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Interactions in Epidemiology: Relevance, Identification,
and Estimation

Sander Greenland

Sufficient-cause models represent biologic interactions (including synergism) in the
form of coparticipation of factors in a sufficient cause1–3 (causal coaction). In this

issue of the journal, VanderWeele1 provides new results relating sufficient-cause models
to regression models. These results reinforce the point that concepts of biologic interaction
do not in general correspond to the concept of statistical interaction, because the latter is
only the need for a product term in a statistical model.4,5 They further underscore that,
without strict assumptions, sufficient-cause interactions do not correspond to interdepen-
dence of effects in potential-outcomes (counterfactual) models.

I will examine the practical relevance and limitations of using epidemiologic
regressions to study interactions, however the latter are defined.

Relevance of Interactions
A practical issue concerning interactions is their relevance to public health goals of

finding cost-effective intervention strategies for disease reduction. Part of public health
involves identifying population subgroups that would benefit most from a given interven-
tion. These are not always high-risk subgroups—it is possible that a lower-risk group
would obtain the greatest absolute risk reduction from the proposed intervention.

In the absence of bias, departures from risk additivity imply that some subgroups
would obtain a greater absolute risk reduction from the intervention than others would.
Thus earlier authors noted that if costs were measured in terms of case-load per unit
population (average risk), the relevant null model for detecting special groups would be
additive on the risk scale.6,7 Risk nonadditivity (or “public health interaction”) implies the
existence of such groups.5,6 It also implies existence of interdependent effects in individ-
uals, also known as “interactions” in basic potential-outcome (counterfactual) causal
models; that is, risk nonadditivity implies there are individuals such that the presence or
direction of effect of one factor depends on the other factor.5,8

Risk nonadditivity is equivalent to heterogeneity or modification of risk differences
for one variable across levels of another.5 For factors that can act only causally, excess risk
above additivity (superadditivity) among those exposed to both factors signals the
presence of individuals who get the disease only when exposed to both factors (“syner-
gism” in the potential-outcomes sense).4,5,8 Identifying such individuals is valuable for
preventive medicine and public health, because for them the outcome can be prevented by
removing either of the factors.

Nonidentifiability of Biologic Interactions
Epidemiologic studies observe population distributions of risks, which sub-

merge details of individual experiences. One consequence of this submersion is that
many different biologic models will lead to the same population model.9,10 In
particular, the implications of biologic models for interaction are unidirectional; for
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example, risk additivity could hold because no interdepen-
dence of effects exists, or instead may hold because of
cancellations of the population effects of different individ-
ual interactions.5,8

Perfect cancellation of interactions is a higher-order
analog of “unfaithfulness” in causal diagrams,11,12 where 2
variables may be unassociated despite having causal connec-
tions. For example, a treatment with effects could appear
independent of the outcome if it causes and prevents equal
numbers of cases. Although perfect cancellation is often
implausible, any degree of cancellation will make it more
difficult to detect effects or their interdependencies.

Even if we could observe each individual’s response
under each exposure pattern, we still could not determine
from those observations which biologic mechanisms or suf-
ficient-cause types were operative8,13–15; hence, individual
mechanisms are nonidentifiable even from a perfect factorial
or crossover trial.13,15 For example, even with no sufficient-
cause synergism, variation in background characteristics
could nonetheless produce superadditivity.14 More generally,
estimation of degrees of interaction will require further as-
sumptions (eg, monotonicity) that cannot be tested with
epidemiologic data, even if the latter are perfect, although
valid tests for interactions can be constructed from weaker
conditions.1,5,8,13–15

Statistical Modeling Issues
Epidemiologic theories of interactions1,4,5,8,9,14–17 de-

rive population causal models from models for individual
etiology (eg, risk additivity is derived from the absence of
interdependent effects). Study of these models and forms
does not require that one use the derived population model as
the statistical analysis model. One can estimate risks or rates
by using any statistical model, then use these estimates to
test or estimate the parameters in the causal model.1,18 For
example, one can use risk estimates from a logistic statis-
tical model for inference on parameters in an additive-risk
causal model.1

Nonetheless, valid inference from a statistical model
requires that the model have enough higher-order terms (such
as products and nonlinear trend terms) to capture the actual
risk or rate pattern. Unfortunately, most statistical practice
mandates excluding terms that fail a significance test or
similar criterion for inclusion. Because epidemiologic data
typically have limited power to detect higher-order terms
such as products,19–21 the consequence of such criteria will
be frequent exclusion of these terms. This exclusion in turn
biases risk estimates toward the “main-effects only” form of
the fitted statistical model.

