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Formulas for estimating sample sizes are presented to provide specified levels 
of power for tests of significance from a longitudinal design allowing for 
subject attrition. These formulas are derived for a comparison of two groups in 
terms of single degree-of-freedom contrasts of population means across the 
study timepoints. Contrasts of this type can often capture the main and interac­
tion effects in a two-group repeated measures design. For example, a two-
group comparison of either an average across time or a specific trend across 
time (e.g., linear or quadratic) can be considered. Since longitudinal data with 
attrition are often analyzed using an unbalanced repeated measures model 
(with a structured variance-covariance matrix for the repeated measures) or a 
random-effects model for incomplete longitudinal data, the variance-
covariance matrix of the repeated measures is allowed to assume a variety of 
forms. Tables are presented listing sample size determinations assuming com­
pound symmetry, a first-order autoregressive structure, and a non-stationary 
random-effects structure. Examples are provided to illustrate use of the formu­
las, and a computer program implementing the procedure is available from the 
first author. 

Longitudinal studies occupy an important role in applied research in many 
fields. In planning and designing longitudinal studies, researchers must deter­
mine the number of subjects necessary for the study by calculating statistical 
power associated with a proposed sample size and analysis plan. As Muller, 
LaVange, Ramey, and Ramey (1992) note, determining statistical power is 
important to avoid two serious errors. Insufficient sample size can lead to 
inadequate sensitivity, whereas an excessive sample size can be a waste of the 
researchers' (and study participants') time and money. 
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As longitudinal designs in applied research have proliferated, there has been 
more focus on power calculations and sample size determination. Muller and 
Barton (1989) and Muller and Peterson (1984) discuss the univariate approach 
to repeated measures and power calculations for the general linear multivariate 
model. O'Brien and Muller (1992) provide a tutorial on power for linear models 
and for tests ranging from /-tests to multivariate tests. Much of this work was 
reviewed and expanded upon in Muller et al. (1992), which presents a compre­
hensive approach to the calculation of statistical power for longitudinal studies. 
Their treatment includes power formulas applicable to both multivariate and 
univariate repeated measures analysis, and for between-group comparisons in­
volving multiple groups. Overall and Doyle (1994) and Kirby, Galai, and Munoz 
(1994) also discuss sample size estimation for repeated measures models involv­
ing two (between-subjects) groups. 

For random-effects models, Snijders and Bosker (1993) present approximate 
formulas for the standard errors of estimated regression coefficients. These 
standard errors can be used for power calculations for explanatory variables 
(e.g., group effects, or group by time interactions) in random-effects models 
involving repeated observations (level-1) nested within subjects (level-2). Their 
approach assumes that the sample size at either level (i.e., subjects and time-
points) is sufficiently large and does not change over time, and that there are no 
autocorrelated errors. These assumptions are generally reasonable for clustered 
data (e.g., students within schools, or patients within clinics), however, in the 
longitudinal context they may be less so. 

In general, these power formulas assume that the sample size is constant 
across time. Since this assumption is rarely met in practice, it is often recom­
mended to conservatively use the minimum expected sample size at any study 
timepoint in applying these formulas. In this article, we will develop formulas 
for sample size estimation and assessment of statistical power for longitudinal 
designs allowing for subject attrition. These formulas will be developed for 
comparing two groups in terms of single degree-of-freedom contrasts across 
time. Though simple, single degree-of-freedom contrasts can often be used to 
capture the main and interaction effects in a two-group repeated measures 
design, particularly in the design phase of a study. For example, a one degree-of-
freedom contrast might represent a hypothesized overall group difference across 
time or a group by time interaction of a specific type (e.g., a linear or quadratic 
trend). With regards to missing data, missingness is assumed not to moderate or 
mediate the effect of model terms for which power is being determined. 

In addition to allowing for attrition, we will consider the variance-covariance 
matrix of the repeated measures to assume a general form, to be restricted to a 
specific form (e.g., compound symmetry, autoregressive, or Toeplitz structures), 
or to follow a structure resulting from a posited random-effects model of the 
repeated measures. Thus, these power formulas are aimed at two-group repeated 
measures studies where specific time-related contrasts are of primary interest 
and the number of observations vary across time. Since only single degree-of-
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freedom contrasts across time are considered, the assumption of circularity or 
sphericity regarding the variance-covariance matrix of repeated measurements is 
not an issue. As is shown, these formulae can be applied under a variety of 
variance-covariance structures for the repeated measures.' 

Models for Unbalanced Longitudinal Data 

Assume that there are n timepoints {}= 1, 2 , . . . , n), corresponding to a fixed 
number of occasions or experimental conditions, however not all subjects are 
observed at all timepoints. Let «,. equal the number of observations for subject i. 
Jennrich and Schluchter (1986) describe models for unbalanced longitudinal 
data under a variety of variance-covariance structures. For this, consider the 
following linear model in which the nt x 1 response vector y, for subject / is 
modeled in terms of p covariates (including the intercept): 

y,--*,-P + e, (i) 

where X, is a known n, x p covariate matrix, B is a p x 1 vector of unknown 
regression parameters, and e, is a n, x 1 vector of residuals distributed indepen­
dently as N(0, £,). The matrix S, depends on i only through its dimension; it 
depends on q unknown covariance parameters. Besides the unstructured (i.e., q 
= n(n + l)/2) common choices for X, include a compound-symmetry structure {q 
= 2), a first-order autoregressive structure (q = 2), and a Toeplitz structure (q = 
n). 

Alternatively, the variance-covariance matrix can be assumed to follow a 
structure based on a particular random-effects model. Under these models, also 
known as multilevel or hierarchical linear models (Laird & Ware, 1982; Gold­
stein, 1995; Bock, 1989; Bryk & Raudenbush, 1992; Longford, 1993), the 
variance-covariance matrix of the repeated measures is expressed as 

s, = z,29z; + o-2
en,. (2) 

where S e represents the variance covariance matrix of the person-varying ran­
dom effects 0„ Z, represents the design matrix corresponding to the random 
effects, o\ represents the error variance, and £2, represents a possible autocorre-
lated error structure (e.g., if autocorrelated errors are not considered, fi, is 
assumed to be the identity matrix /,-). This structure arises by assuming 

e, = Z,.0, + e, (3) 

where the random effects 8, and errors e, are assumed to be distributed indepen­
dently as N(0, 2e) and N(0, alii,). 

