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ABSTRACT 45 

 46 

The Bayesian analytical framework is clinically intuitive, characterized by the incorporation of 47 

previous evidence into the analysis, and allowing an estimation treatment effects and their 48 

associated uncertainties. The application of Bayesian statistical inference is not new to the 49 

cardiovascular field, as illustrated by various recent randomized trials that applied a primary 50 

Bayesian analysis. Given the guideline-shaping character of trials, a thorough understanding of 51 

the concepts and technical details of Bayesian statistical methodology is of utmost importance 52 

to the modern practicing cardiovascular physician. Therefore, this Review aims to present a 53 

step-by-step guide to interpreting and performing a Bayesian  (re-)analysis of cardiovascular 54 

clinical trials, while highlighting the main advantages of Bayesian inference for the clinical 55 

reader. After an introduction of the concepts of frequentist and Bayesian statistical inference 56 

and reasons to apply Bayesian methods, key steps for performing a Bayesian analysis are 57 

presented, including: the verification of the clinical appropriateness of the research question, 58 

the quality and completeness of the trial design, as well as the adequate elicitation of the prior 59 

(i.e., ones belief towards a certain treatment before the current evidence becomes available), 60 

identification of the likelihood, and their combination into a posterior distribution. Examination 61 

of this posterior distribution offers the possibility of not only determining the probability of 62 

treatment superiority, but also the probability of exceeding any chosen minimal clinically 63 

important difference. Multiple priors should be transparently prespecified, limiting post-hoc 64 

manipulations. Using this guide, three cardiovascular randomized controlled trials are re-65 

analysed, demonstrating the clarity and versatility of Bayesian inference. 66 

  67 
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GRAPHICAL ABSTRACT 73 

 74 
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INTRODUCTION 77 

 78 

Well-designed and executed randomized controlled trials (RCTs) are at the core of 79 

evidence-based medicine 1. The most commonly applied method for statistical inference in 80 

trials, the frequentist framework, relies on familiar concepts such as null hypothesis 81 

significance testing (NHST) and p-values 2. Still, the frequentist approach presents several 82 

cognitive difficulties 1-4. Some of these difficulties may be more intuitively addressed through 83 

the application of Bayesian statistical inference. After an introduction to the basic concepts of 84 

frequentist and Bayesian statistical inference, and reasons and venues to apply the Bayesian 85 

methods, we present a how-to-do-it guide using intuitive examples of three contemporary 86 

cardiovascular clinical trials. Consequently, this Review on Methods in Cardiovascular 87 

Research and Practice aims to present the advantages (and limitations) of Bayesian statistical 88 

inference and provide the tools to allow interested readers to independently perform a Bayesian 89 

(re)analysis of an RCT. 90 

  91 
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 7 

THE FREQUENTIST STATISTICAL FRAMEWORK 92 

  93 

Clinicians may not be aware of the existence and implications of different statistical 94 

inferential frameworks. Historically, RCTs have been analysed under a frequentist statistical 95 

framework, which incorporates null hypothesis significance testing (NHST) and p-values. 96 

Although the originators of these two concepts deemed them irreconcilable 5, this combination 97 

has paradoxically become the cornerstone of statistical inference regarding trial data. 98 

The NHST concept is an example of deductive inference, in which one starts with a 99 

hypothesis (typically the null hypothesis of no effect, denoted as H0), and tests whether 100 

observations are consistent with that hypothesis. This can be mathematically denoted as  101 

P (data | H). In this paradigm, the hypothesis is therefore considered ‘known’, and the data or 102 

observations are considered ‘variable’. Clinicians often erroneously believe the p-value denotes 103 

the probability that the alternative hypothesis (denoted as H1) is true, when in fact, the p-value 104 

is the probability of observing the data, or more extreme data, under the assumption that H0 is 105 

true, in an infite number of future hypothetical trials under similar circumstances. 106 

P-value misconceptions have long been appreciated and have been elegantly summarized by 107 

American Statistical Association publications 3, 4. Moreover, the frequentist framework applies 108 

a virtually universal level of statistical significance, known as the -level (usually <0.05). As 109 

such, the focus is on statistical significance of the null hypothesis, rather than on effect size 110 

estimation. Notably, the p-value is fully dependent on the treatment effect size and, particularly, 111 

the sample size. Consequently, a negligibly small effect may reach statistical significance with 112 

an infinitely large sample size. While confidence intervals (CIs, usually 95%) are seen as an 113 

improvement, they suffer from the same limitations as they only provide a sampling distribution 114 

for theoretically repeated experiments under the null hypothesis of no effect. While providing 115 

long-term assurance that the true effect will be in the interval, this provides little assistance to 116 
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 8 

any particular study at the present time, as the true effect is either in the interval, or not. A 117 

further explanation of these frequentist statistical terms is summarized and provided in the 118 

glossary in Table 1. Furthermore, Table 2 presents the main features, advantages, and 119 

downsides of the frequentist statistical approach. 120 

121 
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 9 

WHAT IS BAYESIAN STATISTICAL METHODOLOGY? 122 

 123 

The Bayesian statistical framework is based on Bayes’ Theorem and involves specific 124 

components, namely; the ‘prior’, ‘likelihood’, and ‘posterior’ (Table 1). In Bayes Theorem, the 125 

posterior is directly proportional to the product of the prior and the likelihood 6. Many clinicians 126 

are well aware of the utility of Bayes Theorem in the interpretation of diagnostic tests, in which 127 

an a-priori probability of a disease (the revered ‘clinical context’) is updated by the outcome of 128 

a test, resulting in an a-posteriori probability of the disease. Such reasoning was previously 129 

elegantly described by Diamond and Forrester in their example of obstructive coronary artery 130 

disease 7. Bayesian statistical inference of RCTs occurs in an analogous manner, where the 131 

likelihood (which summarizes the current experimental data) updates our prior beliefs to form 132 

a posterior probability distribution (Figure 1A).  133 

There are several benefits to the Bayesian approach. First, the updating of prior 134 

information with current evidence is exemplary for clinical reasoning. Second, as the result of 135 

Bayesian statistical machinary, the following posterior has a probability distribution, which can 136 

be used to estimate the probability of treatment effect thresholds, including clinically relevant 137 

ones (Figure 1B). The Bayesian statistical methodology is therefore an example of inverse 138 

probability, or inductive inference, where the probability of the hypothesis or unknown 139 

treatment effect is estimated, conditional on the observed data (mathematically denoted as  140 

P [H | data]). The posterior probability distribution can be summarized by a mean/median 141 

treatment effect, and a 95% credible interval (CrI, or the highest posterior density [HPD] 142 

interval, please see Table 1 and Technical aspects). In contrast to the frequentist confidence 143 

interval, the Bayesian 95% credible interval is the interval for which there is a 95% probability 144 

that it contains the true treatment effect, conditional on the current and prior data. 145 
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 10 

Bayesian analyses can therefore provide important additional insights and potentially 146 

address some of the cognitive interpretative difficulties arising with frequentist analyses 8. 147 

