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Presentation Overview

• Nonlinear regression, extended to generalized nonlinear regression via likelihood estimation

• The global two-stage model and the setup of a Non-Linear Mixed Effects Model

• Approximations to the likelihood of a NONMEM: First order, conditional first order,

Laplace and maximum likelihood

• Where do NONMEMs come from: Population kinetics

• Some examples from my clinical experience:

– An ACTH stimulation experiment

– Measuring onset of action

– A dose response experiment with a partial agonist

• Generalized linear mixed effects model, exemplified by a Poisson regression model
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Lecture 1: Nonlinear Regression

In which we look at nonlinear regression and relate it to maximum likelihood estimation. A

generalization of nonlinear regression will also be introduced, accounting for variance models

with auxillary, non-regression, parameters.
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Nonlinear regression: Example

Plasma concentration data of indometacin obtained after an intravenous administration:

ti : 0.25 0.50 0.75 1.0 1.25 2.0 3.0 4.0 5.0 6.0 8.0

yi : 2.05 1.04 0.81 0.39 0.30 0.23 0.13 0.11 0.08 0.10 0.06

To these data we want to fit the (two-compartment) regression function

f(θ, t) = θ1e
−θ2t + θ3e

−θ4t.

The method to this is by using least squares: choose θ = (θ1, . . . , θ4) so that the sum (with

N = 11)

Q(θ) =
N∑

i=1

(yi − f(θ, ti))2/σ2
i

is minimized, where σ2
i = V (yi).

This means that we solve the equation

Q′(θ) = −
N∑

i=1

f ′(θ, ti)t(yi − f(θ, ti))/σ2
i = 0.
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Weight options:

The choices of σi gives weights to the residuals yi−f(θ, ti), and, in the absence of knowledge

of the correct choice, we can use different options:

1. Ordinary Least Squares (OLS): σi = σ for all i.

2. OLS on log-scale. Since V (ln yi) ≈ V (yi)/y2
i , this is almost

3. σi = yiσ, which is unnatural and should be replaced by

4. σi = f(θ, ti)σ, which is a special case of the power model

5. σi = f(θ, ti)γσ for some parameter γ.

The first three of these give maximum likelihood estimates under gaussian assumptions, the

last two does not – we will soon return to this.
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Model fits for Indometacin data

Different weight schemes give different estimates:

ln θ1 ln θ2 ln θ3 ln θ4

OLS 1.27 1.04 -1.23 -1.51

1/y2
i 1.22 0.96 -1.52 -1.80

1/fi(θ)2 1.21 0.95 -1.45 -1.77

1/fi(θ)2γ 1.24 0.97 -1.43 -1.74

The estimated exponent in the power model was γ = 0.82.
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Least Squares and Maximum Likelihood estimation

If we assume that the errors are independent and normally distributed,

yi ∈ N(f(θ, ti), σ2
i (θ)),

then the likelihood

L(θ) =
N∏
i

1
σi(θ)

φ(
yi − f(θ, ti)

σi(θ)
), φ(x) =

1√
2π

e−x2/2,

implies that

−2 ln L(θ) =
N∑

i=1

((yi − f(θ, ti))2/σi(θ)2 + ln(2πσi(θ))).
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To minimize this, we have to solve the equation

N∑
i=1

f ′(θ, ti)σi(θ)−2(yi − f(θ, ti)) +

N∑
i=1

σ′
i(θ)σi(θ)−3((yi − f(θ, ti))2 − σi(θ)2) = 0.

This is equivalent to the least squares equation

N∑
i=1

f ′(θ, ti)σi(θ)−2(yi − f(θ, ti)) = 0,

precisely when σi does not depend on θ!
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• ML and LS estimates are different if σi depends on θ!

• The LS estimate focuses fully on the regression part, whereas the ML estimate is a

compromise between a good fit to the regression and of the variance. Creates problems

if variance model is poor!

The power model represents one further step of complication, in that σi = σi(θ, γ) depends

on an auxillary variance parameter.

Auxillary variance parameters are not uncommon:

• Heteroscedastic variances

• Correlation between assessments

.. leads to a variance-covariance matrix for y = (y1, . . . , yn) like

V (y) = Λ(θ, φ) = U(θ, φ)Corr(φ)U(θ, φ)t.