For the two-group design, suppose that X,-, has dimension n, x 2/i and is 
partitioned into two «,• x n component matrices. The first component matrix 
(designated W,) includes a constant term as the first column followed by n — 1 
contrasts for the within-subjects design. The second component matrix (desig-
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nated B,) represents the between-subjects design and is obtained by multiplying 
W, by - 1 (if subject /' belongs to the first group) or 1 (if subject / belongs to the 
second group). Similarly, partition the 2w x 1 parameter vector £ into (3 ,̂ and 
(3B. The first element of $w is the grand mean of the model and the remaining n 
- 1 elements represents the parameters corresponding to the main effect of time. 
Similarly, the first element of BB is the parameter representing the main effect of 
group and the remaining n — 1 elements represent the parameters of the group 
by time interaction. 

Contrasts for W, (and thus for B, as well) based on an orthonormal n x n 
contrast matrix W have many advantages. In this case, assuming a compound 
symmetry structure and no missing data across time (i.e., n, = n for all i), 
maximum likelihood estimates of $w and BB are invariant with respect to the 
addition or deletion of W and B terms, respectively. Additionally, for the full 
model (i.e., with 2n regression parameters), the estimates of (3^ and [3B are 
invariant with respect to the variance-covariance structure of £ (see Appendix) if 
n, = n for all /'. Since, in general, «, i= n for all subjects, neither W, or B, are 
mathematically orthogonal (or orthonormal) for subject i when n, j= n. However, 
if it is assumed that there is no mediating or moderating effect of missingness on 
the terms in W or B in the population, then approximately the same estimates of 
$w and BB are obtained. For longitudinal studies, a common choice of W is to 
use orthogonal polynomial contrasts. To obtain orthonormal contrast coefficients 
for specific polynomial trends across time, a table listing orthogonal polynomi­
als (Bock, 1975) or programmed subroutines (Cooper, 1971) can be used. 

In planning a two-group study, interest usually centers around the power 
associated with hypothesis testing of the parameters |3B. If the number of 
observations n per subject is equal, the methods described by Muller et al., 
(1992) can be used to determine power for both the overall group effect and the 
group by time interaction, assuming a variety of forms for the variance-
covariance structure of the repeated measures. In what follows, we provide 
formulas for power calculations for testing specific elements of BB, allowing the 
number of observations per subject to vary and for a variety of variance-
covariance structures. These methods can be used when interest focuses on 
testing the main effect of group (i.e., the first element of |3B) or a specific form 
for the group by time interaction (i.e., a single element of the remaining n — 1 
parameters in |3B). 

Power under a General Variance-Covariance Structure 

Consider the case where the variance-covariance structure of repeated mea­
sures is of a general form, however, the matrix is assumed to be homogeneous 
across the two groups. Further, it is assumed that the variances and covariances 
of the matrix are known or can be specified. To begin, we will consider the 
formula for a two-group comparison at a single timepoint and extend this 
formula for a two-group comparison based on a specified contrast across time. 
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Comparison of Two Groups at a Single Timepoint 

For the case of a comparison of two groups at a single timepoint, the 
following formula can be used to approximate the required number of subjects 
(AO in each of the two groups (Fleiss, 1986, page 369): 

2(Za + Zp)V 
N = —j- (4) 

where ^ is the value of the standardized score cutting off a/2 proportion of each 
tail of a standard normal distribution (for a two-tailed hypothesis test), za is the 
value of the standardized score cutting off the upper (B proportion, CT is the 
assumed common variance in the two groups, and u, - u2 is the difference in 
means of the two groups. This normal approximation of the noncentral t distri­
bution is reasonable if the degrees of freedom exceed 30. Thus, this approxima­
tion can be used in sample size determination for most educational and behav­
ioral studies. 

Comparison of Two Groups Across Timepoints—Balanced Case 

As noted by Overall and Doyle (1994), for longitudinal designs where the 
number of timepoints is equal to n, the above formula can be modified for 
determining the sample size corresponding to a contrast (denoted ^c.) of the 
group population means across the n timepoints as: 

S-^+f* (5, 

with 

Vc = 2 CJ(HIJ ~ Kj) (6) 

and 

o] = 2 c)a) + 2 2 CjCj^jy (7) 
;'= i i<J 

Here, a] refers to the assumed common variance in the two groups at timepoint 
j , (Tj y refers to the assumed common covariance in the two groups between 
timepoints j and / , and c- refers to the within-subjects contrast applied at 
timepoint/ Since equation (6) includes the coding of — 1 and 1 for the compari­
son of the two groups, it incorporates the multiplication of the group indicator 
(i.e., — 1 or 1) by the within-subjects design matrix W that was used to yield the 
between-subjects design matrix B described earlier. As such, the contrast coeffi­
cients Cj are the elements of a particular column of the design matrix W. Note 
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that in assuming an equal number of subjects in each of the two groups (i.e., N) 
across all timepoints, the variance of the sample contrast V(WC) equals 2a2

cIN. 
Formula (5) can be used to calculate the number of subjects necessary in each 

of the two groups to achieve the desired level of power for a between-group 
difference in terms of a specific contrast across time. If the sample size is known 
and the degree of power is to be determined, the formula can be re-expressed as: 

^ = V ^ T " Z Q = W T V (8) 

Single degree-of-freedom contrasts across time (i.e., ^ c ) can often be used to 
represent the main and interaction effects in a two-group repeated measures 
design. The choice of these contrasts clearly depends upon the analysis that is 
planned for the study. For example, if c, = \/y/n (_/' = 1 , . . . . n), testing tyc = 0 
provides a test of an overall group difference across time (i.e., the first element 
of 3B = 0). Here, the contrast is standardized so that SJ_,c?= 1. Notice that if cy 

= l/\/n, then 

which when substituted in (5) shows that, all other things being equal, more 
subjects are necessary to detect an overall group effect as the correlation of the 
repeated measures increases. 

