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Abstract: A probability distribution may have some properties that 
are stable under a structure (e.g., a causal graph) and other properties 
that are unstable. Stable properties are implied by the structure and 
thus will be shared by populations following the structure. In con-
trast, unstable properties correspond to special circumstances that 
are unlikely to be replicated across those populations. A probability 
distribution is faithful to the structure if all independencies in the 
distribution are logical consequences of the structure. We explore the 
distinction between confounding and noncollapsibility in relation to 
the concepts of faithfulness and stability. Simple collapsibility of an 
odds ratio over a risk factor is unstable and thus unlikely if the expo-
sure affects the outcome, whether or not the risk factor is associated 
with exposure. For a binary exposure with no effect, collapsibility 
over a confounder also requires unfaithfulness. Nonetheless, if pres-
ent, simple collapsibility of the odds ratio limits the degree of con-
founding by the covariate. Collapsibility of effect measures is stable 
if the covariate is independent of the outcome given exposure, but it 
is unstable if the covariate is an instrumental variable. Understand-
ing stable and unstable properties of distributions under causal struc-
tures, and the distinction between stability and faithfulness, yields 
important insights into the correspondence between noncollapsibility 
and confounding.

(Epidemiology 2015;26: 466–472)

It is well known that the absence of confounding does not 
correspond to collapsibility of effect measures, such as 

odds ratios, rate ratios, and other measures that are not linear 
or log-linear functions of the underlying incidence propor-

tions (outcome risks) or survival times.1–6 Noncollapsibility 
and confounding have been contrasted using both potential-
outcome (counterfactual) causal models and directed acyclic 
graphs.3,4,6–10 The distinction between them can be explained 
in terms of d-separation and d-connection (which we will call 
separation and connection) of variables in the directed acyclic 
graph,7 and they can be distinguished and measured using a 
number of formulas.6

We review the distinction in relation to the concepts of 
faithfulness, stability, and plausibility of distributional prop-
erties relative to a given structure, such as a directed acyclic 
graph. We show that

(1) � Stability and faithfulness to a directed acyclic graph 
are distinct concepts; each can occur with or without 
the other.

(2) � Without artificial assumptions, collapsibility of odds 
ratios over a risk factor is always unstable (and hence 
unlikely if not impossible) when the exposure affects the 
outcome, whether or not the risk factor is a confounder.

(3) � When the exposure is binary with no effect, collaps-
ibility over a confounder implies directed acyclic 
graph unfaithfulness (i.e., independence between 
connected variables).

(4) � Simple odds-ratio collapsibility sharply limits con-
founding of the risk ratio by the covariate.

(5) �C ollapsibility is stable if the covariate is independent 
of the outcome given exposure.

(6) �C ollapsibility is unstable if the covariate is an instru-
mental variable for an unmeasured confounder.

We illustrate the distinction between instability and 
unfaithfulness using odds-ratio collapsibility examples. 
The distinction illustrates limitations of causal directed acy-
clic graph models in representing constraints beyond those 
implied by missing arrows (e.g., collapsibility, homogeneity, 
matching, and balancing). The instability of simple odds-ratio 
collapsibility underscores one of the logical defects in equat-
ing odds-ratio collapsibility with no confounding. In partic-
ular, it warns against the “change in estimate” criterion for 
identifying confounders when using odds ratios for a common 
outcome, because this practice can mistakenly identify a non-
confounding risk factor as a confounder. Parallel results apply 
to rate ratios, rate differences, and noncollapsible regression 
coefficients, such as those from logistic or Cox models.3
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We assume that the reader is familiar with basic causal 
directed acyclic graph concepts and their relation to con-
founding, as reviewed in many sources and illustrated in 
Figures  1–6.8,9,11,12 We depart from that literature, however, 
insofar as we distinguish two concepts, faithfulness and sta-
bility, which are sometimes treated as identical.8 Throughout, 
we discuss only superpopulation (distributional) structures 
and expected estimates; elsewhere13 we discuss the relation of 
random variation to design structures.

