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Abstract We describe how ordinary interpretations of

causal models and causal graphs fail to capture important

distinctions among ignorable allocation mechanisms for

subject selection or allocation. We illustrate these limita-

tions in the case of random confounding and designs that

prevent such confounding. In many experimental designs

individual treatment allocations are dependent, and explicit

population models are needed to show this dependency. In

particular, certain designs impose unfaithful covariate-

treatment distributions to prevent random confounding, yet

ordinary causal graphs cannot discriminate between these

unconfounded designs and confounded studies. Causal

models for populations are better suited for displaying

these phenomena than are individual-level models, because

they allow representation of allocation dependencies as

well as outcome dependencies across individuals. None-

theless, even with this extension, ordinary graphical mod-

els still fail to capture distinctions between hypothetical

superpopulations (sampling distributions) and observed

populations (actual distributions), although potential-out-

come models can be adapted to show these distinctions and

their consequences.

Keywords Causal graphs � Confounding � Directed

acyclic graphs � Ignorability � Inverse probability

weighting � Unfaithfulness

Introduction

Potential-outcome (counterfactual) and graphical causal

models are now standard tools for analysis of study

designs and data. Expositions can be found in modern

textbooks [1–3]; in most applications we see, however, the

causal models refer to individuals within an implicit

population, while the graphs are not specific about whether

they refer to causation within individuals or within popu-

lations. We describe how such treatments miss important

distinctions between confounded and unconfounded study

designs, and thus may lead some users into erroneous

procedures and conclusions, especially when random var-

iation is important or when faithfulness assumptions may

be violated. The problems regarding random confounding

have long been recognized in various forms [4–12], but

few sources have address the converse problems involving

unfaithfulness [13].

Faithfulness assumptions formalize the idea that no per-

fect cancellation of effects or associations is occurring in the

system or population being studied; these assumptions are

often made implicitly and have been used explicitly in

graphical causal modeling [14]. While they are sometimes

defensible, there are natural settings in which there may be

approximate unfaithfulness (that is, cancellations statisti-

cally indistinguishable from unfaithfulness), as with haz-

ardous medical interventions that may save some patients but

kill others. In these settings, the unfaithfulness is accidental

or unstable in that it is not implied by the causal process

generating the data; it is nonetheless real when it happens,
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and its possibility severely limits statistical procedures for

causal inference [13].

There are also study designs that produce exact

unfaithfulness, such as balanced matched-cohort studies, in

which selection paths are used to cancel confounding paths

[15]; in these settings unfaithfulness is a consequence of

the data-generating process and thus a stable feature of the

system. Thus, unlike some sources [2], we make a sharp

distinction between faithfulness and stability: stable prop-

erties are taken to be those deducible from postulated laws

or causal mechanisms, and these structural elements may

induce unfaithful exact independencies [16].

To illustrate our points, we discuss how stratified

(blocked) randomized-trial designs induce unfaithfulness

as a cancellation of path-specific associations, and how this

cancellation is not visible in an ordinary causal graph. Such

examples show how ordinary causal graphs cannot always

discriminate between unconfounded and confounded

studies, and provide very incomplete information about the

proper statistical analysis to employ. Full population

modeling addresses some of these problems, and appears

better suited for causal modeling in population sciences

like epidemiology. Ordinary graphs can be used for this

population modeling simply by reinterpreting their com-

ponent variables (nodes) as population distributions, but

this reinterpretation still does not allow them to exhibit

design features crucial to proper statistical analysis.

Our development will proceed in detail within a simple

model in which a causal mean difference is the target and

the only source of statistical variation for analysis is

treatment randomization, as in models for exact permu-

tation tests of effects [17–20]. We first lay out our nota-

tion, then use that to review the relation of randomization

to confounding in the potential-outcome framework,

emphasizing properties that are not visible in ordinary

causal graphs. We then expand the framework to clarify

the properties. For a much more detailed yet general

technical account of the relation of faithfulness to con-

founding and causal inference, see Robins et al. [13]; and

for extensive accounts of the relation of graphs to causal

models, including new tools to address limitations of

ordinary causal graphs, see Richardson and Robins

[21, 22].

Basic notation and definitions

We assume the reader is familiar with potential-outcome

(counterfactual) models and causal directed acyclic graphs

(cDAGs) [1–3, 23–25]. Figure 1 provides examples.

Especially important is that two variables in a graph are

connected if there is an open path between them (d-con-

nected), otherwise they are disconnected or separated

(d-separated). A DAG model asserts that disconnected

variables are independent, such as A and B in Fig. 1a.

Nonetheless, a DAG model does not assert that connected

variables are dependent (associated), a fact that we have

seen overlooked in some discussions. These discussions

assume that connected variables are always associated,

which is called a faithfulness assumption. Faithfulness is

not one of the basic DAG assumptions used to determine

whether an effect is identified (estimable) given con-

founding and selection bias, although it does have impor-

tant statistical implications [13], some of which we will

describe.