To calculate power for a group by time interaction, a simple but often 
reasonable option is to consider a specific form for the interaction (i.e., a 
particular column of (3fl). For example, a group by linear time interaction is a 
common choice. While the degrees of freedom for the group by time interaction 
equals n — 1, if a particular type of group by time interaction is hypothesized in 
the study design, the above formula for a single degree of freedom contrast can 
be used to assess power for this particular component of the group by time 
interaction. For example, with two timepoints, the orthonormal coefficients for 
the linear component equal c, = 1/V2 and c2 = — 1/V2, and so 

o-c
2 = ^(o-? + o-2)-o- I2, (10) 

illustrating that, all other things being equal, less subjects are necessary to detect 
a group by linear time effect as the correlation of the repeated measures 
increases. If the timepoints are not equally spaced, the coefficients for the 
(orthonormal) linear contrast can be modified accordingly (Emerson, 1968). 
Higher-order polynomials can also be used to provide power for a test of, say, a 
group by quadratic time interaction. For two-period crossover designs, the 
coefficients Cj can be set equal to —\l\fn and \l\fn for the first and second 
periods, respectively. Then the contrast represents the group by period interac-
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tion. Since the number of timepoints within each period may not be equal, 
standardization within each period can be performed (e.g., c- = — 1/ V2n, for the 
first period with /i, timepoints, and c- = 1/V2«2 for the second period with n2 

timepoints) to achieve equal weighting of the two periods. Other types of 
contrasts for two-period crossover studies are described in Bock (1983). 

Once a set of time-related contrast coefficients (c-, j = 1,. . . , n) has been 
determined, usage of formula (5) or (8) requires the assumption of a common 
sample size (N) for each group across the n timepoints. Additionally, expected 
group mean differences at each of the n timepoints and the variance-covariance 
matrix of the repeated measures must be specified. For specific contrasts, using 
formula (8) gives the same results as those obtained using the methods described 
in Muller et al., (1992) for moderate to large sample size (i.e., N > 30 or so). 

Comparison of Two Groups Across Timepoints—Unbalanced Case 

In many studies sample size does not remain constant over time, it generally 
decreases due to subject attrition or non-response. One option is to apply the 
above formula using the minimum expected sample size at any timepoint of the 
study. However, this approach will generally underestimate power. Alternatively, 
the above formula can be modified to appropriately account for the sample size 
at each of n timepoints. We also distinguish between the sample size in the first 
group (Nt) and the second group (N2J) at timepoint j(j = ],..., n). Allowing 
for varying sample sizes between groups and across timepoints, variance of the 
sample contrast ^c . is now equal to 

V(%) = t c)a) ( J - + J - \ + 2 Z cjc^j. ( ' + ' V (11) 

Using the sample size in the first group at the first timepoint (wM) as a 
reference, let us define retention rates for this group as r^ for timepoints j = 
1 , . . . , n, which indicate the proportion of /V, subjects observed at timepoint /' 
(note that ru = 1 and A',̂  = r|yJVM). Similarly we define N2\ and r2J for group 
two. Then the above formula is rewritten as: 

^-ThlXttlr + rir)* 

(12) 

and if we denote the ratio of sample sizes at the first timepoint (Nu/N2t) asjV_,, 
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then 

vw = N. + 

2£.cJcr(TJJ'\,r—— 
1 +N 

1 

V» 2 / 2 / / J 

(13) 

Notice this formula simplifies if the retention rates are equal for the two groups 
(i.e.,rij=r2J=rJ), 

W , + 1 T " C*0* " CjC.-.CT: .-"I 

^ii L j= l r; j<J' V>jj,\ 

N_{ + 1 
(14) 

where CT2
C. can be seen as an extension of CT2 given in (7) allowing for varying 

sample size across timepoints (although group retention rates are assumed 
equal). 

To calculate power for any of the above variance formulations of the sample 
contrast, we can use the previously noted relationship 

In particular, for the case of equal group retention rates, 

l( * 1 . \ * c 
Zo. 

(15) 

(16) 

which reduces to the formula given in (8) when the sample sizes are the same for 
the two groups (/V_, = 1) at all timepoints (r- = 1 for all i). Formula (16) can be 
re-expressed as number of subjects needed in the first group at the first time-
point: 

(AT_,+ l)(2a + Z3)2oi 
* . . = • (17) 

Based on the sample size ratio between groups N_, and retention rates r-, 
required sample size at each timepoint for both groups can be calculated. 

Specific Variance-Covariance Structures 

The presentation thus far has assumed that the variance-covariance matrix of 
the repeated measures is of a general form, and so requires specification of the 
unique elements of this n x n matrix. It is often more parsimonious to assume a 
restricted form for the variance-covariance matrix. As described above, analysis 
of unbalanced repeated-measures data with different types of covariance struc-
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tures is discussed by Jennrich and Schluchter (1986). In terms of the previous 
formulas, the variance of the sample contrast needs to be respecified in accor­
dance with the specific variance-covariance structure assumed. For example, for 
a compound symmetry structure, (11) can be rewritten as: 

v(4g = a2 

n 

2 p 2 CJCJ 

+ 

i + • 
i 

(18) 

i<y • • \ V 3 v v V V V , 
requiring specification of only the variance and correlation parameters a2 and p 
that are assumed homogeneous across time. Assuming that the retention rates are 
equal for the two groups, and denoting the effect size dj = (uly — p2>V°'» formula 
(16) becomes: 

= l( Nu \ VU'tf 
* c (19) 

and so, the number of subjects necessary in the first group at the first timepoint 
(iVu) is equal to 

(*_, + \)(za + z,)2 (S;L, c2/rj + 2Ps;<7. cfj./V^;.) 

Further simplification is possible for an overall comparison of the groups across 
time (i.e., a group main effect). In this case, specifying Cj = \l\fn, yields 

Zfl = 
\\N-i + lh^1l/rj + 

(2"=i4-) 

and 

N, 

2Ps;</ \r 

(/v_, + i)(za + z3)
2 (z;., i/rj + 2Ps;<;, i/ V v y ) 

(21) 

(22) 
(2;- |d;)2 

Similarly, assuming equal retention rates in the two groups, for a stationary 
first-order autoregressive structure, denoted AR(1), we get: 

* u = 
(tf_, + \Xza + Zp)2 ( i ; = 1 c

2/rj + 221<r plJ-J,)Cfr/Vw-) 

which simplifies for a main group effect to 

(/v., + i)Ua + zp)2(z; \lr, + 22" 
* u = 

7</ P 
(;-;")/ 

(s;=,^)2 

(23) 

(24) 
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For the AR(1) structure, one must specify the variance CT2 (to obtain dj) that is 
homogeneous across time, and first-order autocorrelation parameter p (where 
p ( y -- ' ' indicates the correlation between timepoints y and / ) . 