Specifically, a Bayesian approach provides the information that clinicians are generally 148 

searching; an estimate of the desired treatment effect and its associated uncertainty. 149 

Furthermore, it avoids the common misconceptions of the frequentist approach including an 150 

over-dependency on the null hypothesis (nullism), the reduction of clinical trial results to a 151 

dichotomous positive or negative conclusion (based on the significance level  and the p-value 152 

in frequentism), facilitating the distinction between clinical relevance and statistical 153 

significance. An ideal scenario for the application of the Bayesian statistical framework is an 154 

expected small sample size, for example in trials assessing interventions for relatively rare 155 

diseases, or, when minor – though clinically relevant – treatment effects are foreseen and 156 

meaningful prior evidence exists that can contribute to the estimation of the posterior 157 

probability of the treatment effect 9. Table 2 summarizes the main features and (dis)advantages, 158 

of the Bayesian statistical methodology. 159 

The application of Bayesian statistical inference is not new to the cardiovascular field 160 

(illustrated by the use of the Bayesian methodology in the PROTECT-AF 10, SURTAVI 11-13, 161 

EVOLUT-LR 14, PERSIST-AVR 15, ORBITA-2 16, 17, ORBITA-COSMIC 18, and ORBITA-162 

STAR trials 19, amongst others). Given the important guideline-shaping character of these trials, 163 

we believe a thorough understanding of statistical inference, and especially the less well-known 164 

concepts and technical details of Bayesian statistical methodology, are of utmost importance to 165 

the modern cardiovascular physician. Finally, adequate interpretation of complex trial data by 166 

virtue of the Bayesian approach (i.e. by re-analyses) can also make such trial data more 167 

digestible for patients, facilitating the shared decision-making process.  168 

Previous reviews have introduced and summarized the concepts of the Bayesian 169 

statistical methodology 20-23, but actual guides for clinicians (i.e. on a basic level) to performing 170 
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such analyses are scarce 24, particular in the cardiovascular arena. Therefore, we aim to provide 171 

the invested reader with the technical details and guidance to conduct a Bayesian analysis of a 172 

cardiovascular trial, in addition to the explanation of the basic concepts of Bayesian statistical 173 

inference. An explanation of the Bayesian terminology is provided in the glossary in Table 1, 174 

and their technical details are discussed in more detail throughout this Review. 175 

 176 

177 
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TECHNICAL ASPECTS IN THE APPLICACTION OF BAYESIAN METHODS 178 

 179 

Contemporary software packages. 180 

With the introduction of several packages implementing Bayesian methods into the R 181 

ecosystem, the Bayesian approach has increasingly been applied for the analysis of 182 

cardiovascular clinical trial data. Several non-R based programs also exist (i.e., Python, Julia, 183 

JASP, SPSS, STATA, MATLAB), and an overview of the most popular applications is provided 184 

in Table 3. These applications can be divided into programs with flexible properties (i.e., a high 185 

degree of code customization from the researcher’s perspective), and programs with a readily-186 

usable – though fixed – interface (i.e., low degree of code customization). Since Bayesian 187 

analyses mostly rely on random sampling from the posterior distribution, the setting of the 188 

pseudorandom number generator is necessary (set.seed() in R) to assure reproducibility. In 189 

addition, the number of samples, chains, and diagnostics of convergence need to be specified 190 

(see below). 191 

 192 

Considerations for the choice of risk of estimate 193 

 An in-depth discussion on the selection of the ideal risk estimate is beyond the scope of 194 

this Review. Natural logarithmic (log) transformations of the hazard ratio (HR), odds ratio 195 

(OR), and relative risk (RR) are common risk estimates with convenient statistical properties. 196 

However, absolute effect measures are generally simpler to interpret than ratios, and can more 197 

intuitively be used to determine the minimal clinically important difference (MCID). 198 

Consequently, the absolute risk difference (ARD) can be a convenient risk estimate as well, 199 

although not well suited for time to event analyses. Finally, it must be noted that RRs/ARDs 200 

are not portable, in contrast to ORs, due to their dependency on baseline risks25. 201 
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 13 

To ensure clarity in the current Review, effect measures are defined such that a log OR 202 

or ARD of <0 will imply benefit, while a log OR or ARD of  >0 will imply harm (Figure 1, 203 

Table 4), unless otherwise stated. 204 

 205 

The minimal clinically important difference (MCID) 206 

 Posterior probabilities can be calculated for any desired effect size, based on the 207 

posterior probability distribution. Rather than simply reporting a risk difference/ratio being 208 

greater or less than 0/1, it is generally of more interest to estimate the probability of a clinically 209 

relevant treatment effect. The MCID is the smallest treatment effect that is relevant to patients 210 

and/or the health care system, and should ideally be based on empirical data. Still, the MCID 211 

may differ between cultures, countries, hospitals, physicians, and patients, and suffers from a 212 

lack of standardization and consensus 22, 26, 27.  213 

In cardiovascular clinical trials, mortality is frequently (part of) the primary endpoint, 214 

and one additional life saved per 100 patients (ARD -1%, number needed to treat 100), has 215 

occasionally been considered an acceptable MCID 8. 216 

 217 

Determine the prior 218 

Table 4 summarizes a tabular and graphical overview of the eligible priors. We assume 219 

priors to follow a (log) normal distribution, to facilitate the reader’s intuitive interpretation. 220 

 221 

Priors assuming no effect, with large uncertainty 222 

I. Non-informative – also referred to as improper, diffuse or flat – priors are 223 

represented by uniform distributions and contain no information regarding the 224 

prior effect of the intervention under investigation. By not exerting any 225 

influence, they allow the posterior to be dominated by the study data (the 226 
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likelihood). Of note, the use of non-informative priors is not recommended, as 227 

even a prior with an exceptionally large variance can be informative on the equal 228 

distribution of effects (clinically plausible or not) when trial data is exceedingly 229 

sparse. 230 

II. Weakly informative, or vague, priors are centred around a ‘0’ mean effect, with 231 

a wide distribution that captures clinically plausible values, assigning limited 232 

density to virtually impossible values (i.e., OR > 50). These priors thereby exert 233 

a negligible influence on trial results, as they do not consider all (clinically 234 

implausible) treatment effects equally likely. Such a weakly informative prior 235 

provides a valid starting point for an objective re-analysis of a clinical trial. 236 