Power model is U(θ, φ) = σf(θ, t)φ, Corr(φ) = I.
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The Generalized Nonlinear Regression Model

This model consists of two parts:

E(y) = f(θ, t), V (y) = Λ(θ, φ, t), (1)

and, under gaussian distribution assumption, its −2 ln L(θ, φ) is given by (matrix notations)

(y − f(θ, t))tΛ(θ, φ, t)−1(y − f(θ, t)) + ln(det 2πΛ(θ, φ, t)) (2)

Estimating equations for ML estimation
f ′

θ(θ, t)
tΛ(θ, φ, t)−1(y − f(θ, t))+

1
2λ′

θ(θ, φ)t(Λ−1 ⊗ Λ−1)(θ, φ, t)(s(θ)− λ(θ, φ)) = 0
1
2λ′

φ(θ, φ)t(Λ−1 ⊗ Λ−1)(s(θ)− λ(θ, φ)) = 0,

(s(θ) = vec(y − f(θ, t))(y − f(θ, t))t), λ(θ, φ) = vec(Λ(θ, φ, t)))

To get GLS - modify first equation and uncouple them!
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Generalized Least Squares:

Iterate between

1. Solving the following equation for θ:

f ′
θ(θ, t)

tΛ(θ, φ, t)−1(y − f(θ, t)) = 0

2. Minimizing the following function with respect to φ:

(y − f(θ, t))tΛ(θ, φ, t)−1(y − f(θ, t)) + ln(det 2πΛ(θ, φ, t))

until θ changes no more!

This estimation process uses φ only as a nuisance parameter – convergence is not necessary

for it.
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A soybean experiment

• This example relates to data from an experiment to compare the growth patterns of two

genotypes of soybeans.

• Plots were planted and at approximative weekly intervals during the growing season, six

plants were randomly selected, the leaves from these plants were aggregated and weighed,

and average leaf weight per plant, y was calculated for the plot.

• To this data we want to fit a logistic growth curve

y(t) =
θ1

1 + e−θ3(t−θ2)
.

• Here θ1 is the asymptotic weight, θ2 gives the time when 50% of this has been reached

and θ3 is a slope parameter. We replace θ3 with 0.01θ3 in what follows.
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Analysis of the Soybean experiment

The solid curve in the plot

to the left below shows the

model fit. The plot to the

right indicate a negative cor-

relation (estimated to -0.83)

between consecutive residu-

als.

The dashed curve to the right shows the analysis when a correlation structure has been imposed

on the residuals in the fitting process. Virtually no difference!
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The correlation model

The model we intended to use was the AR(1)-model

C(ri, rj) = ρ|ti−tj |

but this is not well defined when ρ < 0. So, for correlation only, we recode times to consecutive

integers, and use this:

C(ρ) =



1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

...
...

ρn−2 . . . ρ 1 ρ

ρn−1 . . . . . . ρ 1


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So what have we gained?

Precision in parameter estimates:

First model: Model with correlation:

standard 95%

Parameter estimate error confidence limits

θ1 17.3 0.5643 15.97, 18.63

θ2 48.85 0.8802 46.77, 50.93

θ3 15.72 1.761 11.55, 19.88

standard 95%

estimate error confidence limits

17.2 0.204 16.72, 17.68

48.74 0.3025 48.02, 49.45

15.98 0.6316 14.48, 17.47

There is some cheating in this - we assume the auxillary parameter fixed to its estimated value

(which was 0.79) when computing standard errors.
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Lecture 2: The Global Two-Stage Method and the

Mixed Effects Model

In which we consider the problem of summarizing the results from a sequence of nonlinear

regression models into statements of how parameters are distributed in a population.
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Indometacin data for 6 individuals

This individual was one out of six:

To estimate, with the power

model, we can choose to

• Estimate individual σ and γ

• Obtain a pooled σ and γ

over all individuals.
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Pooled estimation of variance parameters

The ML estimate of (θ1, . . . , θn, σ,γ), n = 6, is obtained by minimizing

n∑
i=1

(
(yi − fi(θi))t(yi − fi(θi))/σ2fi(θi)2γ + ln(2πσfi(θi)γ)

)
.

The generalized nonlinear regression concept is that this is done in alternating steps where

θi:s are determined, given estimates of γ (σ doesn’t matter) by solving

f ′
i(θi)t(yi − fi(θi))/fi(θi)2γ = 0, i = 1, . . . , n

and given these, updates of γ are obtained from the likelihood above. Iterate until convergence.
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How do we summarize the result of 6 individuals? - The Global

Two-Stage Method

Our six subjects are only vehicles in our ultimate gain: to get a population summary of the

regression parameters.

We therefore assume that the true parameter vector for subject i, θi is a random sample from

a N(θ, D) distribution, whose parameters we want to estimate.

