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THE LOGIC AND PHILOSOPHY OF CAUSAL
INFERENCE: A STATISTICAL PERSPECTIVE

Sander Greenland

The topic of causality is a vast one in science and philosophy, so vast that
even a limited review would require a book. Yet most theories have not found
favor among empirical researchers – by whom I mean those whose primary job
is to collect and analyze data, as opposed to philosophers or theoreticians. This
chapter will thus concern only the few statistical theories for causation and causal
inference that have produced methods now widespread in practice.

In an attempt to avoid the confusion that often accompanies narrative descrip-
tions of causation and causal inference (especially in applied sciences), this chapter
uses rather stark and purely logical descriptions, and will assume the reader has
at least some familiarity with probability and statistics. Detailed illustrations and
applications, along with philosophical discussions, can be found in the references.
Special emphasis will be given to issues of causal inference from uncontrolled ob-
servations (observational studies), in which the effect under study becomes difficult
to separate from other, extraneous phenomena; the latter are often called “bias
sources” or “systematic errors”.

Before embarking on these descriptions, I will touch briefly on the relevance (or
possible lack thereof) for statistics of philosophies of causation.

DO WE NEED PHILOSOPHY OF CAUSATION FOR A STATISTICAL
THEORY OF CAUSAL INFERENCE?

It is possible to distinguish two kinds of inference: Inference to causal models from
observations, and inference from causal models to the effects of manipulations.
Inference to causal models may be viewed as trying to construct a general set
of laws from existing observations that can be tested with and applied to new
observations. In statistics this problem is subsumed under the topic of model
specification or model building. Inference from causal models may be viewed as
deducing tests and making decisions based on proposed or accepted laws, which
in statistics is subsumed under topics of testing, estimation, and decision theory.

In applied statistics, the feedback between these two directions of inference is
often summarized as a cycle of model proposal→ model test→ model revision→
model test that continues until available tests cease to have practical impact on
the model [Box, 1980]. There are familiar controversies about whether cycles of
this form lead toward “truth” or simply toward effective tools for prediction and
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manipulation (e.g., [Kuhn, 1970a; 1970b]), and whether the philosophical debate
surrounding causal inference stems from the fact that the word “causation” evokes
some notion of a deeper truth about the world hidden from current view.

Of interest then is that the most successful statistical model of causation, the
potential-outcomes model discussed below, has attracted theoretical criticisms
precisely because it contains counterfactual elements hidden from randomized-
experimental test (e.g., [Dawid, 2000]). These criticisms have been dismissed by
applied statisticians (see the discussion following [Dawid, 2000]), who understand
that the manipulative account inherent in potential-outcomes models fits well with
the more instrumentalist or predictive view of causation than critics admit. In-
deed, these models can be and have been used to great success with no worry
about whether their hidden elements need to be taken seriously [Greenland, 2004],
just as the celestial cogs and wheels once used to display the Ptolemaic model of
celestial motions were no obstacle to its considerable predictive success.

Given this instrumentalist view, it might seem that causal inference maybe dis-
tinguished from other inferences only due to its emphasis on manipulation rather
than prediction. From a statistical viewpoint, the distinction between prediction
and causal inference is semantic, not philosophical: Causal inference is merely spe-
cial case of prediction in which we are concerned with predicting outcomes under
alternative manipulations. Because only one of the alternatives can be carried
out, only one of the outcomes can be observed, resulting in nonidentification. But
the solution to this problem is no different than in problems of pure prediction:
We simply assume some limited form of isotropy, in which predictive regularities
(whether labeled “predictive” or “causal”) persist over the space and time spans
of interest, at least enough to justify generalizations across the spans. Whether a
deeper analysis is warranted for practice remains to be seen.

POTENTIAL OUTCOMES AND STRUCTURAL EQUATIONS

Manipulative accounts of causation, including those with counterfactuals, have
deep roots in the history of modern science. Informal outlines for causal inference
may be traced as far back as the development of experimental science. After all,
typical definitions of “experiment” include an element of experimenter “control”
of conditions, implying that such control will affect the outcome. Early in these
developments, however, Hume [1739; 1748, p. 115] recognized that the definition of
“cause” implicit in much usage carried the seeds of intractable underdetermination
or, as known in statistics, nonidentification; that is, observation alone could not
determine or identify whether one condition caused another.

To formalize the notion of causation and delineate the identification problem,
consider the following model (introduced by Neyman [1923]) which became estab-
lished in the experimental literature in the mid-20th century, was later extended
and popularized for observational research [Rubin, 1990], and is now standard in
much of statistics where it is called the potential-outcomes or “counterfactual”
model. Suppose we observe a subject i to have a particular outcome after being
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given a treatment. (“Subject” is here merely a term for observational unit; it may
be a plot of land, a laboratory animal, or a population, as opposed to a person.)
Let X be the variable ranging over the treatment possibilities, and let x and x∗ be
two distinct treatments (that is, values for X with x∗ 6= x). Let Y be the variable
ranging over the outcome (response) possibilities, and let y and y∗ be two distinct
outcomes (that is, values for Y with y∗ 6= y). As an example, X might encode
a range of treatment options for women with perimenopausal complaints, such as
unopposed estrogen therapy, opposed estrogen therapy, placebo treatment, and
no treatment, while Y could indicate survival over the decade following treatment
initiation (Y = 1 if the woman survives, 0 if not), or Y could be the survival time
(lifespan) following treatment initiation.

