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Abstract
The Center for Drug Evaluation and Research (CDER) and the Center for Biologics Evaluation and Research (CBER) of 
the U.S. Food and Drug Administration (FDA) have been leaders in protecting and promoting the U.S. public health by 
helping to ensure that safe and effective drugs and biological products are available in the United States for those who need 
them. The null hypothesis significance testing approach, along with other considerations, is typically used to demonstrate 
the effectiveness of a drug or biological product. The Bayesian framework presents an alternative approach to demonstrate 
the effectiveness of a treatment. This article discusses the Bayesian framework for drug and biological product develop-
ment, highlights key settings in which Bayesian approaches may be appropriate, and provides recent examples of the use of 
Bayesian approaches within CDER and CBER.
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Introduction

Under the Federal Food, Drug, and Cosmetic Act, a drug’s 
effectiveness must be established by “substantial evidence,” 
which is “evidence consisting of adequate and well-con-
trolled investigations, including clinical investigations, by 
experts qualified by scientific training and experience to 
evaluate the effectiveness of the drug involved, on the basis 
of which it could fairly and responsibly be concluded by 
such experts that the drug will have the effect it purports or 
is represented to have under the conditions of use prescribed, 
recommended, or suggested in the labeling or proposed 

labeling thereof.” [1] FDA has also generally considered 
“substantial evidence” of effectiveness to be necessary to 
support licensure of a biological product under Section 351 
of the Public Health Services Act [2]. The FDA regulatory 
review determines whether “substantial evidence” has been 
demonstrated. Additionally, because all drugs have the 
potential for adverse effects, FDA integrates a structured 
benefit-risk assessment as part of the regulatory review of 
marketing applications for drugs and biological products [3]. 
The strength of evidence in each trial contributing to meet-
ing the substantial evidence standard is assessed by appro-
priate statistical methods [4].

The Bayesian approach has a wide variety of potential 
applications in drug and biological product development [5]. 
However, there is a limited number of submissions featur-
ing Bayesian methods. The limited number of submissions 
featuring Bayesian methods may be, at least in part, a result 
of insufficient knowledge of Bayesian approaches [6]. This 
article discusses the use of the Bayesian framework for drug 
and biological product development, highlights key settings 
in which Bayesian approaches may be appropriate, and pro-
vides recent examples of the use of Bayesian approaches 
within the Center for Drug Evaluation and Research (CDER) 
and the Center for Biologics Evaluation and Research 
(CBER) at the U.S. Food and Drug Administration (FDA).
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Areas with Emerging Bayesian Methods Use

Although the use of Bayesian methods may be well suited 
in some clinical contexts, the methods may be considered 
regardless of study type, population, or therapeutic area, as 
appropriate. As with any proposal for a clinical trial, whether 
the proposed Bayesian study design and/or analysis is fit-for-
purpose will be determined on a case-by-case basis. Some 
areas of drug or biological product development are high-
lighted below.

Early Drug/Biological Product Development

The objective of early-phase studies includes generating pre-
liminary safety and efficacy data to help select drug or bio-
logical product dose(s) for subsequent development. There 
is an opportunity to use Bayesian model-based design and 
analyses to meet this objective. For example, a Bayesian 
model could potentially be used to estimate the probability 
of dose-limiting toxicity based on prior toxicity information 
or initial assumptions. The estimates could be continuously 
updated as more data are collected.

Bayesian modeling in early-phase studies has been stud-
ied extensively, e.g., [7]. Some of the challenges in early-
phase studies using Bayesian methods include clear char-
acterization of the assumptions, study design, and model 
settings. Generally, providing sufficient details to describe 
and justify Bayesian study design, statistical model(s), and 
assumptions in proposals for early-phase studies is helpful 
to gain alignment among stakeholders. Detailed descrip-
tion and justification of the optimal and efficient designs (if 
applicable), sample size, duration of toxicity monitoring, 
potential dose levels, the model, prior distribution and its 
informativeness, parametrizations, and success criteria are 
especially helpful. Simulation results with operating char-
acteristics under various scenarios and assumptions provide 
valuable information to assess a proposal for an early-phase 
study [8].