We only have estimates θ∗i of θi with some precision:

θ∗i |θi ∈ N(θi, Ci), so θ∗i ∈ N(θi, Ci + D)

To find θ and D we need a new estimation, by maximizing

LGTS(θ, D) =
N∑

i=1

(ln(det(Ci + D)) + (θ∗i − θ)t(Ci + D)−1(θ∗i − θ)).
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GTS updates regression estimates

Given these we can also obtain refined estimates for θi from the equation

θi = (C−1
i + D−1)−1(C−1

i θ∗i + D−1θ).

With correct assumptions these could well be better estimates than then original ones.

Table below contains original/updated estimates.

Subj. ln(θ1) ln(θ2) ln(θ3) ln(θ4)

1 0.72/0.92 0.60/0.68 -1.64/-1.72 -1.77/-1.88

2 1.15/1.15 1.05/1.00 -0.40/-0.46 -1.35/-1.38

3 0.77/0.76 -0.04/-0.01 -2.42/-2.19 -4.07/-2.29

4 0.79/0.81 0.07/0.13 -2.31/-2.02 -3.05/-2.19

5 1.22/0.98 0.96/0.82 -1.45/-1.44 -1.76/-1.74

6 0.91/0.95 0.35/0.37 -1.14/-1.23 -1.77/-1.86
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Curve fits - original to the left, updated to the right

Note the terminal phases!
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GTS summary

The main result is the estimate of θ:

Parameter Estimate 95% confidence limits

ln(θ1) 0.9273 0.7633, 1.091

ln(θ2) 0.4985 0.1755, 0.8216

ln(θ3) -1.511 -2.007, -1.016

ln(θ4) -1.893 -2.237, -1.548

(Corresponds to dashed line in last picture - mean parameter curve!)

and

D =


0.016 0.044 0.073 0.039

0.044 0.14 0.18 0.11

0.073 0.18 0.34 0.17

0.039 0.11 0.17 0.09


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The Mixed Effects Model setup

Assumptions:

• We have N subjects

• Subject i has ni observations yi = (yi1, . . . , yini)

• Assume that E(yi | θi) = fi(θi), V (yi | θi) = Λi(θi, α) and that the distribution is Gaussian

• Assume that θi = di(θ, ξi), i = 1, . . . , N , where ξi are randomly sampled from a N(0, D)
distribution.

In a simple random effects model we take di(θ, ξ) = θ + ξ.
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A simulation experiment

We simulated 20 copies of the growth

curve function

f(d, ξ) =
d

eξ + d

where ξ ∈ N(0, 2). The mean value curve

is given approximately by

m(d) =
dγ

1 + dγ
, γ = 0.75.
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Mean parameter/value curves

It is important to distinguish between the

• Mean Parameter Curve (mpc)

y = f(θ, x)
(

=
d

1 + d

)
• Mean Value Curve (mvc)

y =
1√

det 2πD

∫
f(d(θ, ξ), x)e−ξtD−1ξ/2 dξ

(
≈ d3/4

1 + d3/4

)

as this example shows. Note however that as D → 0, the mean value curve approaches the

mean parameter curve!

Also note that if

f(d(θ, ξ)) = f(θ) + C(θ)ξ

the two curves coincide!
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Soybean experiment

Also the soybean example earlier was part of a bigger experiment:

Data from an experiment to compare the growth patterns of two genotypes of soybean was

collected for three consecutive years (1988–1990). Each year 16 plots were planted with seeds,

eight with the genotype Forrest (F), a commercial variety, and eight with Plant Introduction

#416937 (P), an experimental strain.

The regression function to fit was

y(t) =
θ1

1 + e−0.01θ3(t−θ2)
.

and we use the power model + AR(1)-process for interdependence within plot!
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Individual data is shown in

GTS analysis on GLS estimates with

pooled variance parameter estimates:

standard 95%

estimate error confidence limits

θ1 17.29 0.6138 16.08, 18.49

θ2 52.56 0.5123 51.56, 53.57

θ3 12.86 0.1782 12.51, 13.21
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Plotting the distribution of the individually estimated coefficients from the GLS analysis....

....so we try to structure data as

θi = Aiθ + ξi, ξi ∈ N(0, D).

with one parameter for each genotype ×
year combination. (In all 6 × 3 = 18 pa-

rameters.)
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Soybean structured GTS: parameter estimates

The result of the analysis is summarized in the following mean value plot...

...together with

D =


2.198 1.952 −0.5585

1.952 5.018 −1.661

−0.5585 −1.661 0.5551


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Summary of GTS approach to analysis

• Needs rich data - so rich that all individual regression problems can be solved with rea-

sonable values

• Shrinkage of individual coefficients on update – poorly estimated individual coefficients

have less weight in the global estimate.

• Some uncertainty about the mathematical logic/model

What we want is a one-step analysis method, so that individual curves need not be well

estimated!
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The Marginal NONMEM likelihood

The assumptions ...