REVIEW OF BACKGROUND CONCEPTS

Compatibility Versus Faithfulness
A probability distribution for a set of variables is compatible 
with a directed acyclic graph (whether causal or not) if every 
pair of variables that are separated on the graph are indepen-
dent in the distribution. Faithfulness, the converse property 
of compatibility, means that every pair of variables indepen-
dent in the distribution are separated in the directed acyclic 
graph.8,11,12,14 Compatibility is essential when using a distribu-
tion for analysis under a given directed acyclic graph, because 
biases are transmitted via graphical connections that must be 
reflected as associations in the distribution. In contrast, under 
a given directed acyclic graph, validity of tests for effects is 
preserved by compatibility but does not require faithfulness; 

furthermore, consistent variance estimation may require using 
unfaithful independencies induced by the study design.15,16

The directed acyclic graph itself summarizes a set of 
sharp prior independence assumptions that define distributions 
compatible with the structure encoded by the graph (because 
these assumptions represent a priori constraints, a directed 
acyclic graph representation of a compatible distribution is 
sometimes called a Bayesian belief network or Bayes net17). 
In particular, the absence of an arrow between two variables 
in a directed acyclic graph corresponds to a sharp constraint 
on the distributions compatible with the graph, reducing the 
dimensionality (degrees of freedom) of compatible distribu-
tions. Arrow absence thus represents special status (probabil-
ity 1, or certainty) that the constraint holds.

An example is a simple randomized trial of the effect of 
a treatment E on an outcome D in the presence of a baseline 
risk factor C, shown in Figure 1. The arrow between C and 
E is absent because the randomization assumption implies 
the absence of any causal effect of covariates on treatment. 
In contrast, unfaithfulness occurs when there is a further con-
straint beyond those implied by the absence of certain arrows.

Collapsibility
For binary E and D, let ORED represent the unconditional 
(unadjusted) odds ratio relating E to D and ORED|c, the condi-
tional odds ratio relating E to D given C equals c. When ORED|c 
is assumed constant across levels of C (odds-ratio homoge-
neity), simple or strict collapsibility is defined as ORED = 
ORED|c.

4,18,19 When E or D have multiple levels, there will be 
multiple odds ratios relating E to D and this definition requires 
ORED = ORED|c for all of them. More generally, for a measure 
M of the association of E and D that is constant across C (such 
as a regression coefficient), one may define simple collaps-
ibility as equality of the measure MDE computed ignoring C, 
and the constant C-specific measures MDE|c. Inverse-variance 
weighted averaging of estimated MDE|c generally assumes that 
the measures are homogeneous, as in simple collapsibility.

In a related but distinct concept, we call marginal col-
lapsibility, the unadjusted measure MDE equals the adjusted 
summary measure MDE|p(C) derived by averaging (marginal-
izing or standardizing) E-specific outcomes over the total 
population distribution p(C) of C,7,20 as in ordinary inverse-
probability weighting.21 Simple and marginal collapsibility 
are equivalent for risk ratios, survival-time ratios, mean dif-
ferences, and other measures called “collapsible,” but they are 
not equivalent for odds ratios, rate ratios, and other “noncol-
lapsible” measures.4 Other definitions of collapsibility can 
be found in the statistics literature, and collapsibility can be 
defined for any kind of adjustment for C, but in what follows 
we will focus on simple and marginal collapsibility.

Risk Factors, Confounding, and Confounders
There is enormous variation in definitions of risk factors, con-
founding, and confounders, with considerable mismatch across 
texts and authors.4–8,10 For simplicity, we will use “risk factor” 

C E D

FIGURE 1.  Simple odds ratio collapsibility over C is unstable if 
C and E separately affect D.

C E D

FIGURE 2.  Collapsibility over C is unstable when C affects E 
and D.

C E D

FIGURE 3.  For binary E with no effect, collapsibility over C 
requires unfaithfulness when C affects E and D.

C E D

FIGURE 4.  Effect measures are collapsible over C if C is inde-
pendent of D given E.