Noninferiority

Bayesian methods are not limited to superiority trials and 
can be used in noninferiority (NI) trials as well. The goal 
of an NI trial is often to show that the difference between 
a new investigational product and an active control is small 
enough to allow the active control’s known effectiveness to 
support the conclusion that the new investigational prod-
uct is also effective. An NI study seeks to show that the 
amount by which the investigational product is inferior to 
the active control is less than some prespecified NI margin. 
The FDA guidance on noninferiority trials acknowledges 
the potential utility of a Bayesian approach in this setting 

[9]. As examples, Bayesian methods can potentially be used 
in either the design of an NI trial (e.g., to determine the NI 
margin) or the analysis of the data generated by the trial. 
Use of Bayesian approaches can be particularly well suited 
to determining the NI margin, which involves synthesizing 
data from past studies. Some examples of the use of Bayes-
ian methods to determine the NI margin and to analyze NI 
trial data can be found in Rothwell et al. [10], Gamalo et al. 
[11], and Price and Scott [12].

Adaptive Clinical Trials

Some considerations on Bayesian adaptive study designs 
are included in the guidance for industry, Adaptive Design 
Clinical Trials for Drugs and Biologics. An adaptive design 
allows for prospectively planned modifications to the study 
design based on accumulating data from participants in the 
clinical trial. Bayesian adaptive study designs use the Bayes-
ian framework for study adaptations and/or posterior distri-
butions for decision-making. Examples of Bayesian adaptive 
design features include the following categories per Adaptive 
Design Clinical Trials for Drugs and Biologics:

• “Use of predictive statistical modeling, possibly incorpo-
rating information external to a trial, to govern the timing 
and decision rules for interim analyses.

• Use of assumed dose–response relationships to govern 
dose escalation and selection.

• Explicit borrowing of information from external sources 
(e.g., previous trials, natural history studies, and regis-
tries) via informative prior distributions to improve the 
efficiency of a trial.

• Use of posterior probability distributions to form criteria 
for trial success.”

Pediatric Clinical Trials

Informative Bayesian methods can be a good fit for pediat-
ric studies, as these methods can allow the incorporation of 
prior information about efficacy from adults or other source 
populations (for example, using information from adoles-
cents in drawing inferences on younger children), when 
clinically appropriate, to facilitate a trial design that requires 
the enrollment of fewer children [13]. Bayesian studies are 
consistent with the established concept of pediatric extrapo-
lation, which allows for efficacy to be assessed in pediatric 
patients with support from information gathered in other 
populations [14]. Extrapolation, when scientifically justified, 
is particularly attractive in pediatric investigations as it can 
allow us to reduce the size or need for studies in children 
who are a vulnerable population in need of extra patient 
protections. Bayesian methods accomplish this by creating 
a prior distribution based on the information leveraged from 



438 Therapeutic Innovation & Regulatory Science (2023) 57:436–444

1 3

the source population which can be used in the analysis in 
the target pediatric population.

In the past, extrapolation was employed using a decision-
tree approach, through which the development program 
could be reduced if certain thresholds of evidence were 
reached [15]. Bayesian methods allow more flexibility for 
pediatric studies, given that the prior information can be 
weighted based on the level of applicability rather than an 
all-or-nothing approach to incorporating the information. 
Deciding upon applicability a priori is preferable because 
it separates applicability from outcomes of the new study, 
which may bias reviewers with regard to how previous stud-
ies are viewed.

These methods were discussed in a September 2021 joint 
FDA and Maryland Center for Excellence in Regulatory Sci-
ence and Innovation workshop, “Advancing the Develop-
ment of Pediatric Therapeutics Complex Innovative Trial 
Design Public Workshop,” which included presentations and 
discussion on the use of Bayesian methods in pediatric clini-
cal trials from FDA, the European Medicines Agency, and 
industry [16]. There are also ongoing international efforts 
within the International Council for Harmonization to gain 
alignment on the scope and applicable methodologies of 
pediatric extrapolation generally, including the use of Bayes-
ian methods [17].

First, to do extrapolation, one needs to create the prior 
distribution containing the borrowed information intended 
for use in the analysis. FDA has seen several different pro-
posed approaches, but they tend to follow a similar process:

1. Determine the relevant data to be used in the construc-
tion of the prior distribution.

2. Synthesize the different sources of information. This 
involves weighing the relative relevance of the different 
sources to the new scientific question under investiga-
tion.

3. Determine the final overall weight of the prior based on 
balancing the amount of prior evidence, the uncertainty 
about the applicability of this evidence, and the required 
sample size for the study.