A common notion of cause and effect is then captured as follows: Receiving
treatment x (i.e., having X = x) caused the outcome Y to be y for the subject
relative to having instead X = x∗, if the actual outcome and treatment were y and
x, but would have been y∗ had x∗ been administered instead. The two outcomes y
and y∗ are then called the potential outcomes corresponding to treatments x and
x∗ for the subject, and the difference y − y∗ is called a measure of the effect on
the subject of giving X = x instead of (or relative to) X = x∗. In the example,
y − y∗ could be the difference of survival time with unopposed estrogen therapy
(x) versus placebo (x∗).

The nonidentification problem reflects that the subject’s response y∗ to treat-
ment x∗ is not observed if the received treatment x is not equal to x∗, and therefore
the effect y−y∗ cannot be computed from the observations. For example, we can-
not observe how long a woman would survive under placebo therapy if in reality
she receives unopposed estrogen, and so we cannot compute the effect that receiv-
ing unopposed estrogen rather than placebo had on this woman. This problem in
causal statements is often highlighted by noting that the premise of the conditional
“If X had been x∗ instead of x, Y would have been y∗” is counterfactual (contrary
to fact) [Lewis, 1973ab]. Any statistical inference about the effect must therefore
invoke physical assumptions that give precise meaning to the counterfactual con-
ditional. It must also invoke “identification” assumptions that allow construction
of estimates and tests of the average or expected effect E(Y − Y ∗) from the data
actually observed.

For further details and citations on the model see [Greenland et al., 1999; Green-
land, 2004], or some of the many other reviews (e.g., [Morgan and Winship, 2007;
Pearl, 2009]). The reader is warned however that (notwithstanding the enormous
contributions by Rubin to the model), much of the sociologic literature misat-
tributes the model to Rubin, some going so far as to call the model the “Rubin
Causal Model” (e.g., [Holland, 1986]), and thus misses large segments of the liter-
ature on the model in the experimental, econometric, and health sciences.
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Causal Laws and Structural Equations

Basic science often provides an empirical pattern or a more formal physical theory
that predicts the subject’s outcome Y as a function of the treatment X. This func-
tion might be subject-specific, tailored to specifics of the subject’s characteristics.
For example, suppose the subject is an ordinary ceramic dish, the treatment is
dropping it flat on a concrete floor from height x, and the outcome is breakage
(Y = 1) or not (Y = 0). Ordinary experience provides us a rough theory that
says dropping the dish two meters will cause breakage whereas dropping it one
millimeter will not; that is, X = 2000mm will cause Y = 1 relative to X = 1mm.
A different theory would apply to a steel dish. Especially in physics, such expe-
rience may eventually give rise to a mathematical “law” or model f(x) relating
Y to X for each of a broad class of subjects. Examples include laws governing
behavior of charged particles in response to an electric field of a given strength, or
more limited laws governing the size of predator populations in response to prey
abundance.

Such theoretical mechanisms or laws shift the uncertainty about the counterfac-
tuals (which are unobserved potential outcomes) to uncertainty about the mech-
anisms or laws connecting the outcome variable Y to the antecedent variable X.
Indeed, that shift is often promoted as a major force for progress in experimental
science, as follows: Suppose one proposes a general physical theory that says or
implies that Y = f(x) whenever X = x for each subject in a given class. Observ-
ing these predictions fail — that is, observing enough subjects in the class who
have Y 6= f(x) — can then be grounds for discarding or modifying the theory.

A functional relation Y = fi(x) supplying the outcome of subject i under dif-
ferent possible treatments is often called a structural equation for the subject. It
is important to note that the equation gives the variation in the outcome Y as X
varies within a single subject ; that is, it shows how Y varies as X is varied while
i is held constant. This single-subject feature captures the counterfactual nature
of causal laws.

Although it is not the defining feature of a structural equation, the within-
subject property distinguishes the equation from ordinary “regression” functions
of statistics, which describe associations. An association is the variation in Y as
one moves across subjects with different X; that is, both X and i are varying
in a regression. Nonetheless, because analytic statistical methodology is heavily
invested in estimating associations, and because associations are all that are statis-
tically identified in nonexperimental settings, much of statistical theory for causal
inference comprises delineation of assumptions that allow deduction of regression
equations from structural equations [Berk, 2003; Pearl, 2009].