(U) C E D

FIGURE 5.  Collapsibility over C is unstable when C is an instru-
mental variable (U is unmeasured).

E D C

FIGURE 6.  For binary E with no effect on D, collapsibility over 
C requires unfaithfulness when both E and D affect C.
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as a shorthand for independent causal risk factors (covariates 
that affect D through a pathway not involving E, as with C in 
Figures 1–3) or covariates that exhibit temporal associations 
compatible with such factors as C in Figure 5.

Some definitions of confounding are equivalent to vio-
lation of ignorability of treatment assignment or exchange-
ability of treatment groups, which in a causal directed acyclic 
graph corresponds to confounding paths from E to D (undi-
rected open paths from E to D that end with an arrow into D). 
We will take confounding of an effect measure MED by a par-
ticular covariate C as a bias in estimating MED due to indirect 
connections of E and D transmitted through effects of C on D. 
In that case, we will call C a confounder and say it confounds 
MED.4,9,11,12 By this definition, C cannot be a confounder of 
any measure under Figures 1 and 4. Under Figures 2 and 3, 
however, C will always confound some effect measure,8 and 
as we will discuss C will usually confound all marginal effect 
measures.

As with most the current causal-inference literature, we 
do not address random confounding,4 leaving that for a com-
panion paper.13 We also do not consider monotonicity restric-
tions (apart from the extreme case of homogeneity), which 
can render impossible certain types of rule exceptions.22,23

FAITHFULNESS VERSUS STABILITY
Unfaithful distributions satisfy additional independence con-
straints not needed for compatibility. The plausibility of such 
constraints is important for determining whether unfaithful-
ness should be of practical concern. To formalize plausibility 
ideas, we will say a property (such as a constraint) is unstable 
relative to a structure if the structure does not induce (imply) 
the property. Such properties extend beyond independencies 
to include parametric assumptions such as homogeneity of an 
effect measure. Unstable properties may be deemed highly 
implausible, unlikely, artificial, or contrived if the structure 
encodes all the available information on causal linkages 
among the variables; in eAppendix 1 (http://links.lww.com/
EDE/A903), we provide one formalization of the concept of 
artificiality by identifying it with any set of dimension-reduc-
ing constraints that are not implied by the structure.

Pearl8(Sect. 2.4) initially defines the term “stability” as a 
synonym for “faithfulness,” whereas in our usage faithfulness 
is a property of a distribution, whereas stability is a property 
of a property (e.g., as we will show, collapsibility may be sta-
ble or unstable). A faithful distribution is thus one for which 
all independencies are stable. The converse does not hold, 
however: Cohort matching and blocked randomization induce 
stable independencies that are unfaithful to the basic causal 
directed acyclic graph for the starting cohorts.13,16 Faithful 
distributions may also have important unstable properties 
such as homogeneity and collapsibility.

We think our usage better conforms to Pearl’s verbal 
description of the concept that underlies stability and his 
usage in the context of confounding:8(Sect. 6.4) A stable property 

is one induced by (deducible from) the causal mechanism,  
(i.e., implied by the causal structure). An unstable property is 
then accidental and unlikely to be replicated in other popula-
tions obeying the same diagram or unlikely to be maintained 
in the current population over time. For these reasons, some 
causal-graph theorists adopt faithfulness as a core assumption 
for methodologic development,14 although practical11 and the-
oretical24 reservations against doing so have been given (e.g., 
an unfaithful independency may reflect some unmodeled but 
real causal process, or an intentional design strategy13,16).

COLLAPSIBILITY, FAITHFULNESS, AND 
STABILITY

For a binary C, simple odds-ratio collapsibility over  
C (ORED = ORED|c) occurs if and only if either C and E are 
independent given D (ORCE|d = 1 for all values d of D) or C 
and D are independent given E (ORCD|e = 1 for all values e of 
E).25 If C is not binary, there are exceptions in which there 
is collapsibility without either independency, characterized by 
cancelations across levels of C.19(Tables 4, 6) These exceptions do 
not arise from hidden independencies between the variables 
illustrated on a directed acyclic graph, but rather from inde-
pendencies among compound events,26,27 and thus can arise 
from distributions faithful to the directed acyclic graph. None-
theless, these exceptions involve strict additional constraints 
beyond those imposed by the graph, and thus the collapsibility 
they exhibit is unstable given only the directed acyclic graph.