The main challenges involved in constructing the prior 
distribution are synthesizing the information and deter-
mining the level of weighting. Synthesizing the informa-
tion becomes complex when a range of heterogeneous data 
sources are used. For example, if we have a mix of adult 
and pediatric clinical trials, or if some of the trials used 
different designs than the study being planned while oth-
ers used the same design, then we have different amounts 
of relevance. More complex statistical models may be used 
to reflect these relevant imbalances. In all cases, there are 
necessary subjective judgments to be made in building these 
models, requiring multidisciplinary collaboration in order to 

design and implement. Some examples of these subjective 
judgments include assessments about the degree of hetero-
geneity between trials and the relative relevance of the dif-
ferent sources of information. Schmidli et al. [18] provides 
an example of this process in practice, where the authors 
used information from both adult and pediatric studies for 
fingolimod to create a prior distribution for a study utilizing 
fingolimod as an active control in pediatric patients.

Discussions related to how to weight the prior informa-
tion relative to the information collected in the trial can be 
challenging as finding an acceptable balance in weighting 
between the information collected in the trial and the prior 
information is critical in order for the results of the subse-
quent analyses to be persuasive. If the prior information is 
weighted too heavily, then the prior information will over-
power the data generated from the pediatric population, and 
the result may not be persuasive. If too little weight is given 
to the prior information, the pediatric trials may need to 
enroll more pediatric patients than might be necessary.

Rare Diseases

Similar to pediatric clinical trials, rare disease clinical trials 
present challenges that may also offer an opportunity for the 
Bayesian framework. These methods can be useful when 
there is a limited pool of patients, and data exist that can 
inform a prior distribution, such as data from earlier clinical 
trials. Registry data or other real-world data might also be 
useful for informing a prior distribution, if such use is suf-
ficiently justified in terms of data quality, applicability, and 
other aspects [19, 20]. In such cases, evidence from various 
sources can be integrated into the assessment with uncer-
tainty expressed in a probability scale. Interpretation from 
the functions of the posterior probability distribution can 
often be straightforward if the early study design strategy is 
appropriately deliberated and selected [21].

Although designing rare disease clinical trials is different 
from designing pediatric clinical trials and presents its own 
distinct set of issues, the approaches for choosing a prior 
distribution as discussed for pediatric clinical trials would 
also apply for rare disease clinical trials. What constitutes 
an appropriate prior distribution for a rare disease will vary 
depending on the experimental treatment, control treatment, 
study population, and the degree of similarity between prior 
and prospective data. It is useful to incorporate a skepti-
cal prior, which quantifies skepticism that the treatment is 
beneficial or harmful. As the therapeutic landscape evolves, 
the relevance of prior data for the population of interest 
may change. Assessing data quality attributes (e.g., source, 
usability, timing, accuracy, completeness) and comparability 
attributes (e.g., demographics, disease features, phenotype, 
genotype, disease progress, standards of care) are helpful 
to ensure that analysis results using prior data will provide 
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usable and reliable information that is fit for regulatory 
purposes.

Subgroup Assessment

A subgroup is a given subset of a clinical trial population 
that has a certain characteristic(s). Along with the evaluation 
of a treatment effect in the overall study population, assess-
ment within subgroups of patients where the efficacy may 
vary is important.

Traditionally, treatment effects in an individual subgroup 
in a pivotal trial are estimated by the observed effect within 
that subgroup. Although these direct estimates are easily 
understood, the observed treatment effects can be highly 
imprecise estimates of the true treatment effects. The vari-
ability of observed treatment effects across the subgroups 
in a trial is generally greater than the variability of the true 
subgroup treatment effects [22]. The observed variability 
of treatment effects across subgroups can be extreme when 
subgroups are small, given that observed treatment effects 
are more susceptible to random highs and lows of the sample 
data. Bayesian methods that weigh data in different sub-
groups in a way that increases the precision of the subgroup 
treatment effect estimates can correct these extremes by pull-
ing the estimates toward the overall treatment effect in the 
total study population.

Bayesian hierarchical models for subgroup analysis have 
been discussed extensively in the literature and featured 
in the CDER impact stories as an innovative statistical 
approach to provide the most reliable treatment outcomes 
information to patients and clinicians [23]. The main idea 
is to analyze relevant subgroups together rather than in iso-
lation. The Bayesian method accomplishes this by linking 
individual subgroups through a prior distribution encom-
passing underlying treatment effects in each subgroup. 
Borrowing information from other subgroups improves the 
overall accuracy of the estimates across the subgroups. This 
property is particularly useful for the analysis of data from 
the smaller subgroups.