Causal Null Hypotheses

A large portion of standard statistical theory concerns testing of associational “null
hypotheses,” which assert absence of association in a population or distribution
from which the observations are supposed to have arisen. In causal inference these
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nulls become no-effect hypotheses or “causal nulls,” which in their strong or strict
form state that the structural equation is constant for each subject; that is, fi(x) =
ci for each subject i. This hypothesis need not correspond to the hypothesis of no
association, which asserts that Y does not change across different subjects with
different X values. But much of statistical theory for causal inference comprises
delineation of assumptions that allow deduction of associational null hypotheses
from causal null hypotheses. When such an associational null is identifiable, its
rejection by a statistical test implies that the causal null hypotheses should be
rejected as well.

The Causal Identification Problem

As just described, there is one element that makes a theory causal and which
demands more than mere observation for inference: The multiple possible values
for Y for each subject i, given different values of X. Let xi be the observed value of
X for subject i, and suppose we have a theory that predicts Y as a function fi(xi)
of X. No matter how many subjects yield the predicted outcome fi(xi) upon
passive observation, and so are in accord with the causal theory that Y = fi(x),
that theory cannot be deemed more than a good description of how Y and X
will be associated as one looks across subjects. In terms of passive observation, it
merely predicts how plots the pairs xi, yi will look as i varies across subjects.

The theory’s predictions may be borne out among the treatment assignments (X
distribution) we observe, but we cannot be sure the theory would have succeeded
under other, counterfactual treatment assignments. In algebraic terms, we might
see Yi = fi(xi) for all the subjects, even though Yi might not have equaled fi(x

∗)
for some x∗ 6= xi. In sum, a theory may be a very good description of what
we observe but a poor predictor of what we would observe upon intervening to
change treatment assignment X. In other words, no matter how well it predicts
associations across subjects, it need not tell us how the outcome Y would change
upon changing X within subjects.

Confounding and Randomization

Whether by the investigator, nature, or another party, the treatment xi given
subject i might have been determined in a way that is associated with Y across
subjects, apart from any causal (within-subject) link from X to Y . The term con-
founding is often used to refer to this condition [Greenland et al., 1999], although
it is also known as “nonignorability of the treatment-assignment mechanism” [Ru-
bin, 1991]. Another way to describe this condition is that there is between-subject
variation in Y that is not due to within-subject variation of Y with X; in other
words, given a fixed value x for X, it is variation in the potential outcome Yx with
X across subjects. Earlier, informal discussions of causal inference described this
condition as “extraneous variation,” or that portion of between-subject association
of X and Y that is not due to an effect of X on Y . They recognized that such
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covariation of X and Y would remain present even if the causal null hypothesis
were correct, and thus would distort causal inferences or tests of that hypothesis
[Mill, 1843].

Sources of extraneous variation are sometimes called “confounders,” although
the term confounder is often defined in more strict terms [Greenland and Pearl,
2007]; see the section on causal diagrams below). Recognizing the impossibility of
eliminating or even knowing all confounders in biological work, R.A. Fisher [1932,
1935] developed an elegant theory of randomized experiments to allow statistical
“control for” confounding. This control is accomplished by enforcing a known
distribution for confounding under sufficiently strict causal hypotheses (such as
the null hypothesis).

In its basic form, randomization theory replaces vague ignorance about the de-
gree of confounding with a fully specified probability distribution for the observed
outcomes under the sharp null hypothesis of no effect Yi = fi(x) = ci (Y constant
across X within i). Consider classical permutation inference (e.g., [Cox and Hink-
ley, 1974, Ch.6]) in an experiment that assigns values of X among N subjects,
and let R be the treatment-assignment variable. R ranges over possible values for
X; thus, when subject i is assigned to have X = x, the subject’s value ri for R is
equal to x. Note however that the subject may deviate from assigned treatment,
resulting in the actual value xa of X not being equal to the assigned value x (in
which case X 6= R).

If assignment R has no effect on Y , the observed outcomes y1, . . ., yN should be
the same regardless of the assignments r1, . . ., rN ; in other words, they should be
the ci in the null model Yi = fi(x) = ci. Thus, given this causal null hypothesis,
we may regard the outcome list (y1, . . ., yN ) as if it were fixed from the start of the
experiment and thus independent of a subsequent random treatment allocation. A
known randomization scheme then allows one to compute exact probabilities for
any allocation of these fixed outcomes among the treatment levels, including the
allocation observed.

From these probabilities, we can compute null distributions of test statistics
(such as the sample sum of cross products Σixiyi used for trend tests) and thus
compute P -values (“observed significance levels”) for testing the causal null hy-
pothesis. If the possible treatment allocations are merely permutations of the
actual treatment-assignment list r1, . . ., rN , the resulting test is known as a per-
mutation test for the effect. Test of means may also be used, noting that the
total-sample mean of Y remains fixed under the null hypothesis, regardless of
allocation.

As a special case of the foregoing methods, consider binaryX and Y with perfect
random allocation of N1 subjects to X = 1 and N0 subjects to X = 0, and let
N = N1+N0. Then Σixiyi is the number of subjects in theX = 1, Y = 1 cell of the
2 by 2 table of X and Y . Under the causal null hypothesis, (y1, . . ., yN ) is a fixed
vector of potential outcomes, and so the Y = 1 marginal total in the experiment
is fixed at y+ = Σiyi (so is the sample mean of Y, y+/N , which is the proportion
of subjects having Y = 1). Under the null, randomization becomes nothing more
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than randomly allocating the fixed outcomes (y1, . . ., yN ) to the X = 1 and X = 0
categories, which induces a hypergeometric distribution for Σixiyi, as derived by
Fisher for his exact test [Cox and Hinkley, 1974, Ch. 5].