... leads to the follow-

ing conditional likelihood for

subject i:

• Subject i has ni observations yi = (yi1, . . . , yini)

• Assume that E(yi | θi) = fi(θi), V (yi | θi) = Λi(θi, α)
and that the distribution is Gaussian

Li(θi, α | yi) = e−Hi(θi,α,yi)/2

where

Hi(θi, α, yi) = (yi − fi(θi))tΛ(θi, α)−1(yi − fi(θi)) + ln(2πΛ(θi, α)).
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The additional assumptions

• θi = di(θ, ξi),

• ξi random sample of N(0, D) distribution

leads to the marginal likelihood for subject i:

Lm
i (θ, α, D | yi) = (det 2πD)−1

∫
Li(di(θ, ξ), α | yi) e−ξtD−1ξ/2 dξ
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The final marginal likelihood becomes

L(θ, α, D) =
N∏

i=1

∫
e−Qi(θ, α, D, ξ)/2dξ,

where

Qi(θ, α,D, ξ) = (yi − fi(di(θ, ξ)))tΛi(di(θ, ξ), α)−1(yi − fi(di(θ, ξ))) +

ln(2πΛ(di(θ, ξ), α)) + ξtD−1ξ + ln(det(2πD))

This is a multidimensional integral: with 4 regression coefficients, an unstructured D matrix

has 6 parameters and we have at least 10 parameters in all.
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Lecture 3: Approximative methods

In which we look at different approximations to the marginal likelihood

L(θ, α, D) =
N∏

i=1

∫
e−Qi(θ, α, D, ξ)/2dξ,

where

Qi(θ, α,D, ξ) = (yi − fi(di(θ, ξ)))tΛi(di(θ, ξ), α)−1(yi − fi(di(θ, ξ))) +

ln(2πΛi(di(θ, ξ), α)) + ξtD−1ξ + ln(det(2πD))
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Approximating the NONMEM likelihood

Define a new variable ξ = ξi + A
−1/2
i η in integral:

−2 ln Li(θ, α, D) = Qi(θ, α, D, ξi) + ln(det Ai) +

−2 ln
∫

e(Qi(θ,α,D,ξi)−Qi(θ,α,D,ξi+A
−1/2
i η)/2 dη.

Want to choose ξi and Ai so that the contribution from the integral is minimized. Then we

either ignore it or use Gauss-Hermite’s integration method to approximate it numerically.

This is done by using that

Qi(ξi + A
−1/2
i η) ≈ Qi(ξi) + ∂ξQi(ξi)A

−1/2
i η +

1
2
ηtA

−t/2
i ∂2

ξξQi(ξi)A
−1/2
i η

so we want to choose ξi = ξi(θ, α, D) to solve

∂ξQi(θ, α, D, ξ) = 0, and choose Ai = −E(∂2
ξξQi(θ, α, D, ξi))/2
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Introduce notations

µi(θ, ξ) = fi(di(θ, ξ)), Ci(θ, ξ) = ∂ξµi(θ, ξ).

and assume that Λi does not depend on ξ. (From now on we will cheat by replacing

Λi(di(θ, ξi), α) with Λi(θ, α) = Λi(di(θ, 0), α).)

Then ξi = ξi(θ, α,D) is given as the solution of

−0.5 ∂ξQi(θ, α,D, ξ) = Ci(θ, ξ)tΛ−1
i (yi − µi(θ, ξ))−D−1ξ = 0

and

Ai = −E(∂2
ξξQi(θ, α, D, ξi))/2 = Ci(θ, ξi)tΛ−1

i Ci(θ, ξi) + D−1.

We can choose these also if Λi depend on ξ – though at the expense of less precision.

Then we have that∫
e(Qi(θ,α,D,ξi)−Qi(θ,α,D,ξi+A

−1/2
i η)/2 dη =

∫
eRi(θ,α,D,ξi,η)e−|η|2/2 dη,

where Ri is approximately zero to second order in η = 0.
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Note that we eliminate the integral if Q(ξ) is a second order polynomial (and Λi does not

depend on ξ). This is the case if

µi(θ, ξ) = µi(θ) + Ci(θ)ξ,

and Λi does not depend on ξ, which is called the quasi-linear case and contains the linear

case as a special case.
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The Laplacian approximation

The non-integral part of the likelihood can now be writtena

−2 ln L(θ, α, D) =
N∑

i=1

νi(θ, α, D)tVi(θ, α, D)−1νi(θ, α, D) + ln(det Vi(θ, α, D)), (3)

where

νi(θ, α, D) = yi − µi(θ, ξi) + Ci(θ, ξi)ξi,

and

Vi(θ, α, D) = Λi(θ, α) + Ci(θ, ξi)DCi(θ, ξi)t

This is the Laplacian approximation, which requires the computation of ξi each time the

objective function is computed - big computational burden.

aleft as an exercise – not trivial, requires some matrix operations

index.html


40/98 P�i?
22333ML232

Conditional First Order approximation

is obtained by taking subject specific choices for ξi, holding them fixed and minimizing (3)

with respect to θ, α and D.