Suppose we observe a target cohort composed of

n individuals indexed by i = 1,…,n, each of whom will be

allocated by some mechanism to receive one of two study

treatments as designated by the individual indicators

Ai = 1 or 0. The full-cohort allocation is the list (A1,…,An).

‘‘Unconditional’’ will refer to the pre-allocation state in

which the Ai values are still undetermined and thus con-

siders all possible lists of values (cohort allocations)

allowed by the allocation protocol. ‘‘Conditional’’ will

refer to the post-allocation state in which all Ai values have

been assigned, and thus we know those values and their

relation to other variables observed in the cohort. We will

be concerned with accounting for unconditional depen-

dencies among the Ai (‘‘treatment interference’’ between

subjects) and conditional independencies between the Ai

and other variables, each of which may be produced by

common experimental designs.

We assume that each individual has a pair of potential

outcomes: Y1i which is observed when Ai = 1, and Y0i

which is observed when Ai = 0; these are baseline (pre-

treatment) variables, and treatment determines which one

we observe [26]. The individual effect of having Ai = 1 as

opposed to Ai = 0 is Y1i - Y0i, which cannot be observed,

but the average of these differences can be estimated. As

usual for noncontagious-disease modeling, we will assume

both Y1i and Y0i are independent across individuals (a ‘‘no-

interference’’ assumption on the outcomes).

We define YAi = AiY1i ? (1 - Ai)Y0i, so that YAi = Y1i

among those with Ai = 1 and YAi = Y0i among those with

Ai = 0. Our examples will involve no censoring, nonad-

herence, measurement error, or other methodologic prob-

lems, so that YAi will equal the patient’s observed outcome

(a)             B A Y

(b)              B A Y

Fig. 1 Individual-level causal diagrams representing (a) simple ran-

domization and (b) B-stratified randomization
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(the consistency condition). Because the pair (Y1i, Y0i) is

fixed at baseline, the only random variation in YAi is from

variation in treatment Ai; once Ai is determined, so is YAi.

This model is deterministic but may be extended to sto-

chastic outcomes by replacing (Y1i, Y0i) with a pair of

potential parameters (h1i, h0i) for an individual outcome

distribution [5].

We will drop the subscript i when describing an unspec-

ified individual, and all summations and averages will be

over all individuals in the cohort. We assume for now that the

target population of inference is the total cohort, and that the

causal effect of interest is the difference D in the population-

average outcome Av(Y1) =
P

Y1i/n with everyone given

experimental treatment and the average Av(Y0) =
P

Y0i/n

with everyone given control treatment:

D ¼ Av Y1ð Þ � Av Y0ð Þ;

D equals the average effect on population members,

Av(Y1 - Y0) =
P

(Y1i - Y0i)/n. The numbers in each

treatment group are n1 =
P

Ai and n0 =
P

(1 - Ai) =

n - n1. Athough n, n1 and n0 are usually treated in expo-

sure modeling (propensity scoring) as if they are com-

pletely random, more often they are wholly or partially

fixed by design.

The treatment-specific averages can be written as total-

cohort averages of the potential outcomes, each weighted

by their corresponding received-treatment indicator:

Av YAjA ¼ 1ð Þ ¼ Av Y1jA ¼ 1ð Þ ¼
X

AiY1i=n1 and

Av YAjA ¼ 0ð Þ ¼ Av Y0jA ¼ 0ð Þ ¼
X

1 � Aið ÞY0i=n0:

We will define D as the observed difference,

D ¼ Av YAjA ¼ 1ð Þ � Av YAjA ¼ 0ð Þ
¼ Av Y1jA ¼ 1ð Þ � Av Y0jA ¼ 0ð Þ:

When Y1 and Y0 are indicators, D and D are the total-cohort

and unadjusted (‘‘crude’’) observed risk differences,

respectively. B will represent a set of baseline (pre-treat-

ment) predictors of the potential-outcome pair (Y1, Y0).

Independence and unfaithfulness

A probability distribution is said to be compatible with a

DAG if all variables that are dependent in the distribution

are connected in the DAG. An analysis that assumes a

particular DAG will be logically coherent only if it uses a

distribution that is compatible with that DAG. A compat-

ible distribution may however be unfaithful to the DAG if

two variables independent in the distribution are connected

in the DAG. Disconnections in an unfaithful DAG do not

reveal all the independencies in the distribution. Some

DAG expositions assume faithfulness from the start [14];

nonetheless, as we will discuss, this is not always a rea-

sonable restriction. Use of an unfaithful distribution is

logically coherent; if however unfaithfulness is allowed

(i.e., faithfulness is not assumed), deductions from the

DAG are strictly one-way: Absence of connection implies

independence, but connection does not imply dependence

(association). In particular, in a causal graph without a

faithfulness assumption, a direct connection does not imply

that a given effect measure such as D will be non-null.

Unfaithfulness can be depicted in causal models other

than DAGs. We say causal unfaithfulness occurs when two

variables are unconditionally independent despite one

having an effect on the other [4]. A well-known example is

confounding in which there is no association of A and

Y because the association due to the effect of A on Y is

cancelled by the confounding. Such cancellation between

causal pathways requires an association between A and

other causes of Y, and thus is precluded by Fig. 1a but

allowed by (compatible with) Fig. 1b.