As examples of prime concern, excluding terms from
logistic, log-linear (Poisson regression), or proportional-haz-
ards (Cox) models will result in risk estimates biased toward
multiplicative effects and exponential dose-response for odds
or rates. Such model forms are highly “risk nonadditive” in

typical settings, so parsimony with terms induces a bias
toward risk nonadditivity. Potential consequences of this
statistical bias include overestimation of nonadditivity (lead-
ing to mistakes in targeting subgroups for intervention),
overestimation of effect interdependence, and biased infer-
ences about sufficient-cause interactions.

Switching to an additive-risk model results in analo-
gous problems. Excluding higher-order terms from additive-
risk models produces bias toward risk additivity and linear
dose-response. This bias can result in underestimation of risk
nonadditivity (again leading to mistakes in targeting sub-
groups) and underestimation of effect interdependence. Fur-
thermore, when using stratified or conditional models (eg, to
control matching factors), additive relative-risk models will
no longer be valid substitutes for additive-risk models.22

Consequently, to study nonadditivity, most case-control data
will have to be modeled using background information about
stratum-specific risks or rates to reconstruct population risk
patterns.23,24

A straightforward way to avoid unacceptable bias from
model simplification is to reorient statistical modeling away
from parsimony and toward smoothing to identify patterns
amid noise.25,26 This reorientation allows one to stay within
convenient multiplicative-model families such as the logistic,
albeit with more complex model terms than are common in
epidemiology. When many adjustment variables must be
included, this goal leads to fitting methods that can use a very
large set of terms, such as shrinkage27 and machine-learning
algorithms such as boosting.28,29 The same methods can also
be used to improve estimation of propensity scores for in-
verse-probability weighting in doubly robust estimation.30

Accurate statistical inferences from these methods may re-
quire computer-intensive techniques such as bootstrapping
(which involves more than just data resampling31).

Validity Issues
VanderWeele1 notes that his results, like others, assume

the absence of uncontrolled confounding. In practice we must
also assume absence of uncontrolled selection bias and mea-
surement error (including misclassification). Uncontrolled
biases can spuriously mask, reverse, or generate heterogene-
ity (such as nonadditivity), and measurement error can cause
any of these problems even if it is nondifferential.21,32

Unfortunately, few epidemiologic studies can control
all sources of bias. For this reason, analyses that attempt to
account honestly for uncertainties about biases can yield
interval estimates that are far wider than those from conven-
tional statistical models.33,34 In large studies and meta-anal-
yses, uncertainty due to random error can be far less than bias
uncertainty, because random error in estimates shrinks with
sample size but biases do not.35 Because random error in
interaction assessment will be larger,19–21 there will be even
larger total uncertainty than seen for average effects.
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Terminology: Impact Beyond Words
In statistics, an “interaction” in a regression model is

nothing more than a product term. Such terms can be made to
disappear or even change sign simply by transforming the
scale on which the outcome is measured (eg, by taking its
logarithm). This terminology is unfortunate because the need
for product terms or lack thereof does not correspond to the
presence or absence of biologic interactions except in special
cases,1,8,15,16,21,36 which have been elaborated by Vander-
Weele.1,15 Thus, because there is no biologic rationale for
such usage, calling product terms “interactions” is misleading
and should be abandoned.

Sadly, one still sees confused reports claiming “inter-
action” is or is not present based on tests for departures from
multiplicative models (eg, tests of product terms in logistic
models), as if such results have biologic meaning in the
absence of a causal model for interactions. Much of the
literature on “gene-environment interactions” revolves
around this confusion. Journal editors and reviewers could
help abate this problem by requesting that authors of such
analyses replace the word “interaction” by more precise
descriptors such as “nonmultiplicativity” or “product term.”

Conclusion
When (as is usually the case) adjustment for multiple

covariates is required, valid inferences about risk nonad-
ditivity and biologic interactions will require unconven-
tional modeling approaches that replace parsimony by
predictive accuracy as the statistical goal. Even if these
approaches are deployed, I believe that (due to limited
power and validity) only in exceptional circumstances will
epidemiology be able to provide reliable inferences about
biologic interactions, however those are defined. The chief
exceptions will be situations in which the study factors
have effects so large as to be undeniable, as with asbestos
and smoking.1

In particular, VanderWeele1 shows that, without further
assumptions, the causal risk ratio for one causal factor must
increase over 2-fold across the other causal factor to imply
sufficient-cause interactions. Inferring such a condition re-
quires a very large risk-ratio estimate for the jointly exposed
from large amounts of excellent data. Even with huge effects
and perfect data, however, identification of specific mecha-
nisms of interaction will depend on biologic assumptions that
are untestable (nonidentifiable) with epidemiologic observa-
tions alone.
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