For the random-effects structure, as noted above, the variants-covariance 
matrix of the repeated measures is expressed as X = Z2 e Z' + o-2H, and so the 
design matrix Z and assumed values for the parameter matrices S e and o-2ft 
need to be specified. Either formula (13) or (14) for the variance of a specific 
contrast can then be used to calculate the power given sample size (16), or 
required sample size for a given level of power (17). For example, for a 
random-intercepts model (without autocorrelated errors) Z = ln, yielding the 
compound symmetry structure for S with cr2, + CT2 on the diagonal and a2, for all 
off-diagonal elements. In this case, assuming equal retention rates in the two 
groups, the same results are obtained as given above in formulas (19) and (20) 
with CT2 = a2, + CT2 and p = <J2J{(J2Q + o2). 

Examples of Sample Size Determination 

To illustrate use of the formulas: suppose that a two-group study with equal 
sample sizes in the two groups (/V_, = 1) is being proposed with three timepoints 
(/? = 3), and that the group difference is expected to be .5 standard deviation 
units at each timepoint {dj = .5 for all J). Cohen (1988) denotes a difference of 
this size a "medium" effect size. Interest is in determining the number of 
subjects necessary for power equal to .8 {z$ = .842) for a two-tailed .05 
hypothesis test {z^ = 1.96) of an overall group difference (c; = 1/V3 for all three 
timepoints). Further assume the attrition rate is expected to be 10% at each 
timepoint after the first, and is assumed to be the same for both groups, (r, = 1, 
r2 = .9, r3 = .81). 

If all pairwise correlations of the three repeated measures are assumed to be .5 
(p = .5), then formula (22) can be used. Given the assumptions above, note that 
(/V_, + l)(z„ + zfflWj_idJ)

2 equals 2(1.96 + 0.842)2/l.52 = 6.98, and so 

Nu = 6.98 [ 1/1 + 1/.9+ 1/.81 +2(.5)(l/V!9+ 1/VJT+ l/V/729)] = 46.6. 

For sample size determination, it is reasonable to round up to the nearest integer, 
thus Nn can be set to 47. Alternatively, if the association of the repeated 
measures across time is represented by an AR(1) process with p = .5, then 
applying (24) yields 

Nn =6.98[l/l + 1/.9+ 1/.81 +2( .5 /V^ + .25/\/lT + .5/\/7729)] = 4 2 . 8 ^ 4 3 . 

This lower relative sample size for the AR(1) structure reflects the lower 
correlation between timepoints 1 and 3, relative to the compound symmetry 
structure (i.e., r,3 = .25 versus .50). 

Finally, suppose a previous study analyzed a similar dataset using a random-
effects model with subject-varying intercepts and trends across time. In terms of 
Z, this previous study coded the intercept as 1 and the time variable as —1,0, 
and 1 for the three timepoints, respectively. Also, from this previous study, the 
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estimated intercept variance was .4, the slope variance .1, the intercept slope 
covariance .1, and the error variance .5. With these results, the variance-
covariance matrix is estimated as 

2 = 

.8 .3 .3 

.3 .9 .5 

.3 .5 1.2 

(25) 

indicating a pattern of increasing variances and covariances across time. Assum­
ing that the variance-covariance structure for the proposed study is the same as 
this estimated matrix, applying (17) yields /V,, = 41.8 ** 42. Thus, between 42 to 
47 subjects would need to be randomized to each group depending on the 
variance-covariance structure that is assumed. 

Alternatively, suppose that the group means are expected to diverge linearly 
across time. For example, the expected effect sizes are d] = 0, <f2 = 1/3, and d3 = 
2/3. Here, interest focuses on determining the number of subjects necessary for a 
group by linear time interaction, so the orthonormal linear contrast V5 x Cj = 
- 1 , 0 , and 1 can be applied for the three timepoints, respectively. Assuming all 
else is as specified above, applying (17) yields Nu = 4 0 , 60, and 48 for 
compound symmetry with p = .5, AR(1) with p = .5, and the above random-
effects structure, respectively. 

General Sample Size Determination 

More general sample size determinations are now given for three variance-
covariance structures: compound symmetry, a first-order autoregressive struc­
ture, and a random-effects structure. For the first two, the degree of correlation 
among the repeated measures is varied to provide a reasonable range of potential 
patterns of correlations. For the random-effects structure, the parameter esti­
mates (of S e and fi) that are necessary to determine 2 are based on published 
results from a large psychiatric clinical trial. While the compound symmetry and 
AR(1) structures are stationary structures in that the correlation of the repeated 
measurements depends on, at most, the time lag, a non-stationary structure is 
considered in illustrating application of the random-effects model. For all struc­
tures, sample sizes are determined while varying the number of timepoints, rate 
of attrition, and desired effect size. These sample sizes are given for tests of a 
constant group effect over time and a group by (linear) time interaction. 

Compound Symmetry Structure 

Table 1 presents necessary group sample sizes based on formula (20) to 
achieve .80 power (on a two-tailed .05 test) for a test of an overall group effect 
across time for various levels of attrition, effect sizes, number of timepoints, and 
correlation of the repeated measures. Attrition rates between each pair of time-
points are assumed equal between groups and are specified as 0, 0.05, and 0.10. 
Constant effect sizes (</,-) across time of 0.2, 0.5, and 0.8 standard deviation units 
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TABLE 1 
Required Group Sample Size at the First Timepoint 
Power = .80 for a Two-tailed .05 Test 

Test of a Constant Group Effect across Time 

Attrition 
Rate 

C S p = . 1 CS p = .: 3 CS p = .5 

Number of 
Timepoints 

Attrition 
Rate 

small 
effect 

medium 
effect 

large 
effect 

small 
effect 

medium 
effect 

large 
effect 

small 
effect 

medium 
effect 

large 
effect 

4 0.00 128 21 8 187 30 12 246 40 16 
4 0.05 138 23 9 202 33 13 266 43 17 
4 0.10 151 24 10 220 36 14 289 46 18 

6 0.00 99 16 7 164 27 11 229 37 15 
6 0.05 112 18 7 187 30 12 261 42 17 
6 0.10 130 21 9 216 35 14 301 49 19 

8 0.00 84 14 6 153 25 10 221 36 14 

8 0.05 101 17 7 183 30 12 266 43 17 
8 0.10 124 20 8 224 36 14 325 52 21 

Attrition rate refers to rate of attrition between each pair of timepoints 
CS level is for the correlational structure of the repeated measure 
small effect = a between-groups difference of .2 SD units at each timepoint 
medium effect = a between-groups difference of .5 SD units at each timepoint 
large effect = a between-groups difference of .8 SD units at each timepoint 

were chosen based on the classification of "small," "medium," and "large" 
effect sizes described by Cohen (1988). Four, six, and eight timepoints are 
considered and the (homogeneous) correlation among the repeated measures p 
equals .1, .3, and .5. While correlation as low as .1 is unlikely in repeated 
measures designs, it can be considered as an upper bound for other types of 
clustered data (e.g., nesting of students within classrooms) that are often ana­
lyzed using the same general statistical methods as repeated measures problems. 