Parallel observations apply to other measures, including 
those ordinarily labeled “collapsible” effect measures because 
they are collapsible under marginal CE independence (ORCE = 1).  
For example, the risk ratio can be collapsible over nonbinary 
C despite a marginal CE association and dependence of D on 
E given C.18 As discussed below, however, risk-ratio collaps-
ibility can be induced by simple design strategies, and thus can 
be stable, whereas odds-ratio collapsibility is always unstable 
when both C and E affect D.

NONCONFOUNDING BY A RISK FACTOR 
ALMOST ALWAYS IMPLIES ODDS-RATIO 

NONCOLLAPSIBILITY OVER THE RISK FACTOR
As is well known,4–8 without causal restrictions such as from 
a causal directed acyclic graph, noncollapsibility over C 
refers only to a difference in association with and without C 
adjustment and should not be equated with confounding. We 
illustrate and apply the above concepts to delineate further 
the distinction between noncollapsibility and confounding 
in terms of what we should usually expect of the underlying 
structure under study. eAppendix 1 (http://links.lww.com/
EDE/A903) provides a more detailed discussion and formal-
ization of what we mean by “usually expect” and “almost 
always” using mathematical concepts.

Our first point is that researchers routinely attempt to 
engineer unconfounded estimates using methods that we 
should expect to leave residual noncollapsibility. Consider 

http://links.lww.com/EDE/A903
http://links.lww.com/EDE/A903
http://links.lww.com/EDE/A903
http://links.lww.com/EDE/A903


Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Epidemiology  •  Volume 26, Number 4, July 2015	 Collapsibility and Confounding, Faithfulness and Stability

© 2015 Wolters Kluwer Health, Inc. All rights reserved.	 www.epidem.com  |  469

simple randomization of E. This design feature cuts off the 
effect of C on E by placing E under experimental control, and 
leads to Figure 1. On average over randomizations, C and E 
are unconditionally independent; thus the ED risk ratio is col-
lapsible over C18 (as is the risk difference) and C is not a con-
founder in the average sense used in definitions that equate 
confounding with violations of ignorability (sometimes 
expressed by saying the treatment-assignment mechanism is 
unconfounded28).

Nonetheless, under Figure 1, C will be associated with 
E given D; this can be seen by noting that D is a collider on the 
only path from C to E, and conditioning on it opens that path.7 
Under Figure 1, C also remains associated with D given E. 
Thus, the two conditional associations necessary for noncol-
lapsibility of the ED odds ratio are present; these conditions 
also preclude simple odds-ratio noncollapsibility when C is 
binary.25 This noncollapsibility in the absence of confound-
ing was demonstrated analytically long ago and shown to 
be toward the null,1 but it was often interpreted as a bias in 
ORED.29,30 However, it is not a bias if the marginal causal effect 
of E on D is the target.1,2,4,7 A numerical example is provided 
in Table 1, in which under standardization to the total31 all the 
measures are marginally collapsible, yet the odds ratio is not 
simply collapsible; in fact under Figure 1 with binary D, this 
must be the case.

Table 4 in Whittemore19 with F1 = C, F2 = E, F3 = D 
shows that with polytomous outcomes, simple odds-ratio col-
lapsibility is possible under Figure  1 (although when D is 
polytomous, multiple ED odds ratios are involved). Nonethe-
less, such examples are unstable given only Figure 1. Thus, we 
expect odds ratios to be noncollapsible whenever confound-
ing is controlled but certain risk factors are averaged over 
or not controlled more than needed to remove confounding. 
Consider studies of clusters (such as schools or households) 
with individual data, in which confounders are controlled in 
a model for correlated outcomes. With sufficient adjustment, 
there will be no confounding, but the population-average odds 

ratio (as produced by, say, familiar GEE model fitting) will 
be closer to the null than the subject-specific odds ratio (as 
produced by random cluster-effects models), to the extent the 
outcome is common and clusters predict risk conditional on 
the covariates.32