Examples of Bayesian Methods Use in CDER‑ 
and CBER‑Reviewed Clinical Trials

Example 1: Pediatric Trials (Approval, Belimumab) 
[24]

In 2018, FDA received a New Drug Application (NDA) sup-
plement containing the results of a Pediatric Research Equity 
Act (PREA)-required postmarketing study for belimumab, 
a B-lymphocyte stimulator (BLyS)-specific inhibitor, in the 
treatment of pediatric patients with active, autoantibody-
positive systemic lupus erythematosus (SLE) who were 

receiving standard therapy. Due to the rarity of the disease 
in children, an adequately powered pediatric study was not 
feasible but a study nonetheless ran for over 5 years and 
managed to enroll and randomize 93 participants.

The primary endpoint was the proportion of patients who 
met the SLE Responder Index (SRI) Response criteria at 
Week 52. The results of the primary analysis for this end-
point are shown in Table 1. The primary analysis failed to 
demonstrate a statistically significant difference between 
belimumab and placebo.

Given concerns regarding the feasibility of conducting 
another study in this pediatric population, the review team 
considered whether a Bayesian analysis could be informa-
tive, incorporating the data collected in the adult SLE 
studies.

To conduct such an analysis, a prior distribution had to 
be determined. The review team considered this in a simi-
lar fashion to the three steps discussed previously in Sec-
tion d. First, they identified the relevant data that could be 
used; specifically, there were two adult efficacy studies that 
compared two dose levels (1 mg/kg and 10 mg/kg) against 
placebo. These data were used since the clinical review team 
believed the disease and patient response to treatment were 
likely to be similar between the adult and pediatric subjects, 
given that the pediatric and adult diseases have similar 
underlying pathophysiology and management, with BLyS, 
the target of belimumab, being similarly relevant; systemic 
belimumab exposures were also similar. The data from the 
1 mg/kg dose arms were not considered relevant because the 
pediatric study only used the higher dose. The results from 
the adult studies for the 10 mg/kg dose are shown in Table 2.

Next, the data from the adult studies were combined to 
produce a single probability distribution.

The final step of the process was to use a mixture prior 
approach to reweight the results to ensure that the adult data 
did not overwhelm the pediatric data in the analysis. This 
approach was used to vary the amount of information bor-
rowing between no borrowing (represented by a weight of 
zero of 0) and full borrowing (represented by a weight of 
1) where the adult and pediatric data are essentially pooled 
together, with every patient counted equally.

Table 1  Primary efficacy analysis of SRI response rate at week 52 
from the pediatric study

a One subject in placebo did not have a baseline SELENA SLEDAI 
assessment and, therefore, did not contribute to SRI analyses

Placebo
N =  40a

Belimumab 10 mg/kg
N = 53

Response, % (n) 44% (17) 53% (28)
Observed difference – 9.2%
Odds ratio (95% CI) – 1.5 (0.6, 3.5)
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The Bayesian analysis was performed for the entire range 
of weights, from no borrowing to full borrowing, to allow a 
complete view of the spectrum of outcomes. Point estimates 
(posterior means) and uncertainty intervals (95% credible 
intervals) were computed for each weight value and are pre-
sented in Fig. 1. As more weight was placed on the adult 
study results, the point estimates moved toward the overall 
average slightly and the width of the uncertainty intervals 
shrank considerably.

Typically, to try to reduce subjective biases, the amount 
of borrowing should be prespecified. Although it was 
not prespecified in this case, the clinical team did have a 

pre-existing belief in the similarity between adults and pedi-
atrics based on the similarity of the disease pathogenesis 
and management. The Bayesian analysis found that a prior 
distribution weight of at least 0.55 resulted in posterior prob-
abilities of positive treatment effects of greater than 97.5%. 
This 0.55 weight was found to be reasonable by the review 
team, and thus this analysis provided support, along with 
additional evidence, for the approvability of belimumab in 
the pediatric SLE population.