This means iterating between

1. given (θ, α, D), estimate ξi, i = 1, . . . N by minimizing

PLS(ξ1, . . . , ξN ) =
N∑

i=1

Qi(θ, α, D, ξi) (Penalized least squares)

2. minimize (3) given these individual estimates.

until convergence in (θ, α, D).
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Population average or First Order approximation

is obtained by taking ξi = 0 in (3). This leads to the likelihood

−2 ln L(θ, α, D) =
N∑

i=1

(yi − µi(θ))tV −1
i (yi − µi(θ)) + ln(det Vi),

where

Vi = Λi + Ci(θ)DCi(θ)t

(when ξ is dropped as an argument, it means computed at ξ = 0).

Again this is the likelihood in the quasi-linear case! It is called the first order (FO) approxima-

tion to the likelihood because it is the likelihood when we approximate µi(θ, ξ) with its linear

part

µi(θ) + Ci(θ)ξ
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Comparison between ML, Laplace and FO methods

Estimate model E =
dγ

eθ + dγ
, with θ = θ0 + ξ random:

True values: γ = 1, θ0 = 0, D = 2

Sample of 20 independent observations

Parameter estimates:

Method θ0 γ D σ

ML -0.24 1.00 2.02 0.11

Laplace -0.24 0.99 2.43 0.11

FO -0.13 0.73 2.33 0.12
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• Mean value curve is not the same as mean parameter curve!

• FO approximates regression function to mean data!

In fact, the FO method fits the quasilinear model

f(d | θ, γ, ξ) =
dγ

eθ + dγ
− dγeθ

(eθ + dγ)2
ξ

which is a good approximation to
dγ

eθ+ξ + dγ

only when ξ ≈ 0 (i.e. covariance matrix D small).

The more difference between the mean parameter curve and the mean value curve, the more

in doubt should results from the first order approximation be, except as a description of the

population mean behavior.
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Example: Indomethacin data

Here are the estimates of the regression parameters for a few different methods:

GTS Conditional First Order

Parameter Estimate 95% confidence limits

ln(θ1) 0.9273 0.7633, 1.091

ln(θ2) 0.4985 0.1755, 0.8216

ln(θ3) -1.511 -2.007, -1.016

ln(θ4) -1.893 -2.237, -1.548

Parameter Estimate 95% confidence limits

ln(θ1) 0.9066 0.7896, 1.024

ln(θ2) 0.5492 0.423, 0.6753

ln(θ3) -1.335 -1.669, -0.9996

ln(θ4) -1.716 -1.978, -1.453

First Order

Parameter Estimate 95% confidence limits

ln(θ1) 0.8318 0.7137, 0.95

ln(θ2) 0.4335 0.2106, 0.6564

ln(θ3) -1.22 -1.689, -0.752

ln(θ4) -1.695 -2.002, -1.388

Rather similar results!
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A graphical display of the difference can be shown as mean parameter curves:
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Population covariance matrix (correlation below diagonal) and other variability measurements:

GTS Conditional First Order

D =


0.016 0.044 0.073 0.039

0.92 0.14 0.18 0.11

0.98 0.81 0.34 0.17

0.997 0.94 0.96 0.09

 D =


0.014 0.035 0.048 0.021

0.88 0.11 0.093 0.056

0.93 0.65 0.19 0.068

0.99 0.94 0.88 0.033


σ = 0.130, γ = 0.954 σ = 0.1234, γ = 0.7691

First Order

D =


0.0092 0.033 0.055 0.036

0.96 0.13 0.17 0.12

0.88 0.72 0.42 0.25

0.96 0.85 0.98 0.15

 surprisingly similar results,

σ = 0.1192, γ = 0.8568 which must be due to ’small’ D
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From FO NONMEM to FO GEE

The FO NONMEM case is the likelihood

−2 ln L(θ, α, D) =
N∑

i=1

(yi − gi(θ))tV −1
i (yi − gi(θ)) + ln(det Vi),

Vi = Λi + Ci(θ)DCi(θ)t.