Similarly, summary odds ratios derived from typi-
cal propensity-score adjustments (such as score-stratified or 
inverse-probability weighted estimates) will tend to be closer 
to the null than the covariate-conditional odds ratios derived 
from direct outcome regression even if both odds ratios are 
unconfounded.33 This difference depends on the size of the 
outcome risk and how strongly the covariates predict risk con-
ditional on the propensity score.34

CONFOUNDING BY C ALMOST ALWAYS 
IMPLIES NONCOLLAPSIBILITY OF EFFECT 

MEASURES OVER C
A shared consequence of causality-based definitions of con-
founding by C is that for C to confound, it must be uncondi-
tionally associated with E and associated with D given E. In 
a directed acyclic graph with only C, E, and D, these asso-
ciations require arrows from C to E and D, as in Figure  2; 
conversely, C will be a confounder under Figure 2, apart from 
exceptions with polytomous C involving special cancellations 
that would be considered unstable given only the diagram.

In eAppendix 2 (http://links.lww.com/EDE/A903), we 
show that if the odds ratio is simply collapsible, the uncon-
ditional (“crude”) risk ratio RRED will fall between the mini-
mum and maximum of the stratum-specific risk ratios RRED|c, 
thus constraining confounding of the risk ratio by C. The util-
ity of this result is, however, limited by the following observa-
tions: Like Figure 1, Figure 2 implies that C is associated with 
E given D, which (when combined with the association of C 
with D given E) implies that the E–D odds ratio will be non-
collapsible (ORED ≠ ORED|c) apart from unstable exceptions.7 
Thus, under Figure 2, we would ordinarily expect odds-ratio 
noncollapsibility over C, as well as confounding by C.

As an example of an exception, Table  2 is compat-
ible with Figure  2, in which C and E are connected through 
two paths C → E and C → D ← E. Nonetheless, Table 2 is 
constructed so that conditional on D, the positive association 
between C and E through C → E and the negative associa-
tion between C and E through C → D ← E cancel each other, 
making C and E independent given D (180/60 = 60/20, and  
20/40 = 90/180) and thus unfaithful to Figure  2. While the 
odds ratio is simply collapsible in Table 2, confounding by C is 
evident from the marginal noncollapsibility of all the measures.

A practical question is whether we should be con-
cerned that such an example may arise in practice. We would 
argue no: Simple collapsibility of odds ratios over a binary C 
requires independence of two past variables (C and E) given 
a future variable (D), and thus appears highly artificial under 
Figures 2 and 3. To ensure independence of C and E given D 
in a cohort study, the study designer would have to already 

TABLE 1.  An Example of OR Noncollapsibility Without 
Confounding

D

C = 1 C = 0 Collapsed

E E E

1 0 1 0 1 0

1 180 60 80 10 260 70

0 20 40 120 90 140 130

Total 200 100 200 100 400 200

RR = 1.5 RR = 4 RR = 1.86a

RD = 0.30 RD = 0.30 RD = 0.30a

OR = 6 OR = 6 OR = 3.45a

aEqual to the RR, RD, OR standardized to total using C-specific risks with weights 
300/600 = ½ for each stratum.28

OR indicates odds ratio; RR, risk ratio; RD, risk difference.

http://links.lww.com/EDE/A903
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know the outcome D as well as E and C, and thus would 
already (a priori) know or at least be able to estimate con-
sistently the effect under study (of E on D). Thus to engineer 
simple collapsibility would require knowledge on the part of 
the designer that would curtail the motivation for the study. 
It seems even more unlikely that natural disease processes 
would lead to the conditional independence required for sim-
ple odds-ratio collapsibility.