 237 

These priors are specified in terms of a mean (), and a standard deviation () reflecting 238 

the distribution, location, and degree of (un)certainty of the assumed normal distribution. Priors 239 

with a normal distribution are consequently denoted as N[,]. A weakly informative prior 240 

could therefore be formulated as N[0,2] on the log OR scale (corresponding to an OR of 1.00 241 

with a 95% CrI of 0.02-50.00).  242 

 243 

Reference priors  244 

It is generally recommended to use different standardized priors in a systematic manner 245 

to evaluate the robustness of the results, irrespective of prior beliefs 22. Consequently, reference 246 

priors can be used, which are objectively defined to represent the beliefs of physicians ranging 247 

from a sceptical, enthusiastic, or pessimistic prior belief towards a treatment. These prior 248 

distributions can be defined as follows: 249 

I. Sceptical priors centre around no effect with a high degree of certainty, and with 250 

only a small probability of a clinically relevant treatment effect, determined by 251 
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the choice of a small . As proposed in Table 4, the MCID, and the posterior 252 

probability thereof, may be used to formulate the distribution of the sceptical 253 

prior in a standardized manner 28. 254 

II. Enthusiastic priors are typically chosen to centre around a clinically relevant 255 

effect of benefit ( = MCID) with a smaller, though still non-negligible, 256 

probability of no effect or harm. The width of the distribution is determined by 257 

  and can reflect any desired probability of harm 29. Analogous to the 258 

formulation of  for the sceptical prior, the MCID can be used to determine the 259 

distribution of the enthusiastic prior (Table 4). 260 

III. Pessimistic priors can be constructed in an analogous manner to enthusiastic 261 

priors (Table 4), but they centre around a clinically relevant harmful effect  262 

( = reversed MCID) instead, with a smaller, though still non-negligible, 263 

probability of benefit. Again,  can be chosen any desired residual probability 264 

of benefit. 265 

In Table 4, we propose standardized settings for such reference priors, based on the probability 266 

of the MCID. Still, one can be flexible with these settings, as they may change based on the 267 

treatment or patient population under investigation. Furthermore, the MCID for a certain 268 

treatment may not always be evident. 269 

 270 

Literature-based priors 271 

 Following clinical reasoning, it can be considered counterintuitive to not combine prior 272 

evidence with the current evidence available at the analytical stage. This sequential approach 273 

mirrors the human learning process. Consequently, the use of prior RCT data is a foundational 274 

step in the application of Bayesian analysis to clinical trials. When determining priors based on 275 

published literature, critical appraisal skills are essential to determine risk of bias and overall 276 
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study quality, preferably by means of a standardized approach, such as Cochrane’s risk of bias 277 

(RoB 2.0) tool 30. 278 

Given the key role played by prior distributions, guidelines suggest that priors need to 279 

be formulated clearly and transparently 24, 31-33. This transparency should include prior 280 

predictive checks, graphical representations and verification of their correctness from data input 281 

errors 34. The use of multiple priors is strongly encouraged to assess the robustness of the final 282 

conclusions. 283 

 284 

Cautions for the choice of priors and their careful interpretation 285 

 The choice for priors must be predefined (not post-hoc) and, when possible, 286 

substantiated by empirical evidence of the highest quality. For example, randomized evidence 287 

should ideally be analysed in the light of priors derived from previous randomized evidence, to 288 

avoid the introduction of additional bias associated with non-randomized study designs. 289 

Inappropriate selection of priors (i.e., not corresponding to the current study’s patient 290 

population, treatment, or trial design) can lead to deceptive and confusing results, as the 291 

posterior is directly proportional to prior and the likelihood. 292 

  Furthermore, if the data on which the likelihood is based is sparse, the prior can have 293 

an overwhelming effect on the posterior distribution. As stated, the use of multiple priors is 294 

advocated to confirm the robustness of results. If the posterior remains insensitive to the use of 295 

adequately formulated enthusiastic and pessimistic priors, one can be quite certain of the 296 

observed treatment effect. In contrast, when the posterior changes markedly with introduction 297 

of various justified priors, results are far less reliable, and call for more robust evidence to be 298 

obtained from future trials. In that light, regulatory agencies such as the food and drug 299 

administration (FDA) recommend ‘to identify as many sources of good prior information as 300 

possible’ when performing a trial with a Bayesian design 33. 301 
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 302 

Determine the likelihood 303 

 The importance of the likelihood in Bayesian inference, and the assumptions regarding 304 

the choice of the statistical models and the selection of the variables, are frequently overlooked 305 

when the focus is uniquely on the presumed prior subjectivity. Nevertheless, the data model 306 

used to create a likelihood in a Bayesian analysis is equally important to the model used in a 307 

frequentist analysis and consequently subject to the same concerns. It is also imperative to 308 

present the statistical data-generating models transparently, in addition to performing 309 

robustness checks for prior choices. 310 

 311 

Produce the posterior distribution 312 

 The Bayesian framework estimates the entire distribution of the model parameters, 313 

summarized in a posterior mean/median and 95% credible interval (CrI) 34. The use of the HPD 314 

interval has been advocated, particularly for a posterior that does not follow a normal 315 

distribution. The HPD interval is the shortest interval that contributes most to the posterior 316 

density at a certain threshold (for example 95%) under the posterior density function (PDF). In 317 

case of a normal distribution, the HPD interval equals the 95%CrI. For reasons of practicality, 318 

95%CrIs will be used throughout this Review and its (re-)analyses.  319 

Because of its complexity and multidimensionality, the posterior distribution and its 320 

summary statistics often cannot be calculated analytically. Although this was historically an 321 

important reason for favouring frequentism, the introduction of the MCMC sampling 322 

techniques has greatly facilitated the numerical approximation of the posterior distribution 323 

through simulations and optimization algorithms 35. The computational aspects of the MCMC 324 

techniques (such as the number of chains, iterations, warm-up phase, and methods for the 325 

testing of model convergence) are well described in Bayesian guideline reporting publications 326 
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and handbooks 24, 34, 35. Similarly to prior predictive checking, though more strict, posterior 327 

predictive checking can be performed to assess whether there seems to be any strong 328 

discrepancy between the data and the posterior results, which may in turn indicate a problem in 329 

the model selection.  330 

 331 

Estimate the posterior probability 332 

The posterior probability of any treatment effect of interest can be calculated from the 333 

area under the curve (AUC) of the PDF adjacent to that treatment effect. For example, the 334 

posterior probability of any difference between groups lies to the left of 0% ARD (or log OR 335 

0) in the hypothetical simulated trial of Figure 1B, while the AUC to the left of -1% ARD is 336 

the posterior probability of the MCID in Figure 1B.  337 

One can also estimate the posterior probability of an effect that lies between two effect 338 

sizes, for example the region between -1MCID and +1MCID. This area under the PDF is 339 

referred to as the ‘region of practical equivalence’ (ROPE) 24. 340 

 341 

Translating treatment effects 342 

 When the probabilities of treatment effects are presented, conversions between relative 343 

to absolute measures may be helpful. If an MCID of -1.0% ARD is established, this can be 344 

evaluated and converted to a (log) OR. The risk of the control group for the outcome can be 345 

applied (in absolute percentages), from which the MCID in ARD can be used. In turn, this leads 346 

to a new (log) OR of the MCID. For example, consider a trial where an MCID of -1.0% ARD 347 

has been established, and a control group risk of 10.0% for the outcome was observed. We are 348 

then interested in the probability that the treated group has a 9.0% or less absolute risk for the 349 

outcome of interest (in relative measures an OR of 0.89, or log OR -0.12). The posterior 350 
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probability of this effect can then be estimated by the AUC to the left of log OR -0.12 under the 351 

posterior probability density function. 352 

 353 

Bayesian reporting guidelines 354 

 Similar to reporting guidelines for clinical trials, observational studies, and diagnostic 355 

studies, guidelines for the reporting of a Bayesian analysis are available 24, 31-33. Using these 356 

guidelines, a checklist can be followed, to ensure the adherence and reporting of the key 357 

requirements. 358 

  359 
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EXAMPLES OF THE APPLICATION OF BAYESIAN METHODS TO EXISTING 360 