Let ω = (D,α). Then the estimating equations are:
∑N

i=1 g′i(θ)
tV −1

i (yi − gi(θ)) + 1
2(∂vi

∂θ )t(V −1
i ⊗ V −1

i )(si(θ)− vi(θ, ω)) = 0

1
2

∑N
i=1(

∂vi
∂ω )t(V −1

i ⊗ V −1
i )(si(θ)− vi(θ, ω)) = 0,

where

si(θ) = vec((yi − gi(θ))(yi − gi(θ))t), vi(θ, ω) = vec(Vi(θ, ω)).

The first equation is a compromise between first two statistical moments.
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In the GEE approach we focus on the regression part:
∑N

i=1 g′i(θ)
tV −1

i (yi − gi(θ)) = 0

1
2

∑N
i=1(

∂vi
∂ω )t(V −1

i ⊗ V −1
i )(si(θ)− vi(θ, ω)) = 0.

Solved by iterating (given θ, estimate ω from 2nd eqn and then update θ from first).

Is actually a Fixed Point problem: Define the function Ψ(θ) as follows: solve for ω and use

this to update to a new estimate of θ, which then is Ψ(θ).

index.html


49/98 P�i?
22333ML232

Theophylline data

Administered orally to twelve subjects, and serum concentrations were measured at ten time

points per subject over the subsequent 24 hours.

The model for subject i is that Ci(t) is

given by

Dikai

Vi(kai − CLi/Vi)
(e−CLit/Vi − e−kait).

All three regression parameters are as-

sumed random.

This model corresponds to 1-compartment

model with first order absorption:

ViC
′
i(t) = kaiDie

−kait − CLiCi(t).
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NONMEMs on Theophylline data

We estimated this model (with the

Power model) under a variety of dif-

ferent models:

Model ka Cl V σ γ

FO, GEE 1.62 0.038 0.476 0.4345 0.33

FO, NONMEM 2.97 0.038 0.472 0.098 1.00

CondFO, GEE 1.51 0.040 0.457 0.3554 0.43

Laplace 1.54 0.040 0.460 0.4047 0.35

• Not much difference between Mean Pa-

rameter Curve and Mean Value Curve

• We see the NONMEM-effect: poorer fit

around Cmax - but that part is poorly

represented in data

• The GEE approach is safer, simpler and

faster than the NONMEM approach.
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CondFo,GEE is similar to NLME

The NLME method, by Bates and Lindstrom, replaces the variance parameter estimation,

which, for the GEE method, is done by minimization of

−2 ln L(α, D) =
N∑

i=1

(νt
iV

−1
i νi + ln(det Vi)),

where

νi = yi − µi(θp, ξi) + Ci(θp, ξi)ξi,

by the corresponding linear mixed effects model, which minimizes

−2 ln L(δθ, α, D) =
N∑

i=1

(νi −Ai(θp, ξi)δθ)tV −1
i (νi −Ai(θp, ξi)δθ) + ln(det Vi),

Here θp is the previous value of θ, δθ = θ − θp and Ai(θ, ξ) = ∂θµi(θ, ξ).
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Vonesh-Carters approach

Here we replace the parametric variance estimation of the GEE estimate with a simple, non-

parametric estimate. Requires rich data to work!

To estimate an individual ξi, we solve

Ci(θ, ξ)tΛ−1
i (yi − µi(θ, ξ)) = 0.

Can be obtained numerically by a Fisher scoring equation:

ξ = ξ + (Ci(θ, ξ)tΛ−1
i Ci(θ, ξ))−1Ci(θ, ξ)tΛ−1

i (yi − µi(θ, ξ)).

Vonesh-Carters approach takes one step and starts at ξ = 0.

Based on these individual estimates, we obtain a first estimate of D: let

• ξ̂i be the individual estimate

• ξi be the true individual parameter, with V (ξi) = D.

• Assume that ξi and ξ̂i − ξi are independent.
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An estimate of the variance of ξ̂i − ξi is

V (ξ̂i − ξi) =
1
n

n∑
i=1

(Ct
iΛ

−1
i Ci)−1.

From this we derive an estimate for D of the form

D∗ = V (ξ̂i)−
t

n

n∑
i=1

(Ct
iΛ

−1
i Ci)−1,

for a number t that assures the positive definiteness of D∗.
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Vonesh-Carters method on Theophylline data

Comparison of Vonesh-Carter and parametric GEE:

Model ka Cl V σ γ

FO, GEE 1.62 0.038 0.476 0.4345 0.33

FO, VC 1.57 0.038 0.473 0.2943 0.32

CondFO, GEE 1.51 0.040 0.457 0.3554 0.43

CondFO, VC 1.50 0.039 0.461 0.2897 0.37

In this case - not much difference, except on the variability side!

index.html


55/98 P�i?
22333ML232

Lecture 4: Population pharmacokinetics

In which we look at the original motivator for NONMEMs: population pharmacokinetics and

also discuss the robust estimator of the covariance of parameter estimates.
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• Pharmacokinetics (PK) is the description of how the body handles a drug.