For polytomous C, both simple and marginal odds-ratio 
collapsibility can occur despite presence of the dependen-
cies necessary for noncollapsibility.19(Table 6) The same is true 
of other effect measures, such as risk ratios and mean differ-
ences; that is, the dependencies together are not sufficient for 
noncollapsibility, and thus collapsibility can occur despite 
faithfulness. Nonetheless, under distributions compatible with 
and faithful to Figure 2, such collapsibility requires contrived 
cancelations of changes in the measure as levels of C are com-
bined (collapsed), which makes the collapsibility unstable 
despite the underlying faithfulness of the distribution.

In contrast, suppose Figure 3 holds (in which there is 
no effect of E on D but C affects both E and D); under com-
mon conditions collapsibility implies unfaithfulness. Because 
E has no effect, MED|c is null (1 for ratios, 0 for differences) 
at all levels of C; hence, collapsibility requires the unadjusted 
measure MED to be null as well, despite the fact that E and D 
are connected through C. Table  3 provides an example that 
is compatible with Figure  3 but unfaithful (and unstable) 
because E and D are unconditionally independent despite this 
connection. Thus, if MED being null implies independence of 
E and D (as when E and D are binary, or under models in 
which the E effect on D is captured entirely by a single coef-
ficient), collapsibility will require unfaithfulness, in addition 
to being unstable.

Although technical in form, the preceding results pro-
vide a rationale for common intuitions about confounding and 
its relation to noncollapsibility: Given the instability of col-
lapsibility when C affects both E and D (Figures 2 and 3), we 
should usually expect marginal and simple noncollapsibility 

of all effect measures over confounders. For the odds ratio, 
we would also expect simple noncollapsibility whenever both 
C and E affect D (Figures 1 and 2). Thus, simple odds-ratio 
collapsibility is not something to expect or rely on in most 
settings involving covariate adjustment (in which the covariate 
affects the outcome but the effect of exposure on the outcome 
is unknown).

Nonetheless, the growing popularity of methods 
based on exposure modeling (such as propensity scoring) 
has led to increased risk of harmful adjustment involving 
covariates whose only effect on the outcome is through 
exposure, as in Figures 4 and 5. Adjustment for such covari-
ates is inadvisable because it can inflate the variance35 and 
amplify bias36 of exposure-effect estimates. Under Fig-
ure 4, C will be independent of D given E, making all effect 
measures collapsible over C, and this collapsibility will be 
stable. In contrast, under Figure 5 with U uncontrolled, C is 
an instrumental variable, and collapsibility over C will typ-
ically be unstable (because C is connected to D conditional 
on E via the path C → E ← U → D where E is a collider), 
as under Figure 2; the difference is that under Figure 5, the 
expected noncollapsibility will represent increased bias 
in the C-adjusted estimate instead of confounding of the 
unadjusted estimate by C.36

Strong collapsibility has been defined as no change in 
the measure under any degree of collapsing (coarsening or 
combining) of levels of C.18,27 Unlike marginal and simple 
collapsibility, strong collapsibility requires either indepen-
dence of C and D given E, or independence of C and E 
(unconditionally for risk ratios,18 conditional on D for odds 
ratios27). Consequently, strong collapsibility cannot occur 
under distributions compatible with and faithful to Figures 2 
and 3, or 5; it also cannot occur for odds ratios under dis-
tributions compatible with and faithful to Figure 1. In this 
sense, strong collapsibility of effect measures is more intui-
tive in behavior than simple collapsibility. It is however so 
strong that it is equivalent to assuming C is independent of 
E or D or both.18,27

TABLE 2.  An Example of OR Collapsibility with Confounding

D

C = 1 C = 0 Collapsed

E E E

1 0 1 0 1 0

1 180 60 60 20 240 80

0 20 40 90 180 110 220

Total 200 100 150 200 350 300

RR = 1.5 RR = 4 RR = 2.57a

RD = 0.30 RD = 0.30 RD = 0.42a

OR = 6 OR = 6 OR = 6a

aRR = 1.91, RD = 0.30, OR = 3.46 when standardized to total using weights 300/650 
and 350/650 for the stratum-specific risks.28

OR indicates odds ratio; RR, risk ratio; RD, risk difference.