Example 2: COVID‑19 Vaccine

In response to the COVID-19 pandemic, BioNTech Manu-
facturing GmBH, in partnership with Pfizer Inc., proposed 
a phase 1/2 trial of their SARS-CoV-2 mRNA vaccine can-
didate, BNT162b2. The original protocol for trial C4591001 
was finalized on April 15, 2020, and was subsequently 
amended on July 24, 2020, to include a phase 3 trial. The 
trial was titled “A phase 1/2/3 Placebo-Controlled, Rand-
omized, Observer-Blind, Dose-Finding Study to Evaluate 
the Safety, Tolerability, Immunogenicity, and Efficacy of 
SARS-CoV-2 RNA Vaccine Candidates Against COVID-
19 in Healthy Individuals.” Trial C4591001 had a number 
of different objectives, including objectives related to dose-
finding, safety, and immunogenicity. The efficacy analyses 

Table 2  Primary efficacy analysis of SRI response rate at week 52 
from the adult studies

Adult study 1 Adult study 2

Placebo
N = 275

Belimumab 
10 mg/kg
N = 273

Placebo
N = 287

Belimumab 
10 mg/kg
N = 290

Response, % (n) 34% (93) 43% (118) 44% (125) 58% (167)
Observed differ-

ence
– 9% – 14%

Odds ratio (95% 
CI)

– 1.5 (1.1, 2.1) – 1.8 (1.3, 2.6)

Figure 1  Posterior mean (points) and 95% credibility intervals (lines) of the odds ratio of SRI response. Source: Reproduced using Table 34 
FDA Statistical Review.
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in the phase 2/3 portion of the study are most relevant for 
this discussion. Of note, the results described in this section 
are based on the data submitted as part of the COMIRNATY 
original Biologics License Application (BLA); the study was 
ongoing at that time and there have since been additional 
analyses.

Over 44,000 subjects, aged 16 years and older, were ran-
domized 1:1 to receive two doses of BNT162b2 or placebo 
at a 21-day interval. The primary efficacy endpoint was con-
firmed cases of COVID-19 (see protocol [25] and FDA 
review documents for exact definition [26]), and the primary 
efficacy null hypothesis was Vaccine Efficacy (VE) ≤ 30%, 
where VE = 100 * (1 – incidence rate ratio [IRR]). Under the 
assumption that the number of cases in each group follows 
a Poisson distribution, the number of cases in the vaccine 
group, s1, has a binomial distribution conditional on the total 
number of cases, s; s1 ~ Binomial(s, θ) where θ =

r(1−VE)

r(1−VE)+1
 

and r is the ratio of study time between the vaccine and 
placebo groups. The study was designed with a simple 
Bayesian efficacy analysis using a beta-binomial model with 
a weakly informative beta(0.700, 1) prior distribution for θ, 
chosen to have a prior mean of 0.4118 (corresponding to a 
VE of 30%). The null hypothesis would be rejected if the 
posterior probability that VE > 30% exceeded prespecified 
thresholds at interim or final analyses. The thresholds were 
chosen to maintain a familywise one-sided Type I error rate 
of 2.5%. There were also interim futility analyses planned 
based on the trial’s posterior predictive probability of suc-
cess, calculated with a beta-binomial model.

At the time of the interim analysis, conducted with a data 
cutoff date of November 4, 2020, there were four confirmed 
cases in the BNT162b2 arm and 90 confirmed cases in the 
placebo arm, yielding a VE of 95.5% with a 95% credible 
interval of (88.8%, 98.4%). The posterior probability of 
VE > 30% was 0.9999, which exceeded the prespecified 
threshold of 0.995. Updated final efficacy analyses were 
similarly strong [25, 26]. These efficacy findings played a 
critical role in BNT162b2 becoming the first COVID-19 
vaccine authorized in the United States under Emergency 
Use Authorization (December 11, 2020) and subsequently 
becoming the first U.S.-licensed COVID vaccine under the 
trade name COMIRNATY (August 23, 2021), landmark 
milestones in the pandemic response [27].

Example 3: Drug Trials Snapshots (Approval, 
Bempedoic Acid)

CDER statisticians have used Bayesian hierarchical mod-
els to provide information on treatment effect for various 
demographic subgroups in the FDA Drug Trials Snapshots 
program. For approved new molecular entities and original 
biological products, the Drug Trials Snapshots webpage [28] 

provides information on study design, results of efficacy, 
and safety studies, and whether there were differences in 
efficacy and side effects among various subgroups defined 
by sex, race, and age.

The subgroup assessment in the Drug Trials Snapshots 
for bempedoic acid is an example of the use of a Bayesian 
method [29]. The applicant’s phase 3 clinical development 
program consisted of two randomized, placebo-controlled 
trials that enrolled adult patients with heterozygous famil-
ial hypercholesterolemia or established atherosclerotic car-
diovascular disease who were on maximally tolerated statin 
therapy but required additional lowering of LDL-cholesterol 
(LDL-C). A treatment effect was assessed by percent change 
in LDL-C from baseline to Week 12. At the time of the 
application review, the difference in the LDL-C change 
between treatment groups within sexes, age groups, and 
ethnicities was estimated independently in isolation as well 
as by borrowing information from other subgroups using a 
Bayesian hierarchical model.