• Historically this was originally done in terms of different compartmental models, leading

to systems of differential equations

• During the 70’s Malcolm Rowland and others transformed the focus to the estimation of

key parameters: clearance and volume of distribution.

• To describe the PK of a drug, we usually have rather rich data in a small number of

subjects (see indomethacin and theophylline data discussed previously), but

• in order to describe variations of PK in a larger population, odd blood sampling is taken

in larger clinical trials.
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Population pharmacokinetics

“Design:” blood sampling, at random both in time and number of assessments, in patients

treated with a particular drug.

Leads to sparse data, which were very hard to do anything with at all. Motivated Lou Sheiner

and Stuart Beals to develop the package NONMEM. Very much used by pharmacokineticists.

Modelling consists of a (often very simple) model for the pharmacokinetics, and then various

parameters – notably the clearance – is investigated for its dependence on various covariates

(like age, sex and weight).
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Example: Phenobarbital data

Data (155 samples, 1–6/subject) were collected in 59 pre-term infants given phenobarbital for

prevention of seizures during the first 16 days after birth.

Subject 9 Subject 50

time dose conc. time dose conc.

(hrs) (µg /kg) (µg /L) (hrs) (µg /kg) (µg /L)

0.0 27.0 . 0.0 20.0 .

1.1 . 22.1 3 . 22.2

11.1 3.2 . 12.5 2.5 .

22.3 3.2 . 24.5 2.5 .

34.6 3.2 . 36.5 2.5 .

.

.

.

.

.

. .

.

.

.

.

.

. .

82.7 . 29.2 81.0 . 30.5

83.2 3.2 . 84.5 2.5 .

94.6 3.2 . 88.0 30.0 .

142.6 3.2 . 132.5 3.5 .

312.6 . 19.6 144.5 3.5 .

157.0 3.5 .

162.0 . 58.7

Apgar 8 Apgar 6

Weight 1.4 kg Weight 1.1 kg
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We model the drug in the body with a one-compartment PK-model, which has two intrinsic

parameters: clearance (CL) and volume (V ):

V C ′(t) = α(t)− CL · C(t)

where α(t) is the amount absorbed per time unit.

If CLi and Vi are clearance and distribu-

tion volume for subject i, and single i.v.

doses Did were administered to subject i

at times tid, we have

C(t) =
∑

d:tid<t

Did

Vi
exp(−CLi(t− tid)/Vi).
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For the NONMEM model we start with a simple model, assuming diagonal D, independent,

identical errors within subject and that all regression coefficients are random.

Result:

FO FO CondFO

Parameter NONMEM GEE GEE

CLi 5.482 6.190 6.159

Vi 1.398 1.318 1.566

σ 2.83 2.80 3.20

D11 6.845 8.269 5.314

D22 0.2857 0.2339 0.7511

Predictions from loading dose of 30 mg, followed by 3

mg every 12th hour.
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We can plot the individual estimates obtained, vs the covariates weight and Apgar score.

Both CL and V appear

proportional to baby

weight and there is pos-

sibly an additional ef-

fect of a low Apgar

score on V .
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This leads to the following model, which uses that both parameters are positive:

CLi = θ1wie
ξ1i , Vi = θ2wi(1 + θ3I[Apgar<5])e

ξ2i ,

(wi is the weight of the baby) together with a multiplicative Power model for within-baby

error structure.

Parameter FO,NONMEM FO,GEE CondFO, NONMEM CondFO, GEE ML

θ1 4.676 4.656 4.656 4.637 4.617

θ2 0.9649 0.9670 1.003 0.9682 0.9752

θ3 0.1524 0.1478 0.1564 0.1520 0.1587

σ 0.1038 0.1038 0.1086 0.1068 0.1151

D11 0.04318 0.4348 0.3822 0.03688 0.02897

D22 0.02706 0.02709 0.03001 0.02784 0.02787
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The robust estimator of covariance

If we estimate parameters in a statistical model using a likelihood, we often use the negative of

the inverse of the hessian (or its expected value, the Fisher information I(θ)) as the covariance

matrix for the estimates.

However using that, assumes that the model is correct! Another approach consists of

• Justify a estimating equation that should produce sensible parameter estimates, but need

not correspond to a correct probability model

• Use a covariance estimator for the parameter estimates that is (essentially) correct even

if the model is wrong.