A limitation of DAGs is that unfaithfulness can occur

even if there is no cancellation potential visible in the

graph, as in Fig. 1a. As an example, suppose the outcome

is binary, so that Y1, Y0 and hence YA equal either 1 or 0.

Suppose also that A = 1 causes Y = 1 (equivalently,

A = 0 prevents Y = 1) for some nonzero proportion p of

the pairs, so that Y1 = 1 and Y0 = 0 for these pairs, and

that A = 1 prevents Y = 1 (equivalently, A = 0 causes

Y = 1) for an equal proportion p of pairs, so that Y1 = 0

and Y0 = 1 for these pairs; thus A profoundly affects the

outcome of all individuals in either type of pair. None-

theless, A and Y will appear unassociated (satisfy the weak

null hypothesis of D = 0) because the causal and pre-

ventive effects of A will cancel out of the average (coun-

terbalance one another).

The unfaithful cancellation in this example will also be

statistically indistinguishable from the sharp (strong) null

hypothesis of no effect of treatment on any pair (Y1 = Y0

for all individuals), even if treatment is randomized [4, 19];

that is, the strong null hypothesis of ‘‘no effect on any

individual’’ is not identifiable without some assumption

that precludes perfect cancelation, which in graphical terms

would correspond to a faithfulness assumption. To appre-

ciate the extent this nonidentifiability, note that D may be 0

even if treatment changes everyone’s outcome: If p = 1/2,

half the cohort will have Y1 = 1, Y0 = 0 while the other

half will have Y1 = 0, Y0 = 1.

Of course, background information may lead us judge

perfect cancelation as implausible. One may even judge

that there is no cancelation at all, as encoded in a strong

monotonicity assumption that A = 1 is never preventive

(Y1 C Y0 for everyone), or that A = 1 is never causal

(Y1 B Y0 for everyone). Nonetheless, without further

assumptions or information, basic statistical procedures
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cannot distinguish between any degree of perfect cancel-

ation (0\ pB1/2) and Y1 = Y0 for everyone (the strong

null, for which p = 0), which is to say that failure to reject

the strong null will also entail failure to reject perfect

cancelation [19].

Ignorability and unconfoundedness

Independence of treatment A and the potential-outcome

pair (Y1, Y0) is often called strong ignorability, complete

(or full) exchangeability, or unconfoundedness in the pre-

allocation distribution or treatment assignment, in which A

is random [3, 26, 27]. Figure 1a illustrates this indepen-

dence via the absence of any nondirected open path from A

to Y. An immediate consequence of this condition is that on

average (in expectation) over all possible allocations, the

observed outcome difference between the groups equals

the target effect:

E D½ � ¼ E Av Y1jA ¼ 1ð Þ� Av Y0jA ¼ 0ð Þ½ �
¼ E Av Y1jA ¼ 1ð Þ½ � � E Av Y0jA ¼ 0ð Þ½ �
¼ Av Y1ð Þ � Av Y0ð Þ ¼ D:

ð1Þ

This equation says that the observed mean difference D is

an unbiased estimator of the target D, where E[] is the

average over all possible treatment allocations for the

cohort (i.e., E[] is the expectation taken over the uncon-

ditional treatment distribution for the cohort).

Unconditional unbiasedness (E[D] = D) also follows

from weaker conditions such as weak (or marginal) ign-

orability, in which A is only independent of Y1 and Y0

separately (marginally):

ð2Þ

In fact, E[D] = D follows from marginal mean (regression)

independence of A from Y1 and Y0:

E Av Y1jA ¼ 1ð Þ½ � ¼ E Av Y1jA ¼ 0ð Þ½ � and ð3aÞ
E Av Y0jA ¼ 1ð Þ½ � ¼ E Av Y0jA ¼ 0ð Þ½ �; ð3bÞ

which is even weaker than weak ignorability (1) if Y is not

binary, and which does not require Fig. 1a under the usual

graphical interpretations. That is, Eq. (3) and thus

E[D] = D (unbiasedness) may hold even if B affects A,

making the treatment distribution incompatible with

Fig. 1a.

The sufficiency of Eq. (3a, 3b) for unbiased estimation

of D illustrates a further limitation of common causal

models: Neither Fig. 1a nor the usual ignorability

(exchangeability, unconfoundedness) assumption used in

much of the causal-modeling literature are necessary for

unbiased estimation of D (although they are sufficient) [5].

In response, no-confounding can be defined in terms of

unbiasedness for a particular effect measure rather than as a

general property of the variable distributions [5], which can

lead to parsimonious adjustments for confounding control.

For example, a consequence of (3) is that if Y1 and Y0 are

linear functions of B and the A = 1 and A = 0 subcohorts

have the same means for B, then the unadjusted estimator

D will be unbiased for D conditional on the observed

allocation as well as unconditionally; thus mean matching

of treated and untreated cohorts on B will be sufficient for

control of confounding of D by B under a linear structural

model. Closer matching or analytic adjustment for B will

then only be necessary to improve precision or account for

possible nonlinearities in the relation of B to Y1 and Y0.