CLINICAL TRIALS 361 

 362 
Selection of trials for re-analysis 363 

 To demonstrate the application of Bayesian analyses, three contemporary trials are re-364 

analysed using the approach proposed in this how-to-do-it guide (The Stroke PROTECTion 365 

With SEntinel During Transcatheter Aortic Valve Replacement [PROTECTED TAVR], the 366 

Myocardial Ischemia and Transfusion [MINT] trial, and the Cholesterol Lowering via 367 

Bempedoic Acid, an ACL-inhibiting Regimen [CLEAR] 36-38). Of note, these trials were elicited 368 

based on their conclusions, which illustrate some of the limitations associated with frequentist 369 

statistical analyses. The statistical analysis plans of these trials prespecified the use of 370 

frequentist statistics and as such, the presented Bayesian re-analyses should not be seen as 371 

replacing - but rather complementing - the original trial analyses. Consequently, herein we aim 372 

to present the interested reader with hands-on examples and coding for the Bayesian approach. 373 

To supplement this information, we have also created a dedicated website in which the approach 374 

is outlined step-by-step (https://github.com/samuelheuts/Bayes_in_RCTs, with separate pages 375 

for the PROTECTED TAVR, MINT, and CLEAR trials). An overview of the trials and a risk of 376 

bias assessment can be found in Supplemental Table S1 and Supplemental Table S1, while 377 

Tables 5 and 6 present the considerations for the re-analyses and summarize their results. 378 

 379 

Confusing conditional probabilities: The PROTECTED TAVR trial  380 

PROTECTED TAVR trial was a multicentre RCT, randomizing transfemoral TAVR 381 

patients to filter-based cerebral embolic protection (CEP) or TAVR without CEP 36. The primary 382 

endpoint was all stroke, which occurred in 2.3% of the patients in the CEP arm vs 2.9% of 383 

patients in the control arm (-0.6%, 95%CI -1.7; 0.5%, p=0.30).  384 
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According to the authors’ conclusions ‘the use of CEP did not have a significant effect 385 

on the incidence of periprocedural stroke, but on the basis of the 95% CI, the results may not 386 

rule out a benefit of CEP during TAVR’. This statement is making an inference about the 387 

probability of the alternative hypothesis (CEP being protective) being true given the observed 388 

data, denoted as as P (H | data). Yet under a frequentist framework, a parameter or hypothesis 389 

being investigated is considered to be fixed but unknown, and fixed quantities cannot be 390 

attached to probabilistic statements. Instead, the data are assumed to be variable, given an 391 

hypothesis, mathematically expressed as P (data | H). The error of conflating these two 392 

conditional probabilities has bedeviled people across multiple disciplines and is often referred 393 

to as the Prosecutor’s fallacy or base rate neglect 39. In clinical medicine, this confusion may 394 

manifest itself in the misinterpretation of diagnostic test results, but the analogous situation 395 

arises in the interpretation of clinical trial results. The frequentist 95% confidence intervals (CI) 396 

indicate that, under repeated sampling, 95% of likewise calculated intervals would contain the 397 

true parameter value. Whether this particular interval does or does not include the parameter is 398 

an all-or-none proposition, and simply not known. The CI does not provide the probability of 399 

the parameter falling inside the interval, which is only available under a Bayesian framework. 400 

Given the authors’ and readers’ focus on this probabilistic interpretation, a proper Bayesian re-401 

analysis of PROTECTED TAVR seems desirable. 402 

For this re-analysis, we constructed a hierarchical literature-based prior by pooling 403 

evidence from all previous relevant RCTs (Figure 2A, Table 5). The combination of this prior 404 

and current evidence, results in a posterior median OR of 0.84 (95% CrI 0.58-1.23, Figure 2B). 405 

The posterior probability of any beneficial effect in stroke (OR <1.0) in favour of the CEP 406 

device is 81.3% (Figure 2B, Table 6). However, a stroke specialist expert-consensus group led 407 

by Cranston and colleagues considered a -1.1% ARD to be clinically relevant (the MCID) for 408 

stroke-reducing therapies 40, 41. Building on the baseline risk of stroke of the control group 409 
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(2.9%), a 1.1% absolute risk reduction would result in an MCID of 0.54 on the OR scale. 410 

Consequently, based on the posterior probability distribution in Figure 2, the posterior 411 

probability of the treatment effect being at least this size (1.1% absolute risk reduction or an 412 

OR of 0.54) is only 5.0% (Figure 2B). We evaluated the robustness of this conclusion using 413 

weakly informative, skeptical, enthusiastic, and pessimistic priors. Under these reference 414 

priors, the probability of a clinically relevant effect ranged between 5.5-14.7% (Table 6). These 415 

estimations imply that, although some CEP treatment effect is likely, it is far less probable that 416 

this effect is clinically relevant. The robustness of these conclusions is confirmed by the relative 417 

insensitivity of the posterior to the various priors. 418 

Currently, the BHF PROTECT TAVI is being performed in the United Kingdom 42, with 419 

a prospected sample size of >8000 patients undergoing transfemoral TAVR. The p-value 420 

resulting from this trial will be smaller than PROTECTED TAVR’s p-value, if the same effect 421 

size is present (-0.6% absolute risk difference), purely by augmentation of the sample size. As 422 

discussed previously, an exceedingly small difference will always reach statistical significance 423 

in an infinitely large sample size. Consequently, it will be important to adequately interpret the 424 

clinical relevance of the to-be observed effect of this trial. 425 

https://samuelheuts.github.io/Bayes_in_RCTs/docs/PROTECTED_TAVR.html 426 

presents a walkthrough for all these analyses (https://github.com/samuelheuts/Bayes_in_RCTs 427 

, page PROTECTED TAVR) and contains all separate figures of the various priors, including 428 

downweighting, facilitating an intuitive interpretation of the influence of the prior on the 429 

posterior. 430 

 431 

Putting a trial into the context of previous evidence: The MINT trial 432 

The MINT trial was a multicenter RCT hypothesizing that a liberal compared to a 433 

restrictive transfusion strategy would improve outcomes in myocardial infarction (MI) 37. The 434 
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primary composite endpoint was all-cause mortality and MI at 30 days, which occurred in 435 

14.5% versus 16.9% of patients, respectively (adjusted relative risk [RR] 1.15, 95%CI 0.99-436 