In Table 1, without attrition, the necessary sample size decreases as the effect 
size is increased, the number of timepoints is increased, and the (assumed 
homogeneous) correlation among the repeated measures is decreased. When 
attrition is present, however, increasing the number of timepoints does not 
necessarily decrease the required sample size, especially as the correlation 
among repeated measures increases (e.g., when the correlation equals 0.5 and 
the attrition rate equals 0.10). In general, for a given correlation level, as attrition 
is increased a more positive relationship develops between number of timepoints 
and required sample size. That is, if the relationship is negative without attrition, 
so that adding timepoints reduces the necessary sample size (e.g., p = . 1 and p 
.3), increasing attrition level makes this negative relationship less pronounced or 
disappear. Alternatively, if the relationship is less pronounced when there is no 
attrition, so that adding timepoints has little effect on the required sample size in 
the absence of attrition (e.g., p = .5), then increasing attrition level produces a 
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positive relationship so that more subjects are required as timepoints are in­
creased. 

For the case of a linear group difference across time (i.e., a group by linear 
time interaction), Table 2 presents group sample sizes based on formula (20) to 
achieve .80 power (on a two-tailed .05 test) for similar levels of attrition, 
number of timepoints, and correlation of the repeated measures, as was pre­
sented in Table 1. Effect sizes were assumed equal to 0 at the first timepoint and 
to increase linearly to levels of 0.2, 0.5, and 0.8 standard deviation (SD) units at 
the last timepoint. For example, in order to achieve a 0.5 SD unit difference over 
six timepoints the group differences would equal, 0,. 1, .2, .3, .4, and .5 SD units. 
To achieve this same difference over eight timepoints, group differences would 
equal 0, .0714, .1429, .2143, .2857, .3571, .4286, and .5 sd units. Fixing the 
effect size to 0 at the first timepoint and 0.5 SD units at the last timepoint allows 
comparison of sample size requirements when additional measurements are 
made between these two timepoints. That is, with four, six, and eight timepoints, 
the results in Table 2 contrast the change in sample size requirement by adding 
two to four to six intermittent measurements between the first and last time-
points. 

TABLE 2 
Required Croup Sample Size at the First Timepoint 
Power = .80 for a Two-tailed .05 Test 
Test of a Between Groups Linear Trend Effect 

Attrition 

C S p = .l 1 C S p = . 3 CS p = .! 

Number of Attrition small medium large small medium i large small medium large 
Timepoints Rate effect effect effect effect effect effect effect effect effect 

4 0.00 636 102 40 495 80 31 354 57 23 
4 0.05 689 111 44 537 86 34 384 62 24 

4 0.10 755 121 48 590 95 37 425 68 27 

6 0.00 505 81 32 393 63 25 281 45 18 

6 0.05 579 93 37 452 73 29 325 52 21 

6 0.10 679 109 43 536 86 34 393 63 25 

8 0.00 413 66 26 321 52 20 229 37 14 
8 0.05 501 81 32 393 63 25 285 46 18 

8 0.10 635 102 40 511 82 32 388 62 25 

Attrition rate refers to rate of attrition between each pair of timepoints 
CS level is for the correlational structure of the repeated measure 
small effect = a between-groups difference increasing linearly from 0 (first time) to .2 SD units (last 

time) 
medium effect = a betwecn-groups difference increasing linearly from 0 (first time) to .5 SD units 

(last time) 
large effect = a between-groups difference increasing linearly from 0 (first time) to .8 SD units (last 

time) 
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To test a between-group linear trend effect (a group by linear time interaction) 
in the absence of attrition, as Table 2 illustrates, the necessary sample size 
decreases as the effect size increases, the number of intermittent timepoints 
increases, and the correlation among the repeated measures increases. Thus, in 
contrast to the test of a constant group effect, for the group by time interaction 
the greater the correlation among the measures, the better. With attrition the 
same general conclusions hold, however the effect of increasing intermittent 
timepoints on decreasing the necessary sample size is not as pronounced. For 
example, when the correlation between all repeated measures is assumed to be 
0.5 and the attrition rate between timepoints is 0.10, increasing the number of 
timepoints from six to eight leads to a minor decrease in the number of 
necessary subjects per group. 

First-Order Autoregressive Structure 

The conditions for Tables 3 and 4 are identical to Tables 1 and 2 with the 
exception of the assumed form of the variance-covariance structure of the 
repeated measures. In Tables 3 and 4, the assumed form of the variance covari-
ance for the repeated measures was a first-order autoregressive (AR1) structure 
with p set equal to .3, .5, and .7. Group sample sizes were based on formula (23) 
to achieve .80 power for a two-tailed .05 test. 