This fact is a special case of more general robustness

properties of matching on covariate scores (such as pro-

pensity scores) [28–30] and provides one rationale for the

common practice of checking the success of matching by

comparing covariate means (rather than entire distribu-

tions) across treatment groups [31]. The catch is that

matching will usually alter the distribution of B in the total

cohort, thus altering the distribution of Y1 - Y0 and hence

its average D if (as one should expect) B includes modifiers

of the differences Y1 - Y0 [32].

Confounding in randomized trials

Randomized trials are often treated as the ‘‘gold standard’’

for causal inference, because on average randomization

balances covariates between treatment groups, even if

those covariates are unobserved, and provides a known

treatment distribution for statistical procedures. In causal-

modeling terms, randomization enforces strong ignorability

for all outcomes by cutting off effects of covariates on A,

leading to Fig. 1a and unbiasedness of D for D (E[D] = D)

[2, 5]. Nonetheless, this unbiasedness is only uncondi-

tional, an average property over allocations. In contrast,

‘‘confounding’’ is often described informally as a distortion

of estimates arising from baseline risk factors that are

associated with but not affected by treatment, where the

association refers to an imbalance of risk factors across the

actual treatment groups [4–6]. Particular allocations pro-

duced by simple randomization usually exhibit some

imbalance, leading to D = D. Standard teaching is that if

such a risk-factor imbalance is observed, it is incumbent

upon the analyst to adjust for it [4, 5, 7, 8, 33–35].

The discrepancy D - D produced by random covariate

imbalance has been called random (chance) confounding

[4, 18], accidental bias [36–38], and allocation bias [9]. In

the deterministic causal models underlying classical exact

permutation tests, variation in A is the only source of
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variation in D, and random imbalance is the only source of

discrepancy between D and D [10, 17–20]. This imbalance

is not visible in Fig. 1a, however; hence the figure gives the

impression that covariate adjustment is unnecessary (using

the back-door criterion for unbiased effect estimation [2] ).

This misimpression arises because the figure implies

Eq. (1), which says that D is unconditionally unbiased

(E[D] = D), i.e., the average of D is over all possible

treatment allocations is D.

If B is unmeasured, uncertainty about the discrepancy

D - D is accounted for by standard statistical procedures.

If however B is measured, our uncertainty about D can and

should be reduced by using it in our estimator. In partic-

ular, suppose we see that B is imbalanced between treat-

ment groups (i.e., A and B are associated in the observed

data). To address this imbalance, we narrow our frequency

calculations to allocations that yield only the observed

association of A and B (which is to say we now condition

our frequency calculations on the observed joint distribu-

tion of A and B, so we are more conditional than before). If

A and B are associated (dependent) in this observed dis-

tribution, the unadjusted estimate D usually will be biased

(E[D] = D) over these new frequency calculations based

on the observed AB distribution [4, 5, 11, 34]. This is called

B-conditional bias in D, and is the random confounding due

to B [4, 5, 11, 34]; it can be removed by any of the usual

stratification or modeling methods to adjust for B, subject

to any additional assumptions of those methods.

Under those methods and their assumptions, the result-

ing B-adjusted estimate DB of D will (like D) be uncon-

ditionally unbiased under simple randomization, but

(unlike D) will also be conditionally unbiased, that is,

unbiased given the observed AB distribution (when fre-

quency calculations are narrowed to conform to that dis-

tribution). Note carefully the difference between a B-

conditional frequency evaluation and a B-conditional esti-

mator DB: The performance of any estimator including

D as well as DB can be evaluated both unconditionally and

also under B-conditional frequencies which take the

observed AB-distribution as unvarying. Nonetheless, an

estimator like D that does not use B-information in its

formula is not B-conditional.

Using classical linear regression analysis of a simple

randomized trial under the additive individual-effect model

E YajB ¼ bð Þ ¼ aþ baþ cb;

D = b and DB is the ordinary least-squares estimate of b. If

c = 0, the conditional unbiasedness of DB leads to a

reduced variance relative to D in the unconditional calcu-

lations (in which the joint distribution of A and B is allowed

to vary): DB will have lower unconditional variance than D,

since in this setting the random confounding of D by

B represents a component of variance in D removed from

DB by adjustment [34]. Under our simple causal model, the

only component of variance remaining in DB will be the

random confounding due to baseline factors that predict Y1

or Y0 given B. With no such additional predictors and a

deterministic effect model, DB = D, so DB will have zero

variance as well as zero bias. This ideal can be approached

very closely in many basic physics experiments, but not in

epidemiologic research.