Causality and Conditionality

The conditionality problem illustrates how the introduction of a causal component
into a statistical model can resolve previous ambiguities in choice of a statistical
procedure. This resolution comes from explicitly modeling the otherwise hidden
within-subject dimension underlying causal questions, and shows how statistical
questions can arise even when no ordinary sample-to-population inference problem
exists.

There has been a long-running controversy in statistics concerning whether the
use of permutation tests is justifiable when the sample distribution of Y (com-
prising the observed values y1, . . ., yN ) is not fixed in advance by the investigator.
Some of the arguments for these tests appeal to rather abstruse and somewhat
controversial principles of ancillarity or conditionality [Little, 1989] while others
are based on favorable repeated-sampling (frequency) properties when y1, . . ., yN
represent a sample from a distribution for Y .

If one is concerned only with the observed N units, the question of association of
X and Y among those sampled is purely empirical rather than inferential, in that
it is answered by simply plotting or cross-tabulating the observed pairs (xi, yi). In
this regard, it is no different a question than asking the heights of the N tallest
mountains on earth: Accept the reported measurements and you have your answer.

The absence of a statistical inference problem in this descriptive question has
led many to automatically identify the fixed-margin controversy and even causal
inference with the problem of inference to a larger population. Add however the
causal dimension and we have a problem of inference from observed properties of
the sample (the observed distribution of the pairs xi, yi) to unobserved properties
of the same sample, namely the unobserved potential outcomes of the sampled
subjects. As described above, the fixed Y margin can be deduced directly from
the causal null hypothesis for the observed sample of units (i = 1, . . ., N), with no
reference to sampling from a larger population. In particular, the fixed Y margin
is just a physical property of the sample under the causal null hypothesis among
those sampled [Greenland, 1991].

There is however a connection to inference about a population from which the
observed units are sampled. First, note that rejection of the null for the sample
implies rejection for the population: The sample is part of the population, and
thus finding an effect in the sample implies that there is an effect in the population
(namely, in the part that composes the sample). The converse condition is that
failure to reject the null for the sample should correspond to failure to reject for
the population. This converse is not logically necessary, but violating it would
amount to asserting that causation exists in a population even though we would
not assert causation exists in the portion we observed. At the very least such an
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assertion would seem paradoxical [Greenland, 1991].

The General Causal Inference Problem as a Missing-Data Problem

To extend statistical reasoning about causation beyond the null hypothesis, it is
essential to add a model for the distributions of the potential outcomes. In the
general form of this model, the univariate outcome variable Y is replaced by a
fixed, baseline covariate vector Y with components Yx indexed by values x of the
treatment X; these Yx are the potential-outcome variables, one for each possible
value x of X. (More generally, as described later, X may be a vector X that indexes
the potential-outcome vector Y.)

The treatment-allocation variable becomes a vector R of indicators with com-
ponents Rx, where Rx = 1 if and only if component Yx of Y is observed. The
observed value ri of R for subject i thus displays which component of Y was
observed (if any), and is a vector of zeros except possibly a single 1 at the com-
ponent corresponding to the actual treatment. As a consequence, r+i = Σxrxi is
either 0 or 1 (no or one component of Y observed). This conceptual framework
allows one to view causal-inference problems as special types of missing-data prob-
lems, in which only one component of Y can be observed (i.e., no more than one
component of R can be 1), leaving the rest of Y as “missing data” [Rubin, 1991].

Because only one component of Y can be observed, the joint distribution
Pr(Y=y) of the components of Y is not statistically identified — that is, distinct
distributions for Y can lead to exactly the same distribution for the observations.
Assuming that every subject has an observed outcome, those observations are the
subject-specific dot products R′Y = ΣxRxYx, which equal the observed outcomes
(the Yx for which Rx = 1), and R, which shows the treatment that was received
(i.e., the Rx that equals 1). Without further assumptions or experimental control,
all we may identify is Pr(R′Y = r′y, R=r) and functions of it, including the
conditional distributions Pr(Yx = y|Rx = 1). In the nonexperimental settings, it
may be prudent to search for the weakest identification assumptions consonant
with our practical goals.

Standardization and Inference on Marginal Effects

The goal of most statistical causal inference is to compare the marginal distri-
butions Pr(Yx = y) of the Yx across X. These comparisons are identified under
the independence assumption that for all x, Pr(Yx = y) = Pr(Yx = y|Rx = 1),
sometimes called “weak ignorability” (the stronger but inessential condition that
R is independent of Y is then called “strong ignorability”), and which corresponds
to absence of confounding. The paradigmatic example arises when R is random-
ized by the investigator, for then R is independent of everything, including any
potential-outcome vector Y.