TABLE 3 
Required Group Sample Size at the First Timepoint 
Power = .80 for a Two-Tailed .05 Test 
Test of a Constant Croup Effect across Time 

Attrition 
Rate 

AR1 p = .3 ARI p = .5 ARI p = .7 

Number of 
Timepoints 

Attrition 
Rate 

small 
effect 

medium 
effect 

large 
effect 

small 
effect 

medium 
effect 

large 
effect 

small 
effect 

medium 
effect 

large 
effect 

4 0.00 153 25 10 203 33 13 267 43 17 

4 0.05 165 27 11 219 35 14 288 46 18 

4 0.10 180 29 12 239 39 15 313 51 20 

6 0.00 109 18 7 154 25 10 222 36 14 

6 0.05 124 20 8 175 28 II 252 41 16 

6 0.10 143 23 9 202 33 13 291 47 19 

8 0.00 84 14 6 123 20 8 189 31 12 

8 0.05 101 17 7 148 24 10 227 37 15 

8 0.10 124 20 8 182 30 12 278 45 18 

Attrition rate refers to rate of attrition between each pair of timepoints 
ARI level is for the correlational structure of the repeated measure 
small effect = a between-groups difference of .2 SD units at each timepoint 
medium effect = a between-groups difference of .5 SD units at each timepoint 
large effect = a between-groups difference of .8 SD units at each timepoint 
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TABLE 4 
Required Croup Sample Size at the First Timepoint 

Power = .80 for a Two-tailed .05 Test 
Test of a Between Groups Linear Trend Effect 

Attrition 

AR1 p = .3 AR1 p = .5 AR1 p = .7 

Number of Attrition small medium large small medium large small medium large 
Timepoints Rate effect effect effect effect effect effect effect effect effect 

4 0.00 758 122 48 698 112 44 528 85 33 
4 0.05 821 132 52 756 121 48 573 92 36 
4 0.10 898 144 57 828 133 52 630 101 40 

6 0.00 722 116 46 777 125 49 698 112 44 
6 0.05 826 133 52 889 143 56 800 128 50 
6 0.10 965 155 61 1039 167 65 940 151 59 

8 0.00 649 104 41 769 124 49 787 126 50 
8 0.05 785 126 49 931 149 59 954 153 60 
8 0.10 983 158 62 1167 187 73 1201 193 75 

Attrition rate refers to rate of attrition between each pair of timepoints 
AR1 level is for the correlational structure of the repeated measure 
small effect = a between groups difference increasing linearly from 0 (first time) to .2 SD units (last 

time) 
medium effect = a between groups difference increasing linearly from 0 (first time) to .5 SD units 

(last time) 
large effect = a between groups difference increasing linearly from 0 (first time) to .8 SD units (last 

time) 

When there is no attrition and the test is for an overall group difference (Table 
3), the necessary sample size decreases as the effect size is increased, the 
number of timepoints is increased, and the correlation among the repeated 
measures is decreased. As attrition levels increase, there is a less pronounced 
decrease in the required sample size with increasing number of timepoints, 
especially as the correlation of repeated measurements is increased. This agrees 
with the general pattern of results obtained from the compound symmetry 
structure given in Table 1. 

For the test of a group by linear time interaction, results for the CS and AR(1) 
structures are not the same, even in the absence of attrition. With an AR(1) 
structure, while effect size increases always lead to fewer required subjects, 
results pertaining to the level of the AR(1) term and the number of intermittent 
timepoints are not so clear-cut. Focusing (in Table 4) on the required sample 
sizes when attrition is not present, increasing the number of intermittent time-
points reduces the required number of subjects when the AR(1) term is small 
(.3), but increases the required number of subjects when the AR(1) term is large 
(.7). With increasing attrition level, again, the relationship between sample size 
and number of timepoints either becomes positive (p = .3) or becomes more 
positive (p = .5 and p =.7). 
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Random-Effects (RE) Structure 

Gibbons et al., (1993) used a random-effects analysis to analyze data from the 
National Institute of Mental Health (NIMH) Treatment of Depression Collabora­
tive Research Project (TDCRP), a longitudinal study which examined the rela­
tive effectiveness of cognitive behavior therapy, interpersonal psychotherapy, 
imipramine with clinical maintenance, and placebo with clinical maintenance in 
the treatment of outpatient depression. While 250 subjects were randomized to 
one of four treatment groups, 239 entered treatment and were measured at 
baseline (week 0) and monthly thereafter for four months (weeks 4, 8, 12, and 
16), though not all subjects were measured at all timepoints. Outcome was 
measured on the commonly-used Hamilton Rating Scale for Depression 
(HRSD). 

In their analysis of these data, two random-effects structures were considered: 
the first (RE structure I) included a random (e.g., a person-varying) linear trend 
across time, while the second (RE structure II) augmented the random linear 
trend with a term for autocorrelated residuals, specifically allowing residuals to 
follow a nonstationary first-order autoregressive [A/?(l)] process as described by 
Mansour, Nordheim, and Rutledge (1985). Since analysis of these data did not 
reveal person-specific deviations in severity at baseline, random intercepts were 
not considered in either model. To achieve approximate linearity in trend across 
time, a log transformation on time (In [weeks + 1]) was used. Thus, the design 
matrix (a vector since there is only one random effect) for the random effects 
wasZ'=ln[ l 5 9 13 17] = [0 1.609 2.197 2.565 2.833]. Estimates from the 
first analysis of these data (RE structure 1) yielded <j\ = 4.69138 for random 
linear slope and a2 = 18.39606 for residual variance. For the model adding 
autocorrelated residuals (RE structure II), estimates were c>2

e = 3.14408 for 
random linear slope, &2 = 20.82148 for residual variance, and p = 0.3637 for the 
nonstationary AR(1) parameter; RE structure II significantly improved the fit as 
compared to structure I by the likelihood-ratio \2 test. 

Table 5 lists the necessary group sample sizes based on formula (17) to 
achieve .80 power (on a two-tailed .05 test) for a test of an overall group effect 
across time for various levels of attrition (0, 5%, and 10% between all time-
points), effect sizes (small, medium, and large), number of timepoints (four, six, 
and eight), and for variance-covariance form given by (2) using estimates from 
RE structures I and II. To use (2) in determining X, values of the design matrix Z 
must be specified. To achieve compatibility with the scale of the parameter 
estimates, the eight potential timepoints were specified as weeks 0 through 28 in 
increments of four weeks, and then transformed using logs (ln[weeks + I]). 
Since in the previous study the maximum value of time equaled 16 weeks (the 
fifth timepoint), sample size calculations for six and eight timepoints represent 
an extrapolation based on parameter estimates obtained in this previous study. 
Also, given the estimates reported for a2, a2, and p, correlations among the 
repeated measures increase with time. This can be seen clearly by using (2) to 
obtain the correlations of the repeated measures based on RE structure I: 
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week 0 