1.34, p=0.07). According to the authors’ conclusion: ‘In patients with acute myocardial 437 

infarction and anemia, a liberal transfusion strategy did not significantly reduce the risk of 438 

recurrent myocardial infarction or death at 30 days. However, potential harms of a restrictive 439 

transfusion strategy cannot be excluded’. Of note, in MINT, an RR/OR >1.0, or ARD >0%, 440 

represents harm in the restrictive group (or conversely; benefit for a liberal transfusion 441 

strategy). 442 

 Many readers are likely disturbed by this dichotomization of the MINT trial results into 443 

the simple statement ‘did not significantly reduce the risk’. Readers are likely more interested 444 

in the probability that a liberal transfusion policy is associated with any benefit, and 445 

particularly a clinically meaningful one. Still, as is often the case, a consensual MCID is lacking. 446 

However, the Bayesian posterior distribution probabilities can be reported at several varying 447 

thresholds corresponding to an individual reader’s MCID viewpoint. The MINT-trial sample 448 

size calculations were powered to detect a +1.8% absolute risk difference, and therefore this 449 

may be considered a potential MCID. Furthermore, a +1.0% ARD has previously been applied 450 

as the MCID in studies reporting similar ‘hard’ clinical endpoints 43.  451 

For this Bayesian re-analysis, we derived a literature-based prior from a self-452 

conducted hierarchical meta-analysis of the previously reported trials investigating the same 453 

research question (Figure 3A, Table 5). Under this literature-based prior, the posterior 454 

probability of any difference in favor of the liberal transfusion strategy was 96.5%, while the 455 

probabilities of the MCIDs were 66.6% and 86.6% (for +1.8% and +1.0% ARD, Figure 3B, 456 

Table 6). These findings suggest that - despite statistical significance not being reached - a 457 

clinically relevant treatment effect of a liberal transfusion strategy is entirely likely. However, 458 

many would not consider these probabilities to definitively argue against a restrictive strategy, 459 
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or justify the adoption of a liberal strategy, but rather speak to the need for further research 460 

where the results of the MINT-trial could serve as the prior, demonstrating the Bayesian adage 461 

that ‘today’s posterior is tomorrow’s prior’.  462 

Please see https://samuelheuts.github.io/Bayes_in_RCTs/docs/mint_trial.html  463 

(https://github.com/samuelheuts/Bayes_in_RCTs, page MINT) for the full rationale and 464 

coding of the MINT trial. This links also contains all separate figures of the various priors, 465 

analyses, and examples of the application of Bayesian analyses to inform personalized 466 

treatment decisions. 467 

 468 

Comparing effectivenesses: The CLEAR trial 469 

The CLEAR trial randomized statin-intolerant patients at high risk for cardiovascular 470 

disease to bempedoic acid or placebo 38. The four-point composite endpoint included 471 

cardiovascular death, MI, stroke, and revascularization. After a median follow-up of 40 months, 472 

the composite primary endpoint occurred in 11.7% and 13.3% of patients (HR 0.87, 95%CI 473 

0.79-0.96, p=0.004), respectively. This 1.6% absolute risk reduction  (95%CI 0.5-2.7%) over 474 

40 months was mainly driven by MI and revascularization, and not by death or stroke, and came 475 

with an increase of several non-cardiac adverse events. 476 

In CLEAR, bempedoic acid’s effect was studied as a substitute for statin in statin-477 

intolerant patients. The trial found a statistically significant reduction in clinical events with 478 

administration of bempedoic acid. However, clinicians may be naturally be interested in the 479 

comaparative efficacy of bempedoic acid to statin therapy. The MCID was consequently based 480 

on a recent expert consensus evaluating statin therapy for primary and secondary prevention 44, 481 

stating a 5% absolute risk reduction of atherosclerotic cardiovascular disease (ASCVD) in 482 

primary prevention patients, and a 10% reduction in secondary prevention patients, over the 483 

course of five years. Of note, these differences in ARD arise from the primary and secondary 484 
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preventions groups’ differing baseline risk, and actually correspond to similar risk reductions 485 

on relative scales such as OR/RR. The CLEAR-trial had a median follow-up of 40 months, and 486 

incorporated 30% primary prevention patients (expected -5% ARD in 5 years 44), and 70% 487 

secondary prevention patients (expected -10% ARD in 5 years 44), resulting in a weighted effect 488 

size threshold (defined as MCID in this analysis) of -2.8% ARD in 40 months. 489 

 Three other similar placebo-controlled RCTs were conducted before CLEAR and may 490 

be used to construct a literature-based hierarchical pooled prior (Figure 4A, Table 5). Under 491 

this literature-based prior, the posterior probability of any effect of bempedoic acid was 99.5%, 492 

while the probability of an effect similar to the ARD of statin therapy in these high-risk patients 493 

was only 0.3% (Figure 4B, Table 6). Furthermore, reference priors were used, under which the 494 

probability of any effect ranged between 98.7-99.0% (Table 6), and the probability of an effect 495 

similar to that of statins (-2.8% absolute risk difference) ranged between 0.1-0.2%. These 496 

findings imply that bempedoic is likely to reduce ASCVD, but it is highly unlikely that this 497 

reduction approaches the effect of statin therapy.  498 

Nevertheless, we should emphasize that the evidence from prior statin studies stems 499 

from trials performed several years ago. Furthermore, the fact that the effect bempedoic acid 500 

does not seem to approach the effect of statins, does not render bempedoic acid ineffective. As 501 

such, the conclusion in the original publication by Nissen and colleagues is still valid (treatment 502 

with bempedoic acid during a median follow-up of 40.6 months significantly lowered the 503 

risk of major adverse cardiovascular events), but its clinical relevance remains to be 504 

determined. Interestingly, a recent re-analysis by the CLEAR-authors found bempedoic to 505 

be as effective as statins in reducing clinical events per 1mmol/L LDL-reduction 45. Still, 506 

far greater LDL-reduction were achieved with statins, as compared to bempedoic acid. 507 

A further in-depth assessment of the CLEAR trial, including the full process, coding, 508 

and additional conjugate analyses, can be found in 509 
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https://samuelheuts.github.io/Bayes_in_RCTs/docs/CLEAR.html through 510 

https://github.com/samuelheuts/Bayes_in_RCTs (CLEAR page). Notably, this link also 511 

contains a presentation of the performance of conjugate analyses, and a detailed walkthrough 512 

for the construction of a Bayesian hierarchical model. 513 

 514 

515 
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OTHER CONSIDERATIONS 516 

 517 

There are some other applications of Bayesian inference to RCTs worth mentioning 518 

regarding the application of Bayesian statistical inference to non-inferiority trials, stopping 519 

rules for RCTs, and Bayesian meta-analyses, which are summarized below. 520 

• Non-inferiority trials: Non-inferiority trials are used when comparing a new 521 

treatment to an active control. The intricacies of this design have been previously 522 

considered 46. In frequentist analyses, non-inferiority is met when the limit of the 523 