In nonrandomized studies, ignorability conditions are usually unacceptable as-
sumptions. One strategy for this situation is to pretend instead that R and Y are
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independent conditional on a vector of fully observed covariates Z, called strong
ignorability given Z. A weaker condition sufficient for practical applications is the
analogous set of X-specific relations,

(1) Pr(Yx = y|Rx = 1,Z = z) = Pr(Yx = y|Z = z)

for all x, called weak ignorability given Z.
Now consider the following “standardization” formula, which biostatisticians,

demographers, and epidemiologists may recognize as a modern version of the clas-
sical formula for “direct standardization” to the covariate distribution Pr(Z=z):

(2) Pr(Yx = y) = ΣzPr(Yx = y|Z = z)Pr(Z = z)

This equation is just a basic probability relation displaying Pr(Yx = y) as a
covariate-probability weighted average of the covariate-specific potential-outcome
probabilities Pr(Yx = y|Z = z). Applying assumption (1) to equation (2) yields

(3) Pr(Yx = y) = ΣzPr(Yx = y|Rx = 1,Z = z)Pr(Z = z).

This equation provides the desired marginals Pr(Yx = y) in terms of the ob-
servable distribution Pr(Yx = y|Rx = 1,Z = z), assuming the standardization
is adequate to remove confounding. Equation (3) is thus sometimes termed “no
confounding of the marginal effects given Z”. It is a weaker condition than as-
sumption (1) (weak ignorability given Z) because deviations from (1) may average
to zero over Z and thus preserve equation (3), or at least leave it an acceptable
approximation. In other words, in theory, stratification by Z need not be sufficient
for estimating conditional effects in order to be sufficient for estimating marginal
effects.

Using the fact that Pr(Rx = 1|Z = z) = Pr(Rx = 1,Z = z)/Pr(Z = z),
equation (3) may be rewritten in an equivalent form

(4) Pr(Yx = y) = ΣzPr(Yx = y,Rx = 1,Z = z)/Pr(Rx = 1|Z = z).

This equation displays Pr(Yx = y) as an inverse-probability weighted (IPW) av-
erage of the unconditional observation probabilities Pr(Yx = y,Rx = 1,Z = z).
The allocation probabilities Pr(Rx = 1|Z = z) that form the inverse weights are
sometimes called “propensity scores” and can be generalized to continuous and
time-dependent treatment processes [Robins, 1999ab]. Equation (4) shows how
these scores, if known or at least identifiable, can be used to estimate a marginal
potential-outcome distribution Pr(Yx = y) under the Z-conditional weak ignora-
bility assumption, which licenses the derivation of equation (3) and hence (4) from
equation (2).

Summary

Classical permutation arguments are based on enforcing a distribution for the
observation-indicator vector R (e.g., by treatment randomization) and then using
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this distribution as the source of subsequent probability statements about the
data. These arguments are not heavily emphasized in most statistical training,
and yet are the ones most directly linked to potential-outcome models of causation.
They should be contrasted with regression statistics, which base their probability
statement on assumed distributions for the observed outcome R′Y given observed
covariates Z.

The advantage of the treatment-based approach to causal inference is clear when
indeed the distribution of R is known or at least identifiable, as in experiments:
It seems far better to use an identified distribution than one that is merely as-
sumed. Nonetheless, in nonexperimental (observational) research, all distributions
become mere assumptions when not based on known mechanisms. The choice be-
tween approaches then comes down to judgments about which assumptions are
more plausible or at least more palatable. Current research on statistical methods
for causal inference includes development of “multiply robust” procedures, which
retain their statistical validity under broader conditions than either treatment-
based or outcome-based modeling [Kang and Shafer, 2007].

CAUSAL SYSTEMS AND CAUSAL DIAGRAMS

Suppose now we have a time-sequenced set of structural equations, or causal sys-
tem, in which (for example) the output w of a function f(u, v) may become an
input to a later function g(u,w) with output x. (Equivalently, suppose that for
a variable W with corresponding potential-outcome vector W, the observed value
W = R′WW may be part of the index vectors for the potential outcomes of a
subsequent variable.) We may then illustrate the system using a directed acyclic
graph (DAG) in which arrows connect input variables to output variables [Pearl,
2009; Glymour and Greenland, 2008; Spirtes et al., 2001]. Such graph is a causal
diagram if (as here) the arrows are interpreted as links in causal chains.

Figure 1 provides an example, illustrating a system of structural equations

U = fU (εU ), V = fV (εV ), W = fW (u, v, εW ),
X = fX(u,w, εX), Y = fY (v, w, x, εY ), Z = fZ(w, εZ),



The Logic and Philosophy of Causal Inference: A Statistical Perspective 823

where the inputs εU , εV , εW , εX , εY , εZ are “purely random disturbances,” that
is, inputs that are independent random variables (but not necessarily identically
distributed). Traditionally, such disturbances are left implicit, i.e., understood to
be present but not shown.