week 4 

week 8 

week 12 

week 16 

week 20 

week 24 

we£ 28 

1.000 

0.000 1.000 

0.000 0.468 1.000 

0.000 0.499 0.588 1.000 

0.000 0.517 0.609 0.649 1.000 

0.000 0.529 0.623 0.664 0.687 1.000 

0.000 0.537 0.633 0.674 0.698 0.714 1.000 

0.000 0.544 0.640 0.682 0.706 0.723 0.734 1.000 

and based on RE structure II: 

weekO 

week 4 

week 8 

week 12 

week 16 

week 20 

week 24 

week 28 

1.000 

0.305 1.000 

0.101 0.523 1.000 

0.035 0.376 0.589 1.000 

0.012 0.334 0.459 0.629 1.000 

0.004 0.325 0.421 0.508 0.656 1.000 

0.002 0.327 0.414 0.472 0.542 0.676 1.000 

0.001 0.331 0.417 0.465 0.508 0.568 0.692 1.000 

This increasing correlation structure across time is an example of a non-
stationary structure, and is in contrast to the stationary compound symmetry and 
AR(1) structures that assume equal correlations across time and time differ­
ences, respectively. Thus, Tables 5 and 6 illustrate the change in necessary 
sample size when increasingly correlated repeated measures are added. 

As Table 5 reveals, while increasing the effect size reduces the necessary 
number of subjects, the result of increasing the number of timepoints on the 
required sample size is not always consistent between RE structures I and II. For 
structure I, increasing the number of timepoints leads to an increase in the 
required number of subjects, and this effect is more pronounced as attrition 
increases. Alternatively, for structure II, only when attrition is present does 
increasing the number of timepoints lead to an increase in the required number 
of subjects. When there is no attrition and structure II is assumed, increasing the 
number of timepoints from four to six reduces the number of required subjects, 
while minimal change is observed between six and eight timepoints. For both 
structures though, as attrition is increased, adding increasingly correlated mea­
surements across time leads to greater sample size requirements for the overall 
group effect. 

For the case of a linear group difference across time (i.e., a group by linear 
time interaction), Table 6 presents group sample sizes based on formula (17) to 
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TABLE 5 
Required Group Sample Size at the First Timepoinl 
Power = .80 for a Two-tailed .05 Test 

Test of a Constant Group Effect across Time 

Attrition 

RE structure I RE '. structure II 

Number of Attrition small medium large small medium large 
Timepoints Rate effect effect effect effect effect effect 

4 0.00 192 31 12 200 32 13 
4 0.05 213 34 14 219 35 14 
4 0.10 237 38 15 242 39 16 

6 0.00 215 35 14 190 31 12 
6 0.05 253 41 16 222 36 14 
6 0.10 303 49 19 263 42 17 

8 0.00 233 38 15 191 31 12 
8 0.05 292 47 19 238 38 15 
8 0.10 373 60 24 301 48 19 

Attrition rate refers to rate of attrition between each pair of timepoints 
RE structure I refers to a random-effects structure with random slope and residual term (see text) 
RE structure II refers to a random-effects structure with random slope, residual term, and autocorre-

lated residuals (see text) 
small effect = a between-groups difference of .2 SD units at each timepoint 
medium effect = a between-groups difference of .5 SD units at each timepoint 
large effect = a between-groups difference of .8 SD units at each timepoint 

achieve .80 power (on a two-tailed .05 test) for similar levels of attrition, 
number of timepoints, and variance-covariance structures of the repeated mea­
sures, as was presented in Table 5. Effect sizes were assumed to be equal to 0 at 
the first timepoint and to increase linearly to levels of 0.2, 0.5, and 0.8 standard 
deviation (SD) units at the last timepoint. 

From Table 6, it is clear that when attrition is not present, increasing time-
points and effect size lowers the required number of subjects to detect the group 
by linear time interaction. However, as attrition level is increased, the negative 
relationship between number of timepoints and required sample size generally 
either becomes less pronounced or disappears (RE structure I) or becomes 
positive (RE structure II). Interestingly, the required number of subjects is quite 
a bit larger for RE structure II compared to I, indicating the effect on sample size 
determination of misspecification of the variance-covariance structure. 

Discussion 

Formulas for estimating sample size and power levels were presented for 
significance tests based on longitudinal designs with the possibility of attrition. 
We focused on the case of a two-group contrast of group population means 
across study timepoints. Single degree-of-freedom contrasts of this type can 
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TABLE 6 
Required Croup Sample Size at the First Ttmepoint 
Power = .80 for a Two-tailed .05 Test 

Test of a Between Groups Linear Trend Effect 

Attrition 

RE structure I RE '. structure II 

Number of Attrition small medium large small medium large 
Timepoints Rate effect effect effect effect effect effect 

4 0.00 491 79 31 570 92 36 
4 0.05 553 89 35 632 102 40 
4 0.10 629 101 40 710 114 45 

6 0.00 385 62 24 517 83 33 
6 0.05 481 77 31 622 100 39 
6 0.10 614 99 39 766 123 48 

8 0.00 321 52 20 454 73 29 
8 0.05 453 73 29 599 96 38 
8 0.10 657 106 41 817 131 52 

Aitrition rate refers to rate of attrition between each pair of timepoints 
RE structure I refers to a random-effects structure with random slope and residual term (see text) 
RE structure II refers to a random-effects structure with random slope, residual term, and autocorre-

latcd residuals (see text) 
small effect = a between groups difference increasing linearly from 0 (first time) to .2 SD units (last 

time) 
medium effect = a between groups difference increasing linearly from 0 (first time) to .5 SD units 

(last time) 
large effect •=• a between groups difference increasing linearly from 0 (first time) to .8 SD units (last 

time) 

often capture the main and interaction effects in a two-group repeated measures 
design. Assuming that missingness does not alter the model terms considered in 
the power calculations, equations (16) and (17) can be used to perform study-
specific power computations for specific comparisons. Simplified formulas for 
testing an overall group effect were also provided and their usage illustrated. 

More generally, the formulas were used to yield sample size requirements for 
an overall group effect over time and a group by (linear) time interaction under 
variance-covariance structures corresponding to a compound symmetry struc­
ture, a first-order autoregressive structure, and a non-stationary structure based 
on random-effects modeling of the repeated measures. As opposed to the station­
ary compound symmetry and first-order autoregressive structures, the assumed 
variance-covariance structure based on the random-effects modeling allowed for 
increasing correlations across time. Tables 5 and 6 present these results and 
might be particularly useful to behavioral researchers since they are based on a 
typical psychiatric longitudinal clinical trial using a common outcome measure 
of clinical efficacy. Tables 1-4 provide more generic results assuming compound 
symmetry and autocorrelation and should be of use in situations where the 
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assumption of stationarity is reasonable. As was seen, the required sample size 
varied considerably depending on test (overall group effect or group by time 
interaction), variance-covariance structure of the repeated measures, number of 
timepoints, and effect size. 