95% confidence interval does not cross the non-inferiority margin, requiring specific 524 

analysis. Under the Bayesian framework, non-inferiority is met when the posterior 525 

probability of the non-inferiority margin – as in the MCID - exceeds a certain 526 

predefined value 11, 15. Of note, unlike frequentist non-inferiority analyses, Bayesian 527 

estimations are the same as with efficacy studies, but only relate to a different 528 

interval on the x-axis under the PDF 46. In these instances, sceptical priors may 529 

actually be considered enthusiastic, as they favour the presence of non-inferiority.  530 

• Stopping rules for RCTs: The Bayesian approach, with its ability to incorporate prior 531 

knowledge, is well suited to determine whether to stop a trial early, because of either 532 

futility or efficacy, in a similar manner, based on a predefined margin. As Bayesian 533 

inference depends solely on observed and not unobserved data, no statistical penalty 534 

is required for multiple looks at the data. 535 

• Meta-analysis: Finally, the Bayesian approach lends itself perfectly for a meta-536 

analysis of RCTs 21. With the inclusion of multiple trials, the first trial is analysed 537 

under a minimally informative prior. This analysis is then hierarchically updated by 538 

the succeeding trials. In other words, the posterior of every single analysis serves as 539 

a prior for the following analysis, resulting in a sequentially updated posterior of the 540 
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totality of the trial data. Also in such analyses, the probabilities of treatment effect 541 

sizes can be estimated, including any benefit or harm, or clinically relevant benefit 542 

and harm 47. Of note, it is generally discouraged to use literature-based priors in 543 

meta-analyses of RCTs, as the likelihood is generally based on the totality of 544 

randomized evidence, and the use of a prior derived from a non-randomized study 545 

design introduces additional bias. Finally, Bayesian techniques are especially suited 546 

to network meta-analyses. 547 

 548 

Limitations of the Bayesian approach 549 

As statistical inference is the process of using data analysis to infer properties about a 550 

population parameter from noisy data samples, any inferential paradigm, including a Bayesian 551 

approach, will be accompanied by limitations. The choice of Bayesian prior is often seen as 552 

being subjective and a major limitation. However, as we have demonstrated in this Review, 553 

there are procedures to minimize this subjectivity. Bayesian analyses are associated with 554 

perceived complexity and computational intensitity, but recent computer science advances have 555 

largely overscome this limitation. In any case, this computational price is well paid for by the  556 

Bayesian ability to (i) make direct probability statements, (ii) integrate prior knowledge, (iii) 557 

have a complete picture of the uncertainty around parameter estimates, while (iv) avoiding the 558 

limitations of dichotomized reasoning that accompany null hypothesis significance testing. It 559 

should also be recalled that the frequentist paradigm is also associated with subjectivity, 560 

especially in the selection of statistical model. 561 

  562 
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CONCLUSIONS 563 

 564 

 The application of Bayesian statistical methodology to cardiovascular clinical trials 565 

facilitates an intuitive interpretation of their results, with particular emphasis on the 566 

incorporation of prior evidence and the estimation of clinically relevant treatment effects. By 567 

this approach, common cognitive biases of the frequentist approach may be mitigated, and 568 

intuitive probability estimates for treatments effects are provided. This current Review on 569 

Methods in Cardiovascular Research and Practice provides guidance to a clinical readership 570 

on the performance and interpretation of Bayesian analyses of cardiovascular clinical trials. 571 
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TABLES 750 

Table 1. Overview of frequentist and Bayesian terms. 751 

Frequentist terms Explanation 

Frequentist inference A method of statistical inference that views probability as one of 

an infinite sequence of possible data repetitions of the same 

experiment. In this paradigm the probability of the data is 

calculated under the assumption that the null hypothesis is true. 

Confidence interval 

(95%) 

The interval in frequentist inference in which, under repeated 

sampling, 95% of such intervals would contain the true parameter 

value. The 95% confidence interval is not a probability 

distribution. While providing long-term assurance that the true 

effect will be in the interval, this provides little assistance to any 

particular study at the present time, as the true effect is either in 

the interval, or not. 

p-value The probability of observing similar, or more extreme data, than 

the observed data, under the assumption that the null hypothesis is 

true. 

Bayesian terms Explanation 

Bayesian inference A method of statistical inference that views probability as a 

subjective state with a measure, ranging from zero to 1, of the 

degree of belief in a hypothesis. As such, Bayesian inference 

estimates the probability of an hypothesis, given the observed 

data. 

Bayes Factor Quantifies the support for a model over another (i.e. the alternative 

hypothesis over the null), regardless of whether these models are 
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correct, based uniquely on the observed data and independently 

from subjective opinions. This is also known as the likelihood 

ratio. 

Bayes’ Theorem The direct relation between the prior probability, the likelihood of 

the observed data, and the posterior probability of the hypothesis 

given the data, denoted as: 

𝑃(𝐴|𝐵) =
𝑃 (𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 

Conjugate analysis When the likelihood function follows the same parametric 

distribution as the prior, direct analytical solutions without 

numeric (simulation) techniques are possible. 

Credible interval (CrI) In Bayesian analysis, refers to an interval within which an 

unobserved parameter falls with a particular probability, 

commonly denoted as the 95% credible interval. This is a 

probability distribution. The Bayesian 95% credible is therefore 

reflective of the interval for which there is a 95% probability that 

it contains the true treatment effect, for the current data. 

Enthusiastic prior A reference prior which assumes a beneficial effect of the 

intervention under investigation, with a relatively small 

probability of harm. 

Highest posterior 

density (HPD) interval 

The shortest interval, containing the highest density under the 

probability density function, commonly denoted as the 95% HDI. 

For the current article, we will use the HPD interval in normally 

distributed data, which corresponds to the 95% credible interval. 
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Likelihood function The probability of the observed data for various values of the 

unknown model parameters. A likelihood function can be 

produced in both Bayesian and frequentist inference. 

Markov Chain Monte 

Carlo 

A class of algorithms for sampling from a probability distribution. 

Minimal clinically 

important difference 

(MCID) 

An effect size threshold considered the smallest treatment effect 

relevant to patients, caregivers, and society. This threshold is 

patient-, procedure-, and outcome-specific. The MCID should 

preferably be derived from consensus statements, questionnaires, 

or have another scientific basis. The MCID can be used in both 

frequentist and Bayesian inference. 

Diffuse/flat/improper/ 

weakly-/non-

/minimally- 

informative prior 

A type of reference prior containing negligible prior information. 

It will therefore assume no difference between group, with a very 

wide (almost flat) distribution of probability. Using this prior, the 

posterior will be dominated by the likelihood (i.e, the trial results). 

Pessimistic prior A reference prior which assumes a harmful effect of the 

intervention under investigation, with a relatively small 

probability of benefit. 

Prior (distribution) Probability calculated from past data, theory, or judgment before 

the current study is analyzed. 