The entire system may be viewed as a multivariate model for the graphed vari-
ables, with the graph encoding various constraints on the joint distribution of
these variables [Lauritzen, 1996; Spirtes et al., 2001; Pearl, 2009]. In particular,
the distribution of the disturbances induces a joint distribution of the graphed
variables which obeys the Markov decomposition. That is, the joint distribution
of the graphed variables decomposes into factors, one for each graphed variable,
that give the probability of each variable given its graphical/functional inputs
(“parents”). For Figure 1 the decomposition is (in an abbreviated notation)

Pr(u, v, w, x, y, z) = Pr(u)Pr(v)Pr(w|u, v)Pr(x|u,w)Pr(y|v, w, x)Pr(z|w).

Because U and V have no inputs within the system (they are “exogenous”), their
factors Pr(u) and Pr(v) are unconditional.

The decomposition provides not only the original joint distribution, but also
a formula for the effect on that distribution of shifting the functional relations
or distributions of any subset of the variables. For example, randomization of W
usually refers to an intervention that replaces W = fW (u,w, εW ) by W = fW (ε∗W )
where the distribution of ε∗W (and hence W ) is determined by the investigator and
hence is known. The resulting joint distribution of the variables is then

Pr(u, v, w, x, y, z) = Pr(u)Pr(v)Pr(w)Pr(x|u,w)Pr(y|v, w, x)Pr(z|w),

the factor Pr(w|u, v) being replaced by the new randomization distribution for
W,Pr(w). The corresponding graph lacks arrows into W .

Suppose that instead of randomizing W we intervene to force all values of W to
a particular value w0, without altering any other functional relation (if this can be
done). We then replace the equation W = fW (u,w, εW ) by the equation W = w0.
The resulting joint distribution of the variables is then 0 except at W = w0, where
it is

Pr(u, v, w0, x, y, z) = Pr(u)Pr(v)Pr(x|u,w0)Pr(y|v, w0, x)Pr(z|w0),

the factor Pr(w|u, v) being replaced by the new, forced distribution Pr(w0) = 1.
The corresponding graph lacks arrows into W , and has W = w0 in place of W .
Repeating this exercise for other values of W shows how the system responds to
various interventions that fix or set W to particular values, again presuming this
is can be done without disturbing other systemic relations [Pearl, 2009].

Some Useful Elements of Graph Theory

To describe further consequences of the Markov decomposition relevant for causal
inference we need several concepts from graphical probability theory. Two vari-
ables in a graph are adjacent if they are connected by an arrow. Consider a
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“path” in a graph, a nonrepeating sequence of variables in which successive se-
quence members are adjacent. Effects of one variable on another are transmitted
by causal sequences or causal pathways, which in a causal diagram are causal or
directed paths in which each arrow points to the tail of the next arrow in the path.
More precisely, given a causal diagram, the existence of a directed path from one
variable to another is a necessary but not sufficient condition for an effect to occur.
Thus, in Figure 1, U → W → Y means U can affect Y via its effect on W , but
not that U does affect Y . The graph is acyclic if (as assumed here) no variable in
the graph affects itself (meaning there is no feedback loop in the graph).

A central problem of causal inference is distinguishing causation from mere
probabilistic dependence, or “association” as it is often called. Graph theory
provides a quick visual distinction, via the following concepts. A variable is a
collider on a path if it is at a meeting of two arrowheads along the path; otherwise
it is a noncollider on the path. In Figure 1, W is a collider on the path UWV but
a noncollider on the paths UWY and XWY . A path is said to be closed or blocked
at a collider, and open or unblocked at a noncollider. The entire path is open if
has no collider, otherwise it is closed. Open paths include but are not limited
to causal pathways, a fact which (as discussed below) reflects classic problems in
causal inference.

It is often helpful to think of associations as signals flowing through the graph.
Given a graph, associations can flow through or be transmitted by open paths.
Open paths themselves are merely conduits for the transmission, however. More
precisely, given a graph, the existence of an open path between two variables is a
necessary but not sufficient condition for an association between them. (It should
be noted however that the presence of an open path will in practice almost always
correspond to the presence of an association, although more likely a miniscule one
if the path is long [Greenland, 2003].)

Conversely, a sufficient (but not necessary) condition for two variables to be
unassociated (independent) is that there is no open path between (that is, any
path between them is closed). Thus, we can immediately spot the independencies
that must hold in the graphed distribution by just seeing whether two variables
have no open path between them. If a statistical test of these independencies
rejects them (that is, detects associations where none should be, according to the
graph), that result may be taken as evidence against the posited causal system
that gave rise to the graph.

Biases and Confounding

Now suppose we are interested in an effect of one variable (the target antecedent)
on another variable (the target outcome). Any open path between these target
variables that is not part of this effect is a biasing path, because it provides a
pathway for association between the target variables that is not due to the target
effect.