The effect of attrition was seen most clearly in terms of its influence on the 
relationship between number of timepoints and required sample size. In all 
cases, increasing the level of attrition made this relationship between number of 
timepoints and required sample size more positive. In general, for a given test, if 
increasing the number of timepoints lowered the sample size requirement, then 
increasing attrition level produced a less pronounced or marginal negative 
relationship between these two factors. Alternatively, for a given test, if adding 
timepoints had little effect or increased the required sample size, then increasing 
attrition level resulted in a more positive relationship so that even more subjects 
were required with increasing number of timepoints. Thus, ignoring attrition 
level in sample size determination for a longitudinal study is clearly risky. 
Hopefully, use of the formulas and results in this article will help researchers 
avoid that risk. 

The formulas presented here are model specific. However, we present results 
for a wide variety of models (i.e., variance-covariance structures). Thus, they 
can be used to assess sample size requirements for many different models. Two 
recommendations of Muller et al., (1992) are relevant in this context. The first is 
to align the models for power calculation and planned data analysis as closely as 
possible. This avoids making what Kimball (1957) describes as a Type III error, 
that is, getting the right answer to the wrong problem. Secondarily, a sensitivity 
analysis should be conducted to assess the degree to which sample size require­
ments vary with key model assumptions. For this, the formulas presented here 
can be used to assess sample size requirements under a variety of variance-
covariance structures and attrition patterns. The scope of the sensitivity analysis 
may depend on the degree of uncertainty regarding the anticipated variance-
covariance structure and/or attrition. 

Though the formulas allow for attrition, it is assumed that missingness does 
not alter the model terms considered in the power calculations. Specifically, the 
proposed treatment differences across time (u,y - \i2j) and variance-covariance 
structure (X) are assumed to be the same for subjects who complete the study as 
well as those who dropout. Note that it is the mean differences across time and 
not the actual means that are assumed independent of missingness. In longitudi­
nal studies, this, type of ignorable nonresponse falls under Rubin's (1976) 
"missing at random" (MAR) assumption. As pointed out byShih (1992), an 
important ancillary condition to MAR is the distinct parameters condition, 
namely, that the parameters of the missingness are distinct from the parameters 
of interest. This distinct parameters assumption is critical in application of the 
formulas presented in this article, since it is assumed that the missingness is 
independent of the proposed treatment differences and variance-covariance 
structure (i.e., the parameters of interest). 
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Notes 

The authors thank Siu Chi Wong for computer programming assistance, and 
the associate editor and an anonymous reviewer for several helpful and construc­
tive comments. Preparation of this article was supported by National Institutes 
of Mental Health grants R01-MH44826 and R01-MH56146. 

'A FORTRAN program that performs the sample size and/or power calcula­
tions corresponding to the methods presented in this paper can be obtained at 
internet location http://www.uic.edu/~hedeker/mix.html. 

Appendix 

Following Jennrich and Schluchter (1986) and others, maximum likelihood 
estimates of (3 for the model specified in (1) are obtained by 

P= Sxjz-'x,. 2x:s-'y ; 

;=: i=\ 

For the two-group problem discussed in this article, Xs is partitioned into two «, 
x n component matrices. The first component matrix W, includes a constant term 
as the first column followed by n — 1 contrasts for the within-subjects design. 
The second component matrix B, represents the between-subjects design and is 
obtained by multiplying W, by — 1 (if subject /' belongs to the first group)_ or 1 
(if subject / belongs to the second group). The parameter vector 3 is similarly 
partitioned into $w and 3S . Thus, A", = (W,IJV,) for subjects belonging to the first 
group, and A", = (W,l — W,) for subjects of the second group. If it is assumed that 
w, = n for all subjects, and that A7, and N2 are the numbers of subjects in the two 
groups, then 

0 = IN-

K^:;5]+^[-^]) 
= N 

W'2 - IW W"2"'W 

W"Z~lW WZ~lW 

2 - l W -W"Z~'W 

2~lW W'1.-]W 

'(Nt+ N2)W2.-lW (A' , - N2)W"L~lW 

<(N] - N2) W S - ' W (Ni+NJW'Z-iW 
W'2- |(A'I5; |+A'2y2) 
W2-\Nji-N2y2)j 
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where y, is the n x 1 vector of means for group 1, and J2 ' s the « x 1 vector of 
means for group 2. Denoting k=(N2- JV,)/(/V, + JV2) and using the formula for 
the inverse of a partitioned matrix (see Bock, 1975, page 38), we get for B 

A J 
* l + * 2 
4N:N2 

( W Z - ' w r 1 k(W'2']W)-[ 

^(vrs-'jvr1 (w'sr'wr1 

Notice that if the design is completely balanced so that /V, = N2, then k = 0 and 
the first matrix on the right side of the equality is quasidiagonal, that is, diagonal 
by blocks. If the compound symmetry structure is assumed for 2 and if W is an 
orthonormal matrix, then the diagonal blocks are diagonal matrices (see Bock, 
1975). In this case, the maximum likelihood estimates of B are invariant with 
respect to the addition or deletion of model terms in X. In the slightly more 
general case of /V, + N2, if compound symmetry is assumed, then the first 
matrix on the right side of the equality is diagonal within blocks. The maximum 
likelihood estimates within $w and BB are then invariant with respect to addition 
or deletion of terms within W and B, respectively. Relaxing the compound 
symmetry assumption, under the full model, the maximum likelihood estimates 
are invariant to the structure of S. Since, in this case, W is a n x n square matrix, 
and so 

H r l ( W ' 2 - l ) -

jnr'(rr')" 
JtW'fW'S"1)" 

i vr'(w"S"'r 
Wl-'iN^ + N2y2) 

WZ-HNM-NM) 

Ni 4- N2 W-'C/V.y, + N2y2) + kW-^Nfr - N2y2) 

*Wr' (tf.y, + N2y2) + \V~\NJ, - N2y2) 

which does not depend on X. 
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