Figure 1a and Eq. (1) do not account for random con-

founding and thus miss the effects of adjusting for B. This

failing is in part because they portray only the ignorability

constraint on the pre-allocation (unconditional) joint dis-

tribution of the baseline variables B, Y1, and Y0, encoded as

independence of A from any covariate affecting Y (includ-

ing B). Random confounding does not however arise from

the failure of ignorability of the assignment mechanism,

but is instead a conditional error arising from random

departure of the observed allocation (the final data distri-

bution of A, Y1, and Y0) from the average allocation (the

expected distribution of A, Y1, and Y0).

Sample exchangeability versus randomization

and ignorability

The blindness of DAGs and ignorability conditions to

random imbalance and confounding is addressed by tradi-

tional recommendations to adjust for baseline prognostic

factors to improve precision [7, 12], and to use estimated

treatment probabilities even if the true treatment proba-

bilities are known [26]. Modifications of causal graphs and

ignorability conditions to encompass random confounding

could be helpful for grounding these recommendations in

causal models, and for preventing confusion between pre-

allocation (unconditional) and post-allocation (conditional)

properties that are often give the same label, such as ‘‘no

confounding’’ or ‘‘exchangeability.’’

One simple graphical device to represent a post-alloca-

tion association of A and B is to connect them by a dashed

line, paralleling graphical moralization procedures for

DAGs in which conditioning on a variable leads to con-

necting its parents [23, 39]. Other possibilities may arise

using single-world intervention graphs, in which a partic-

ular allocation a for A appears in the graph, and its cor-

responding potential outcome Ya replaces the composite

observable outcome YA [21]. We will not pursue these

graphical extensions, but will instead describe how to

extend the underlying potential-outcome notation to exhibit

random confounding and the impact of adjustment, as

described in the previous section.

A condition that implies no confounding, random or

otherwise, is no association of potential outcomes with the

observed treatment allocation [4, 5] (as opposed to ‘‘no
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association expected before treatment is allocated,’’ which

is equivalent to ignorability). To be precise, define

Pr(Y0 = y|A = 1) as the realized (actual) proportion having

Y0 = y in the subcohort with A = 1, and so on for other

combinations of potential outcomes and treatment. Then

the subcohorts with A = 1 and A = 0 are completely

exchangeable for estimating the effect of the observed

allocation on Y if for every y

Pr Y0 ¼ yjA ¼ 1ð Þ ¼ Pr Y0 ¼ yjA ¼ 0ð Þ and ð4aÞ
Pr Y1 ¼ yjA ¼ 0ð Þ ¼ Pr Y1 ¼ yjA ¼ 1ð Þ; ð4bÞ

they are partially exchangeable if only one of these

equalities holds for every y [4, 5]. Equation (4a) says that

the distribution of Y0 in the A = 0 cohort can be exchanged

(substituted) for the distribution of Y0 in the A = 1 cohort.

In parallel, (4b) says that the distribution of Y1 in the A = 1

cohort can be exchanged for the distribution of Y1 in the

A = 0 cohort.

The problem with (4a) and (4b) is that we would never

expect them to hold exactly in practice: Once allocation is

completed, actual treatment will usually be associated with

potential outcomes in the cohort (as revealed by associa-

tions of A with baseline risk factors), violating (4a) and

(4b) and producing the allocation-conditional bias we call

random confounding [4, 6, 33, 34]. If the value y of Y0 is

unique for some individual, (4a) cannot hold for that

y since one side will be zero and the other side positive; in

parallel, if the value y of Y1 is unique for some individual,

(4b) cannot hold for that y.

Randomization does not enforce (4a) and (4b) but

instead only forces the weaker conditions of equality of the

proportions expected over all possible treatment

allocations,

E Pr Y0 ¼ yjA ¼ 1ð Þ½ � ¼ E Pr Y0 ¼ yjA ¼ 0ð Þ½ � ð5aÞ
E Pr Y1 ¼ yjA ¼ 0ð Þ½ � ¼ E Pr Y1 ¼ yjA ¼ 1ð Þ½ � ð5bÞ

Conditions (5a and 5b) are together equivalent to weak

ignorability and thus imply there will be no bias in the

unadjusted effect estimator D when the latter is averaged

over all possible allocations (no unconditional bias).

Nonetheless, they do not prohibit confounding in the

observed allocation (random confounding) from violations

of (4a and 4b), as when the risk factor B is associated with

A in this allocation despite being disconnected from A in

the causal graph (Fig. 1). Again, this random confounding

by B is a bias in D seen when averaging over the more

restricted allocations that reproduce the observed AB dis-

tribution (i.e., conditional averaging).

Despite this limitation, randomization does provide a

large-sample approximation to (4a and 4b): As the sizes of

the treatment groups increase, violations of (4a and 4b)

become smaller in probability, and thus random

confounding also becomes smaller in probability. In this

sense, randomization provides a large-sample approxima-

tion to perfect exchangeability (4a, 4b). Furthermore, the

usual standard errors for D provide a large-sample measure

of the unconditional variation in D produced by the random

confounding.