Posterior 

(distribution) 

Probability of a belief conditioned on both prior beliefs and 

current data (likelihood), quantified by Bayes’ Theorem. 

Probability density 

function (PDF) 

The probability that a continuous random variable is in any range 

of values can be calculated as the area under a specific curve, 

known as the probability density function of the random variable. 
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Skeptical prior A reference prior with a relatively firm believe in no effect of the 

intervention under investigation, with a relatively small 

probability of benefit. 

 752 

  753 
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Table 2. A summary of the features, advantages, and downsides of the frequentist an Bayesian 754 

statistical methodologies. 755 

 Frequentism Bayesianism 

Features 

Type of reasoning ‘Deductive’ 

Testing whether observed data are 

consistent with a given and assumed 

hypothesis 

‘Inductive’ 

Estimating to which degree (various) 

hypothesis correspond with prior 

beliefs and observed data 

Mathematical notation P (data | H) P (H | data) 

Incorporation of prior 

data 

Absent, as inferences should only be 

drawn based on the current data 

A prerequisite to analyze the current 

data (likelihood) in the light of prior 

belief 

Probability The expected future frequency of 

events 

The degree of a certain ‘belief’ 

Quantification of 

probability 

Based on the p-value, representing the 

probability of similar – or more 

extreme – data in infinitely repeated 

future trials, under the assumption that 

H0 is true 

The posterior probability, derived 

from the posterior distribution, 

representing the probability of the 

hypothesis based on the currently 

obtained data 

Thresholds for 

inference 

Based on the -level (generally set on 

<0.05) irrespective of the type trial, 

patients, or intervention 

No general thresholds as this can 

depend on the type of trial, patients, 

or intervention 

Advantages 

 Well known to the general public and 

historically widely applied 

Resembles clinical reasoning 
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 Computationally less intensive Provides interpretable answers 

 Perceived easy interpretation of the 

data, based on the p-value and , 

leading to simple conclusions 

Opportunity to incorporate prior 

belief/data and continuously 

updating information 

 Perceived objectivity Opportunity to estimate the 

probability of various treatment 

effect sizes, including clinically 

relevant ones 

 Reproducibility Handling of multiple testing 

Disadvantages 

 Inability to incorporate prior 

information 

Less known to the general public 

 Heavily relying on H0 (nullism) Perceived complexity 

 Inadequate interpretation of the p-

value 

Computationally intensive 

 Leads to unnuanced conclusions Subjectivity in the choice of the prior 

 Adjustments required for multiple 

testing 

Potential heavy influence of the prior 

on the posterior 

 Often foregoes clinical relevance  

 756 

H0: null hypothesis.  757 

Jo
urn

al 
Pre-

pro
of



 41 

Table 3. Most frequently applied software and packages with their characteristics. 758 

General software with flexible application of Bayesian inference 

Software Description Popular packages 

R A programming language and software environment for statistical 

computing and graphics. Bayesian inference is available via the Stan 

programming language and HMC sampling algorithms (cmdstanr, 

rstan, rstanarm, brms), or alternatively with the BUGS programming 

language and MCMC (rjags), or Gibbs (r2winbugs) sampling 

algorithms. 

cmdstanr, rstan, 

rstanarm, brms, 

bayesplot, rjags, 

r2winbugs 

Python General-purpose programming language used for data science and 

scientific computing. Bayesian inference may be implemented using 

Stan or JAGS as extension software. 

pystan, pymc, 

pymc3, pyjags 

Julia Relatively new programming language tailored for numerical and 

scientific computing. Recognized for its high performance and 

capability to interface seamlessly with existing C and Fortran 

libraries.  

Turing.jl, stan.jl, 

mamba.jl, 

dynamicHMC.jl 

Software with a predefined Bayesian framework  

Software Description 

JASP An open-source statistical program with modules for both frequentist and Bayesian analyses. 

These modules are in turn based on R packages. Despite the predefined nature, the program 

provides a great deal of flexibility, such as various settings for MCMC sampling. The module 

“Bayesian A/B test” is particularly applicable to the analysis of clinical trial data. 

SPSS Widely used statistical software used for data management and statistical analysis. It has 

several basic models for application of Bayesian inference. There is limited flexibility in 

customizing the model parameters.  

STATA A versatile statistical software package designed for statistical analysis and data 

visualization. STATA offers an extensive array of functions to conduct Bayesian analysis 

within its environment. 

MATLAB Proprietary programming language and software environment designed for numerical 

computing. MATLAB is renowned for its robust array-based syntax and its capability to 

seamlessly interface with established C and Fortran libraries. There are multiple toolboxes 

within the MATLAB environment for performing Bayesian inference.  

 759 

HMC: Hamilton Monte Carlo, MCMC: Markov Chain Monte Carlo. 760 

 761 
  762 
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Table 4. Proposal for standardized prior elicitation and formulation. 763 

 764 
Prior type Mean () log 

OR 

SD () log OR Rationale Visual presentation of the 

prior 

Priors assuming no effect, with large uncertainty  

Non-informative* 0 20 This prior assumes no difference between 

groups, with a probability distribution in 

which any effect - even extreme - is equally 

likely 

 

Weakly informative 0 2 This prior assumes no difference between 

groups (log OR  = 0), with a wide 

distribution that captures plausible effect 

sizes (log OR   = 2) 

 

Reference priors  

Sceptical 0 Based on 10% 

probability of 

MCID  

The sceptical prior assumes no difference 

between groups with a relatively high degree 

of certainty, reflected by the mere 10% 

probability of a clinically relevant effect 

 

Enthusiastic -1MCID Based on a 30% 

probability of 

‘harm’  

The enthusiastic prior centres around the 

MCID for benefit, and only assumes a 30% 

probability of ‘harm’. 
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Pessimistic +1MCID Based on a 30% 

probability of 

‘benefit’ 

If there is reasons for pessimism, the 

pessimistic prior may centre around the 

MCID for harm, and only assumes a 30% 

probability of ‘benefit’. 