To illustrate, suppose our interest is in the net (total) effect of the antecedent W
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on the outcome Y in Figure 1. This effect equals the net association transmitted
through all the causal paths from W to Y , which are WY and WXY . There
are, however, two other open paths from W to Y : WUXY and WV Y . Thus,
the association we observe will be the net transmission through all four paths,
which may be far from the net transmission through the two target paths WY
and WXY ; that is, the signal of interest may be seriously corrupted by unwanted
signals through WUXY and WV Y . These unwanted signals (transmissions along
biasing paths) are examples of biases, although the concept of “bias” subsumes
other phenomena as well (such as distortions due to measurement error).

Unconditionally, a biasing path for a net effect in a DAG must pass through a
shared (“common”) cause of the target variables. What is more, it must consist
of two segments, one being a causal path from the shared cause to the target an-
tecedent, and the other a causal path from the shared cause to the target outcome
that does not include the target antecedent. For example, suppose again that our
inferential target is the net effect of W on Y in Figure 1, which has biasing paths
WUXY and WV Y . WUXY can be decomposed into a causal path UW from U
to W and a causal path UXY from U to Y , joined at the shared cause U of W
and Y . Similarly, WV Y can be decomposed into a causal path VW from V to W
and a causal path V Y from V to Y , joined at the shared cause V of W and Y .

Any bias that is transmitted via a common cause of the target variables is an
example of confounding, in that it contributes to the association of the target
antecedent variable with the potential target outcomes (that is, it contributes to
nonignorability). More generally, confounding arises from association that is trans-
mitted along biasing paths that terminate with an effect on the target outcome.
Thus, as described earlier, confounding is association due to “extraneous” effects
on the target outcome. Those effects are said to “confound” the target effect.
Correspondingly, a confounding path is a biasing path that terminates with an
arrow into the outcome of interest [Greenland and Pearl, 2007]. In Figure 1, both
of the biasing paths for the effect of W on Y (WUXY and WV Y ) are confounding
paths, because both terminate with an arrow into (effect on) the target outcome
Y .

If confounding occurs, variables within the responsible confounding paths are
often called confounders. Because the entire confounding path is open, any con-
founder must be linked by open paths to both target variables, and must have
associations with both target variables. The converse is not correct, however:
A variable associated with both target variables need not be a confounder. For
example, when examining the net effect of U on Y in Figure 1, X could be asso-
ciated with U and Y but would not be a confounder because it does not lie on a
confounding path.

Given a DAG with no conditioning, it can be shown that all biasing paths
are confounding paths, and vice-versa. Conditioning, however, may open biasing
paths, some of which may not be confounding paths. We thus now turn to the
concept of conditioning in graphs.
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Conditioning and Control

Let G and C be disjoint subsets of variables in the graph, with g and c being sets of
values for G and C. Independencies in the conditional distribution Pr(g|c) implied
by the graph may then be seen using just a few more concepts. One key notion is
that the open/closed status of a variable along a path is reversed by conditioning
(stratifying) on the variable: A collider becomes open and noncollider becomes
closed. As a consequence, the status of paths may reverse. For example, if we
condition on W in Figure 1, the closed path XUWV Y becomes open and now can
transmit associations; it thus becomes a confounding path for the X effect on Y .
At the same time, the open paths XUWY , XWV Y , and XWY become closed
and can no longer transmit associations, and thus are no longer confounding paths.

It should be noted that, in accord with ordinary language, experimental sciences
use the term “control” to refer to a physical alteration of a system to remove
sources of bias, such as randomization. In observational sciences, however, “control
of a variable” is often used more broadly to include conditioning on a variable,
whether it removes bias or creates bias. Thus, conditioning on W in Figure 1 will
“control” (remove) any confounding of the X effect on Y that was present in the
original system, but at the same time may introduce new confounding by opening
paths that were previously closed.

Not all biasing paths opened by conditioning are confounding paths, however.
For example, suppose our target effect is the net effect of U on V in Figure 1.
Because there is no causal pathway from U to V , this effect is zero, or “null.” But
conditioning on W will open the path UWV , allowing unwanted association to
flow from U to V . In other words, conditioning on W transforms UWV into a
biasing path which is not a confounding path, because it does not terminate with
an arrow into V . Bias that results from such conditioning on a shared effect of
the target variables is often called “Berksonian,” in honor of the discoverer of this
type of bias, Joseph Berkson [Glymour and Greenland, 2008].

Conditioning can also produce bias due to closing target paths. For example,
suppose our target effect is the net effect of U on Y in Figure 1 (associations
transmitted via UXY,UWY , and UWXY ). This target effect is equal to the un-
conditional association of U and Y , because there is no unconditional biasing path.
Conditioning on W will open the path UWV Y , allowing unwanted association to
flow from U to Y . In other words, conditioning on W transforms UWV Y into a
biasing path (which is a confounding path, since it terminates in an arrow into Y ).
But conditioning on W will also close the target paths UWY and UWXY , block-
ing part of the effect (signal) of interest. The association of U and Y conditional
on W may thus bear little resemblance to the target effect.