The impact of adjustment, revisited

Note first that, for each treatment level a of A, the unad-

justed estimate of Pr(Ya = y) is Pr(YA = y| A = a); setting

undefined terms to zero, the latter equals
X

b

Pr YA ¼ yjA ¼ a;B ¼ bð Þ Pr B ¼ bjA ¼ að Þ ð6Þ

where the sum is over all observed values b of B. The

component proportions Pr(YA = y| A = a, B = b) and

Pr(B = b| A = a) in (6) vary over allocations and are

uncorrelated with one another. Random confounding of D

by B arises because Pr(B = b| A = 1) may differ randomly

from Pr(B = b| A = 0), resulting in differences in

weighting of the B strata in the unadjusted estimates

Pr(Y1 = y|A = 1) and Pr(Y0 = y|A = 0). In contrast, the

unsmoothed (‘‘nonparametric’’) estimate of Pr(Ya = y)

standardized to the distribution of B in the full cohort is
X

b

Pr YA ¼ yjA ¼ a;B ¼ bð Þ Pr B ¼ bð Þ ð7Þ

whenever all terms are defined. The distribution of B in

the full baseline cohort is not affected by the randomi-

zation of A. Thus, for each treatment level a of A, the

proportions Pr(B = b) which serve as the weights in (7)

are constant over allocations and always the same

between treatment groups, eliminating random con-

founding. This observation may provide an intuition as to

how removal of random confounding reduces the uncon-

ditional variance of adjusted estimators relative to the

unadjusted estimator D.

The standardized estimate (7) can be recast as the

unsmoothed inverse treatment-proportion weighted (IPW)

estimate of Pr(Ya = y) [40, 41],
X

b

Pr YA ¼ y; A ¼ a; B ¼ bð Þ= Pr A ¼ ajB ¼ bð Þ ð8Þ

whenever all terms are defined. This formulation leads to

numerous modifications which further improve precision

and confounding control [31, 40, 42]. In contrast, because

the treatment probabilities under simple randomization are

all 1/2, the inverse probability of treatment weighted esti-

mate is
X

b
PrðYA ¼ y;A ¼ a;B ¼ bÞ=1=2 ð9Þ
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This formula simplifies to 2Pr(YA = y, A = a) which

involves no adjustment by B, and hence will be confounded

randomly; in fact (9) will equal the unadjusted proportion

Pr(YA = y|A = a) when the proportion n1/n with A = 1 is

fixed by design at 1/2.

Despite the fact that (9) uses the actual (allocation)

probabilities and (8) does not, (8) and its generalizations

(in which Pr(A = a|B = b) is replaced by a smoothed

proportion) are usually called inverse-probability-of-treat-

ment weighted (IPTW) estimates [3, 40]. Nonetheless, the

Pr(A = a|B = b) in (8) are not actual treatment-assignment

probabilities, but are instead post-allocation probabilities of

seeing A = a for an individual randomly sampled from the

subcohort with B = b. Not even this limited interpretation

is precisely correct for smoothed proportions, although one

might describe those proportions as the hypothetical

assignment probabilities that generate conditionally unbi-

ased estimates from the inverse-proportion formula (8)

under the smoothing assumptions.

Effects of stratified randomization

Along with their shortcomings for simple randomization,

neither Fig. 1a nor Eq. (1) is sufficient for representing

allocation mechanisms or distributions that induce

unfaithfulness, including trial designs in which random

confounding is constrained by randomization within blocks

(which reduces the variance of the observed difference D).

This fact violates suggestions that faithfulness can be

viewed as an assumption that conditional independence

relations are due to causal structure rather than to accidents

of parameter values [13, 14].

To illustrate the above points and build models that can

capture these distinctions, suppose the cohort size n is even

and consider the following forms of randomization with

equal allocation to A = 1 and A = 0, so that the uncon-

ditional probability of A = 1 and the final proportion with

A = 1 are 1/2:

1. Unstratified fixed-size randomization: Draw a random

sample without replacement of fixed size n/2 from the

total n and assign them A = 1, then assign the

remainder A = 0. This design allows all
n

n=2

� �

possible equal allocations (=924 when n = 12, in

contrast to the 212 = 4,096 possible allocations if

unequal allocations were also allowed).

2. Stratified (blocked) randomization with strata equal by

design: Stratify the initial cohort on baseline factors B,

select equal even numbers from each stratum, and use

equal-allocation randomization within each stratum. A

binary B = 1,0 yields two strata of size n/2, leading to

n=2

n=4

� �2

possible allocations (=400 when n = 12,

with two strata of size 6).

3. Stratified (blocked) randomization using natural strata:

Stratify the cohort based on baseline factors B, and use

equal-allocation randomization within each stratum.

The stratum totals may vary, and for a stratum with an

odd total, one would have to randomly exclude an

individual. With two strata of sizes k1 and k2, this

design allows
k1

k1=2

� �
k2

k2=2

� �

possible allocations

(=420 when n = 12 with k1 = 4, k2 = 8).

In all three designs, the probability of A = 1 remains 1/2

upon conditioning on B, so that A and B are marginally

independent before allocation, as implied by Fig. 1a.

Nonetheless, there are profound statistical and causal dif-

ferences among them.