For the Bayesian analysis of treatment effects in sub-
groups based on sex, before observing the trial data (i.e., a 
priori), it was assumed that the underlying treatment effect 
was not expected to be in a particular order by sex. That is, 
it was assumed that the probability that the treatment effect 
in male patients would be greater than in female patients 
was the same as the probability that the treatment effect 
in female patients would be greater than in male patients. 
This exchangeability assumption must hold for the result-
ing treatment effect estimates to be valid. Furthermore, the 
treatment effects in male and female subgroups were linked 
by imposing a prior distribution over the unknown true 
treatment effects within subgroups. An additional layer of 
prior distributions, called a hyper-prior, was imposed on the 
parameters of the prior distribution, so that estimated values 
of the parameters were driven primarily by the observed 
data. Mathematical details of the model are included in the 
FDA’s application review [29]. Estimates for subgroups of 
age and region were obtained similarly.

The results based on observed data alone and the Bayes-
ian analysis in the same subgroups from one of the phase 
3 trials (Trial 047) are presented in Fig. 2. The 95% con-
fidence intervals are shown for the observed sample esti-
mates, and 95% credible intervals are shown for the esti-
mates based on the Bayesian analysis. The credible intervals 
were derived from the posterior distribution of the average 
difference in LDL-C for the corresponding subgroups. As 
expected, 95% credible intervals are mostly narrower for 
the estimates based on the Bayesian analysis, reflecting the 
precision gained through borrowing information across all 
the subgroups. The gain in precision via Bayesian analysis 
is particularly notable in the subgroups with wider 95% con-
fidence intervals.
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For the bempedoic acid Drug Trials Snapshots, the results 
from two trials were combined to provide the overall treat-
ment effect estimate for each subgroup [30]. This required 
an additional layer of hierarchy to link the study-specific 
treatment effects from the two trials.

Example 4: Complex Innovative Trial Design Clinical 
Trials

FDA announced the Complex Innovative Trial Design (CID) 
Pilot Meeting Program in the Federal Register on August 
30, 2018 [31]. The goals of the CID pilot meeting program 
were to

1. Facilitate the advancement and use of complex adaptive, 
Bayesian, and other novel clinical trial designs and

2. Promote innovation by allowing FDA to publicly discuss 
the trial designs developed through the pilot meeting 
program as case studies, including while the drug stud-
ied in the trial has not yet been approved by FDA.

The CID pilot meeting program was intended especially 
for innovative clinical trial designs that require simulations 

to estimate the operating characteristics. Several examples 
of CID case studies in the program have been published [12, 
32]. Per Federal Register notice on October 20, 2022 [33], 
FDA is continuing the program as the Complex Innovative 
Trial Design Paired Meeting Program [32].

Discussion

Fitness-for-purpose of a study design and/or analysis is 
determined on a case-by-case basis. This article highlighted 
some settings that might be well suited for Bayesian meth-
ods. The Bayesian framework has many benefits as well as 
challenges [5]. One of the challenges of Bayesian approaches 
is the absence of a single, universally accepted criterion for 
study success. Instead, at this time, clinical context (e.g., 
seriousness of disease, prevalence of disease, unmet medical 
need) is important in determining an appropriate criterion 
for study success. However, this flexibility is also a strength 
of the Bayesian framework because it requires a thought-
ful cross-disciplinary discussion about how multiple factors 
influence both the prior distribution as well as the criteria 
for study success.

Figure 2  Trial 047 subgroup analyses. Source: FDA’s review of bempedoic acid tablets (NDA 211,616).
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FDA has numerous avenues to facilitate the appropriate 
use of Bayesian methods in drug and biological product 
development. Moreover, examples and discussion of the 
use of Bayesian methods have been highlighted in publica-
tions and presentations made by FDA staff e.g., [34–37], in 
Drug Trials Snapshots, and in several guidance for industry 
documents [4, 38–40]. FDA is committed to continuing to 
advance the appropriate use of Bayesian methods through 
ongoing and future efforts, including publishing a draft guid-
ance on the Use of Bayesian Methodology in Clinical Trials 
of Drugs and Biologics by the end of the fiscal year 2025 
as a part of the Prescription Drug User Fee Act VII com-
mitment [41].
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