Suppose instead that our interest is only in that part of the effect of U on Y
not mediated by W (UXY in Figure 1). A standard strategy in the social-science
literature is to then condition on W in order to block the effects mediated by W
(UWY and UWXY in Figure 1). Unfortunately, this literature almost always
overlooks the fact that the same strategy can introduce bias via the pathways
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opened by conditioning on the intermediate W (UWV Y in Figure 1)
Conditioning on effects of a variable can also partially reverse its status on

paths. For example, conditioning on a variable affected by a collider on a path
from X to Y can partially open the path and hence can result in new bias if the
rest of the path is open after the conditioning. For example, if our target is the
net effect of X on Y in Figure 1, conditioning on Z (affected by W ) can partially
close the confounding paths passing through W (XUWY,XWY , and XWV Y )
yet partially open the path XUWV Y , which becomes a confounding path.

Collider Bias, Response Bias, and Selection Bias

Any biasing path opened by conditioning (whether full or partial) must pass
through at least one collider; hence any bias that results from a newly opened
path may be called collider bias [Greenland, 2003]. Of particular interest are
those instances in which collider bias results from the process that determines how
subjects come to be included in the statistical analysis of a target effect or associ-
ation. The process is usually described in terms of subject response (to requests
for participation) or subject selection (whether selection by the researcher or self-
selection by the subject). Any bias that results from the process is thus often
called “response bias” or “selection bias.” As mentioned above, “Berksonian bias”
usually refers to situations in which both the target variables affect inclusion.

A more general and accurate term for all these biases is inclusion bias. To
describe their shared structural and graphical representation, suppose Z is an
indicator variable for inclusion in the analysis, with Z = 1 if a subject is included
and Z = 0 if not. All associations observed must then be conditional on Z = 1. To
say inclusion is random (“random sampling” for analysis) means that the structural
equation for Z is Z = εZ , where εZ is a random indicator independent of all other
random disturbances; Z will then have no causes in the corresponding graph (it
will be exogenous in the graph). But if inclusion is affected by more than one
causal pathway, Z will appear in the graph as a collider or as a variable affected
by a collider, and observed associations may suffer considerable bias from the
forced conditioning on Z = 1.

To illustrate, consider again Figure 1, with Z the inclusion indicator, and again
with the target being the net effect of U on Y . Here, W may influence whether a
subject is included or not. As a consequence, the forced conditioning on Z = 1 can
partially open the path UWV Y , which becomes a confounding path, and partially
close the target paths UWY and UWXY . The net bias from these changes may be
considerable, if Z is strongly affected by W , or minor if Z is only weakly affected
by W .
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DISCUSSION

The above models can be extended to deal with another major source of bias in
observational research, measurement error. Because the topic is quite involved
and brings in many elements not related to causality, it has not been included
here. Notably however, measurement error expands the nonidentification problem
to noncausal associations, thus further weakening identification of causal effects
from observed associations; see [Greenland, 2005a; 2009; 2010] for examples and
discussion.

The above models also extend to consideration of longitudinal (time-varying)
treatments such as medical regimens, but again many technical elements arise
in applications [Robins, 1999ab]. For a discussion of relations of the models to
the sufficient-component cause model common in epidemiology (which is equiv-
alent to the INUS model of Mackie [1965]) see [Greenland and Brumback, 2002;
VanderWeele and Robins, 2008].

As may be apparent from the above presentation, statistical and structural
representations of causation bypass most of the philosophic subtleties associated
with the complex topic of cause and effect. This bypass has facilitated applications
and may reflect the task-oriented attitude of most scientists. Nonetheless, it should
not lead one to overlook some serious practical problems that are usually ignored.

Perhaps the largest problem is the possible ambiguity in what it means to inter-
vene on a variable or to “change” its level. This ambiguity can render ambiguous
the concept of a potential-outcome vector Y for X. After all, if Yx is a counterfac-
tual component of Y (as all but one component must be), its value may depend
in a dramatic fashion on exactly how X would come to be x if x is counterfactual
[Greenland, 2005b; Hernán, 2005]. In causal diagrams the same problem is utterly
invisible. These are not fatal objections to the models, for the models have proven
useful whenever the meaning of interventions and outcomes is unambiguous (for
example when X is measles vaccination and Y is the subsequent occurrence of
measles). But they are quite disconcerting when the models are used to make
claims about the impact of (for example) “eradication of childhood disease”: The
effect of such an ambiguous action depends dramatically on exactly how it is car-
ried out (e.g., by vaccinating, by curing, or by killing children).

A related problem of less practical concern, but nonetheless discomforting, is
that potential-outcome models and their structural-equation generalizations seem
to use an informal notion of causation to define actual effects. In particular, “set-
ting” or forcing a treatment variableX to a particular level x (whether that is done
in response to a random-number generator or in response to extraneous factors)
is a causal command left undefined in the account. Here again the accompanying
causal-diagram theory is silent, taking the causal interpretation of its arrows as a
primitive.

Regardless of any objections and problems, the statistics and observational sci-
ence literature employing potential-outcome models has exploded over the past
few decades, while causal diagrams have spread rapidly in the wake. It thus seems
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important that those interested in issues of causality become familiar with these
formal yet practical tools for causal inference.
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