Most importantly, in (2) and (3) random confounding by

B is prevented by stratification, because stratified ran-

domization restricts allocations to those exhibiting no

marginal AB association and thus reduces the set of allo-

cations that must be considered in frequency calculations

such as permutation tests. This reduction is reflected by the

fact that, in the examples with n = 12, fewer than half of

the unstratified allocations are allowable stratified alloca-

tions (i.e., allocations in which A and B are unassociated).

With no marginal AB association, the usual unadjusted and

B–adjusted estimates of D will be identical.

Note that B can mechanically (if indirectly) affect the

individual assignments A in the stratified designs. To

illustrate, consider a two-stratum design (2) in which

individuals are enrolled sequentially in the order indicated

by i. Once the allocator has filled the A = 1 quota of n/4 of

for stratum B = 1, further recruits with B = 1 must be

given A = 0, whereas treatments for those with B = 0 will

not be limited in any way by what has happened among

recruits with B = 1. If we are given that n/4 previous

recruits had A = 1 and B = 1, the probability of Ai = 1

drops from 1/2 to zero when we are additionally given that

Bi = 1, but remains 1/2 if we are given instead that Bi = 0.

In such examples, we see a strong causal effect (via the

allocator) of B on A in the stratified designs, which must be

accounted for in classical exact permutation inference.

Thus, these designs need an arrow from B to A, as in

Fig. 1b, in which we see an open confounding path from

A to Y via B; yet Fig. 1a, which represents the unstratified

design, has no confounding path A to Y. It is somewhat

paradoxical that the stratified designs eliminate confound-

ing via B entirely, yet Fig. 1b is identical to a graph rep-

resenting an observational study with confounding by B. At

the same time, the unstratified design allows random con-

founding of D by B, yet Fig. 1a is usually described as

Limitations of individual causal models, causal graphs, and ignorability assumptions 1107

123



representing no confounding by B. We consider these

discrepancies to be a problem with ordinary causal graphs

rather than with our conceptualization of confounding.

Stratified designs (2) and (3) provide examples of design

unfaithfulness: By design, B has an effect on A that creates

not only pre-allocation marginal independence of B and

A but also forces that independence to hold in the final cohort

allocation. In contrast, unstratified randomization enforces

only pre-allocation independence. The difference between

(2) and (3) is that (2) suggests a more complex underlying

structure in which the cohort is selected from a larger pop-

ulation to induce a particular distribution for B as well as for

A. We will not pursue this elaboration since our points apply

without it.

Population models

To more precisely represent design effects, we consider

causal models defined on the entire study cohort (this

parallels survey-sampling theory, which considers distri-

butions of entire samples rather than of individuals [43]),

assuming outcomes are independent given treatment allo-

cation. Denote the complete cohort column vectors of

individual variables by bold type: A = (A1,…,An)
0, Y1 =

(Y11,…,Y1n)
0, Y0 = (Y01,…,Y0n)

0, YA = (YA1,…,YAn)
0, and

B = (B1,…,Bn)
0 (if the Bi are row vectors corresponding to

individual covariate records, B is the matrix with rows Bi).

A particular treatment allocation for the full cohort is a

vector a = (a1,…,an) of possible values for A (ones and

zeros in our example), while a particular covariate distri-

bution for the cohort is a vector b = (b1,…,bn) of possible

values for B. We write A = a when the value of Ai is given

by entry ai of a.

To recast earlier concepts in terms of population-level

variables, let 1 and 0 denote vectors of n ones and n zeros,

and recall that the inner (dot) product x0z of two vectors is

the sum of the product of their components,
P

xizi, so that

10x =
P

xi. Then

1. the number treated is n1 = 10a =
P

ai, and thus equal

allocation (n1 = n0 = n/2) is the constraint 10a = n/2.

2. with binary B, 10b is the number with B = 1 and

stratified equal allocation is the pair of constraints

b0a = 10b/2, 10a = n/2.

3. the random pre-allocation cohort outcome variable is

YA ¼ A0Y1 þ 1� Að Þ0Y0:

4. the cohort outcome that would result from a specific

allocation a is

Ya ¼ a0Y1 þ 1� að Þ0Y0:

5. the causal marginal mean difference is D = 10Y1/n

- 10Y0/n; and

6. the unadjusted estimator of D is D ¼
A0Y1ð Þ=n1� 1� Að Þ0Y0

� ��
n0:

Statistical inferences may be constructed by comparing

the observed Ya to the distribution of YA induced by

the distribution of A given hypothesized structures

(constraints) on Y1 and Y0 [10, 20].

Figure 2 provides population-level analogs of the graphs

in Fig. 1, and looks identical but for the substitution of

bolded letters for italic letters. The purpose of emphasizing

such a seemingly trivial notation change is to remind us

that many statistically important structural features must

play a role in any statistical inferences on effects, even if

only a marginal mean difference D is the target. Absence of

an arrow from A to Y represents the constraint that

Ya = Ya* for all pairs of cohort allocations a, a* (the sharp

null hypothesis of no effect on anyone), which makes every

treatment allocation result in the same observed population

outcome (i.e., YA does not vary with allocation). Presence

of the arrow means that no such constraint is imposed by

the graph, so that there may be a pair of distinct allocations

a, a* that would produce different outcomes: Ya = Ya*.