 

Literature-based priors  

Derived from one 

RCT 

Data Data This prior is based on the data of one specific 

RCT to inform the current analysis+ 

Depending on the trials 

Derived from 

multiple RCTs 

Pooled data Pooled data This prior is constructed by pooling of 

multiple available RCTs 

Depending on the trials 

Derived from 

observational data 

Data Data This prior is informed by potentially 

important observational data, when the is a 

lack of previous RCTs. It should be noted that 

the use of such a prior is debatable in the 

analysis of an RCT. To adjust for the 

observational character of such studies, 

penalties (downweighting) can be applied to 

the prior 

Depending on the trials 

 765 

We assume a normal distribution of the priors in this table, for basic interpretation. Settings are 766 

presented as log odds ratios. Also, the gradation in ‘belief’ of the various priors can be adapted 767 

by variations in the SD. A smaller SD constitutes a firmer belief, while a larger SD reflects a 768 

higher degree of uncertainty. 769 

*Non-informative priors can also interchangeably be termed as ‘flat’ priors, or ‘diffuse’ priors. 770 

+Multiple priors informed by various singular RCT can be used, or a pooled analysis can be 771 

applied, as in the lower row. 772 

MCID: minimal clinically important difference, OR: odds ratio, RCT: randomized controlled 773 

trial, SD: standard deviation. 774 
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Table 5. Considerations for the current Bayesian re-analysis including references for the 776 

literature-based priors. 777 

Considerations PROTECTED-TAVR 36 MINT 37 CLEAR 38 

Relevant prior 

information 

Six smaller RCTs were 

previously performed 48-

53 

Three similar RCTs in 

patients with MI were 

performed 54-56 

Three similar RCTs 

were previously 

performed 57-59 

Literature-based 

prior 

Log OR [-0.02, 0.35] 

OR [] 

Log OR [-0.01, 0.51] Log OR [-0.16, 0.27] 

MCID (ARD, NNT) -1.1% (91) 

+1.8% ARD (56)* 

+1.0% (100) 

-2.8% (36) 

MCID rationale 

Based on an expert-

consensus by stroke 

specialists 40 

The first MCID was 

based on the expected 

treatment effect*, and a 

second MCID was 

arbitrarily set at 1.0% 

ARD 

Based on the weighted 

mean ARD of statin 

therapy for primary 

and secondary 

prevention 44 

Weakly/Non-

informative prior 

Log OR [0, 2] 

OR [1, 7.4] 

Log OR [0, 2] 

OR [1, 7.4] 

Log OR [0, 2] 

OR [1, 7.4] 

Skeptical prior Log OR [0, 0.39] Log OR [0, 0.25] Log OR [0, 0.21] 

Enthusiastic prior Log OR [-0.49, 0.94] Log OR [0.33, 0.62] Log OR [-0.27, 0.51] 

Pessimistic prior Log OR [0.49, 0.94] Log OR [-0.33, 0.62] Log OR [0.27, 0.51] 

 778 

*Based on the expected treatment effect of the MINT-trial 60. 779 

ARD: absolute risk difference, OR: odds ratio, NA: not applicable, NNT: number needed to 780 

treat, RCT: randomized controlled trial. 781 
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Table 6. Outcomes of the included re-analyzed trials under the Bayesian framework.   782 

Outcomes PROTECTED TAVR 36 MINT 37 CLEAR 38* 

Corresponding Figure 2 3 4 

Studied MCID for the 

trial in ARD 
-1.1% ARD +1.8% ARD -2.8% ARD 

MCID in OR 0.49 1.13 0.76 

Literature-based prior 

Posterior probability 

any difference 
81.3% 96.5% 99.5% 

Posterior probability 

MCID 
5.0% 71.1% 0.2% 

Weakly/Non-informative prior 

Posterior probability 

any difference 
86.1% 97.3% 98.9% 

Posterior probability 

MCID 
14.1% 71.0% 0.2% 

Skeptical prior 

Posterior probability 

any difference 
82.2% 92.2% 98.7% 

Posterior probability 

MCID 
5.5% 31.9% 0.1% 

Enthusiastic prior 

Posterior probability 

any difference 
88.0% 97.4% 99.0% 

Posterior probability 

MCID 
14.7% 70.1% 0.2% 

Pessimistic prior 

Posterior probability 

any difference 
82.4% 94.9% 98.7% 

Posterior probability 

MCID 
10.3% 56.6% 0.1% 

 783 
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The posterior probabilities presented in this Table are based on separate analyses under various 784 

priors of the re-analyzed trials. First, the trial is analyzed under the predefined literature-based 785 

prior, producing the probability density function of the posterior (as in Figure 1B). Then, the 786 

AUC of the PDF to adjacent to log OR 0 is calculated (representing the probability of any 787 

difference). In addition, the posterior probability of the predefined MCID is calculated as well, 788 

represented by the AUC under the PDF adjacent to the MCID. Finally, both these posterior 789 

probabilities are calculated under the non-informative, skeptical, enthusiastic, and pessimistic 790 

prior (where applicable). 791 

* MCID presented as the probability of an effect similar to the absolute risk reduction of statins 792 

to prevent atherosclerotic cardiovascular disease in high risk patients 44. 793 

ARD: absolute risk difference, AUC: area under the curve, MCID: minimal clinically important 794 

difference, NA: not applicable, OR: odds ratio, PDF: probability density function. 795 

 796 

 797 
  798 
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FIGURE LEGENDS 799 

 800 

Figure 1. Graphical presentation of the interplay between the prior, likelihood, and posterior 801 

(A), with the calculation of the posterior probability of any effect, and of the MCID (B), in a 802 

hypothetical trial. 803 

For this hypothetical trial, the fictive MCID was set at -1% ARD (benefit) and +1% ARD 804 

(harm). The AUC to the left of ‘0% ARD’ is the posterior probability of any beneficial effect, 805 

while the AUC to the left of the -1%ARD, is the probability of the MCID for benefit. The AUC 806 

to the right of 0 is the probability of any harm while the probability of a the MCID in harm is 807 

the AUC to the right of +1% ARD. Finally, the AUC between -1% ARD and +1% ARD is 808 

known as ROPE (region of practical equivalence) in this figure. 809 

ARD: absolute risk difference, AUC: area under the curve, MCID: minimal clinically important 810 

difference, ROPE: region of practical equivalence. 811 

 812 

Figure 2. Components of the re-analysis of the PROTECTED TAVR trial. 813 

A: Construction of the literature-based prior, from a hierarchical meta-analysis of RCTs 814 

published before PROTECTED TAVR. B: The combination of the prior data and the likelihood 815 

results in an updated posterior (OR 0.84, 95%CrI 0.58-1.23). The posterior probability of any 816 

difference is 81.3%, while the posterior probability of the MCID (OR 0.54) is 5.0%. 817 

CEP: cerebral embolic protection, CrI: credible interval, MCID: minimal clinically important 818 

difference, OR: odds ratio. 819 

 820 

Figure 3. Analyses to derive the literature-based prior (A) with estimation of the posterior under 821 

this literature-based prior (B) for the re-analysis of the MINT-trial. 822 
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A: Construction of the literature-based prior, derived from the totality of randomized evidence 823 

before the MINT-trial. B: analysis of MINT under the literature-based prior. The posterior 824 

probability of any difference is 96.5%, whule posterior probability of the MCID is 71.1%. 825 

MCID: minimal clinically important difference, OR: odds ratio. 826 

 827 

Figure 4. Construction of the literature-based prior (A) with estimation of the posterior (B) for 828 

the re-analysis of the CLEAR trial. 829 

A: Construction of the literature-based prior, derived from previous randomized trials before 830 

CLEAR. B: analysis of CLEAR under the literature-based prior. The posterior probability of 831 

any difference is 99.5%, while the posterior probability of the MCID is 0.2%. 832 

MCID: minimal clinically important difference, OR: odds ratio. 833 
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