TABLE 3.  An Example of OR, RR, and RD Collapsibility 
When C and D Are Associated Given E, and C and E Are 
Associated Given D

D

C = 2 C = 1 C = 0 Collapsed

E E E E

1 0 1 0 1 0 1 0

1 60 40 30 20 20 60 110 120

0 30 20 60 40 20 60 110 120

Total 90 60  90 60 40 120 220 240

RR = 1 RR = 1 RR = 1 RR = 1

RD = 0 RD = 0 RD = 0 RD = 0

OR = 1 OR = 1 OR = 1 OR = 1

OR indicates odds ratio; RR, risk ratio; RD, risk difference.
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EXTENSIONS TO INTERMEDIATES AND 
COLLIDERS

Collapsibility conditions are purely associational, and thus our 
results for Figures 1–5 hold after reversing arrows directions 
if those reversals leave the associational structure unchanged 
(even if they change the temporal or causal structure). The 
associational structure will remain unchanged if the reversals 
neither create nor destroy a v-structure (i.e., two converg-
ing arrows whose tails are not connected by an arrow).8(P. 19) 
For example, the results from Figures  2–4 apply with the 
C–E arrow reversed (i.e., E → C) making C an intermedi-
ate between E and D in Figures 2 and 3 and a proxy for E in 
Figure 4. This is not the case for Figure 5, however, where the 
C–E arrow reversal destroys the v-structure C → E ← U.

Although reversing both arrows directions in Figure  3 
introduces the v-structure E → C← D (Figure 6), our result 
still apply: For a binary exposure with no effect, collapsibil-
ity over a variable affected by both exposure and outcome 
requires the variable to be polytomous and implies unfaithful-
ness. Because E has no effect, MED is null; hence, collapsibility 
requires the adjusted measure MED|C to be null as well, despite 
the fact that E and D are connected conditional on C. Table 3 
provides an example compatible with Figure 6 but unfaithful 
(and unstable) because E and D are independent given C.

DISCUSSION
Simple collapsibility of odds ratios and logistic coefficients 
over risk factors is a particularly artificial condition when 
the exposure affects disease, thus reinforcing advice to avoid 
evaluation of confounding using odds ratios or logistic coef-
ficients when the outcome is common. Furthermore, this sim-
ple collapsibility requires satisfaction of a set of constraints 
that involve the covariate and outcome19,37 and hence is not 
induced neither by any ordinary design nor by a natural causal 
process of which we are aware. Thus, we would never expect 
simple odds-ratio collapsibility over a risk factor, regardless 
of whether it is a confounder. Parallel comments apply to rate 
ratios and to proportional hazards and Poisson-regression 
coefficients, although the discrepancy between confounding 
and noncollapsibility is smaller for these measures.5 Although 
one could engineer selection probabilities dependent on 
both exposure and outcome so that the data exhibited simple 
odds-ratio collapsibility, estimation would require use of the 
selection probabilities to remove the selection bias and would 
produce noncollapsible odds ratios.

Beyond the practical objections to inducing or assuming 
collapsibility over a risk factor C, we could ask: why would 
we want simple odds-ratio collapsibility over C if we already 
had no confounding by C or had adjusted for confounding by 
C? We know of no practical reason. This is especially so if we 
abandon odds ratios and rate ratios as our target causal param-
eter, and regard them instead as only approximations to a risk 
ratio by virtue of outcome rarity, as in classical case–control 
studies. For rare outcomes, any noncollapsibility apart from 

confounding will be too small to be of concern, given that the 
risk ratio being approximated is itself collapsible.

For common outcomes, there is usually nothing to rec-
ommend a case–control design, and we may instead focus on 
cohort data and direct estimation of risks or survival times and 
their contrasts. Although these estimates may be produced by 
standardizing (averaging or marginalizing) risks from mod-
els with noncollapsible coefficients (such as logistic or Cox 
regression),38 the resulting risk or time ratio estimates will be 
collapsible over C when C is independent of E (as in Table 1 
and Figure 1).
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