As before, however, it does not imply that a given measure

of effect is non-null, e.g., D may be 0 even if treatment

changes everyone’s outcome.

Absence of an arrow from B to A in Fig. 2a applies to

design (1) where B plays no role in allocation. In contrast,

under designs (2) and (3), B can causally affect the A

entries, necessitating an arrow from B to A. This is easily

seen under design (3), where B can vary naturally; for

example, with n = 12 and B binary (e.g., smoking, non-

smoking) having 6 individuals with B = 1 (so

10b =
P

bi = 6) allows
6

3

� �
6

3

� �

= 400 possible values

for A, while having 4 individuals with B = 1 (10b = 4)

allows
4

2

� �
8

4

� �

= 420 possible values for A. The pur-

pose of these design effects is to improve precision, but this

benefit will be recognized only if the effects are accounted

for by the analyst.

In designs (2) and (3), the relation of B to A has been

constrained so that every allowable pair (b, a) exhibits no

association between the b and a entries (i.e., cross-

(a) B A Y

(b) B A Y
Fig. 2 Population-level causal diagrams representing (a) simple

randomization and (b) B-stratified randomization
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tabulation of observable bi and ai values would show per-

fect independence of A and B, with not even random

associations). This independence is an example of

unfaithfulness that is forced by the allocation algorithm. As

with the individual graph (Fig. 1b), Fig. 2b fails to capture

that unfaithful constraint; nonetheless, it does alert us that

some aspect of the entire treatment distribution A may

depend on the entire covariate distribution B.

In summary, balanced blocked designs require B to have

an arrow to A, yet the design effect represented by that

arrow leads to no marginal association of B and A—an

example of unfaithfulness (independence despite graphical

connectedness) that is stable. Balanced blocked designs are

the experimental analog of balanced matched-cohort

designs, in which the exposure A and matching variable

B are independent in the matched subcohort selected from

a larger cohort, despite being connected in the causal graph

[15]. We note however that this unfaithful independence

will usually be broken upon adjustment for unblocked or

unmatched covariates, necessitating adjustment for all the

variables [44].

Discussion

Our examples display limits of causal models that are

ambiguous about the level or form of causal action, and

address certain technical misunderstandings of the relation

of DAG models to probability distributions and con-

founding. With allowance for small-sample issues, our

observations about mean-difference measures also apply to

collapsible ratio measures such as risk ratios and survival-

time ratios. We caution however that several complications

arise from the noncollapsibilty of odds ratios and logistic

regression coefficients: Stratification on balanced outcome

predictors results in a change in the estimated causal

parameter [5, 16, 45], which is often mistaken for con-

founding (although as in linear models such stratification

can also improve the power of null tests [46, 47]; similar

phenomena arise in probit and other binary-outcome

models [48, 49]).

Misunderstandings of modern nonparametric DAGs

may have been encouraged by traditional path diagrams for

linear structural relations (LISRELs) and multivariate-

normal models, in which all effects are represented by

constant additive (and hence monotonic) effects on indi-

viduals. In these highly constrained models, unfaithfulness

to a single arrow cannot occur, and thus certain design

effects cannot be modeled. Causal DAGs do not preclude

such effects, but do not distinguish designs that prevent

random confounding from those that do not. This limitation

arises because the DAG component in these models rep-

resents the joint distribution of the variables, rather than a

sample realization (put another way, the DAGs represent

‘‘infinite superpopulations’’ free of random variation).

Failure to recognize that causal DAGs do not incorpo-

rate randomly generated effects but do allow unfaithfulness

(necessitating arrows even when conventional measures of

association are null) can lead to erroneous interpretations

and inferences. We thus think it important to emphasize

these limitations of causal DAGs:

(a) Epidemiologic biases can arise from baseline covar-

iates graphically separated (disconnected) from the

study exposure or treatment; in particular, it is

important to understand that graphical criteria for

confounding control [2, 25] apply only to non-

random (stable or structural) confounding, and do

not account for random confounding.

(b) A covariate may have important effects on the

distribution of exposure or treatment (e.g., by

producing dependencies across individuals), altering

variances even if it does not affect the marginal

mean parameters or other distributional summaries;

consequently, design effects must be accounted for

in statistical procedures, and the arrow from the

covariate to the variable should be included to alert

the user to these effects.

Population-level variables do not address these graphical

limitations directly, but do connect graphs to population

potential-outcome models which can exhibit dependencies

among individual variables. Population models may

include not only outcome dependencies (as with contagious

diseases), but also treatment dependencies, such as design

constraints that prevent random confounding by allowing

potential confounders to affect selection or assignment. We

thus suggest that, for experimental as well as for observa-

tional research, description and teaching of causal models

should be generalized to represent explicit population and

distributions, and should explicitly exclude faithfulness

from its basic assumptions [1].
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