more input to larger, informal 

judgments about causal relations; and those judgments may be guided by canonical 

considerations. Insights and innovations in any approach can thus benefit the entire 

process of causal inference, especially when that process is seen as part of a larger 

context. Finally, other traditions or approaches (some perhaps yet to be imagined) may 

contribute to the process. Hence I would advise against regarding any one approach or 

blending as a complete solution or algorithm for problems of causal inference; the area 

remains one rich with open problems and opportunities for innovation.   
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