This approach is the so-called GEE approach to clustered data (GEE = Generalized Estimating

Equations) by Liang and Zeger. Is used also when analyzing multiple occurrences with survival

models (Cox Regression).
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Assume that we estimate a parameter from an equation

G(θ) = 0.

(Can be, but need not be, the score equation of a likelihood.) If the solution is θ̂, how can we

obtain estimates for V (θ̂)?

Let θ be the “true” parameter value. First order approximation around θ̂ then gives us that

G(θ) ≈ G(θ̂) + G′(θ̂)(θ − θ̂) = G′(θ̂)(θ − θ̂)

from which we can deduce that

V (G(θ)) ≈ E(G′(θ̂))V (θ̂)E(G′(θ̂))t

This leads to the sandwich or robust estimator.

V (θ̂) ≈ E(G′(θ̂))−1V (G(θ))E(G′(θ̂)t)−1
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This can be used in the estimation of confidence intervals etc for the estimate θ, and is a

partial guard against unwanted effects of model miss-specification when Vi(θ) is replaced by

Wi.

For G(θ) =
∑N

i=1 µ′
i(θ)

tW−1
i (yi − µi(θ)),

the variance is given by V (G(θ)) =
∑N

i=1 µ′
i(θ)

tW−1
i V (yi)W−1

i µ′
i(θ).

Here V (yi) can be estimated by (yi − µi(θ̂))(yi − µi(θ̂))t,

but there are better estimates (more unbiased).

Moreover, E(G′(θ)) = −
∑N

i=1 µ′
i(θ)

tW−1
i µ′

i(θ).

The robust estimator is now easy to compute!
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Example: Theophylline data

Instead of complicated NONMEMs, could we use OLS as estimating equation and use the

robust estimator? This analysis on the theophylline data 4.8 shows

OLS with robust estimator NONMEM, Vonesh-Carters method

standard 95%

estimate error confidence limits

ln ka 0.3982 0.1716 0.06184, 0.7345

ln CL -3.248 0.07641 -3.398, -3.098

ln V -0.7237 0.04068 -0.8035, -0.644

standard 95%

estimate error confidence limits

ln ka 0.4615 0.221 0.02836, 0.8946

ln CL -3.265 0.0896 -3.441, -3.09

ln V -0.7477 0.03879 -0.8237, -0.6716

Not much difference?
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Lecture 5: Some examples from Clinical Trials

In which we look at three examples where the lecturer have used/experimented with nonlinear

mixed effects models in non-PK clinical data.

1. Six hour ACTH stimulation to assess cortical dysfunction after steroid treatment

2. Analysis of diary card data (peak flow), to find time to onset of action

3. Dose response in the presence of a partial agonist – do salmeterol compromise the response

to an inhaled short-acting β2-agonist?
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A six hour ACTH infusion test of the adrenal glands

Background: Adrenal stimulation is often used to assess HPA-axis function, and therefore to

determine the evaluate the effect of glucocorticosteroids (GCSs) on the adrenal glands.

The ability of the adrenal glands to produce and secrete cortisol is measured by plasma

cortisol levels.

Objective: To related the effect of Pulmicort Turbuhaler (b.i.d.) on the HPA-axis to that of

oral prednisolone treatment (given once daily), using plasma cortisol levels during a six

hour ACTH stimulation.

Study Design: Parallel group, one week screening, one week baseline period followed by six

weeks of treatment. ACTH test at randomization and after six weeks. The study was

double blind and double-dummy. Cortisol measurements taken before and 2,4 and 6 hours

after initiation of ACTH stimulation.

Investigational Treatments: Pulmicort Turbuhaler in daily doses 800, 1600 and 3200 µg,

prednisolone 10 mg daily dose and placebo.
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Model Equation Assuming that cortisol follows a one-compartmental model we start from

the equation

C ′(t) = α(t)− kC(t),

where α(t) is the production rate (amount per hour and liter). Normally α(t) has a diurnal

rhythm, peaking in the morning and being low during most of the early night.

During ACTH stimulation we assume α(t) = I.

Can solve equation to

C(t) = C0e
−kt +

I

k
(1− e−kt)

Three parameters: (C0, I, k). We will assume k is a population parameter, so that the problem

becomes quasi-linear!
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Analysis of baseline data

Parameter estimates using three first order

methods:
Vonesh-

parameter NONMEM GEE Carter

I 439.5 434.9 435.0

k 0.4751 0.4690 0.4690

C0 340.2 340.6 340.6

D11 2550 2503 2551

D12 537.8 521.9 527.2

D22 8748 8731 8926

σ 46.94 46.96 46.97

No difference in estimates and consequently not in the mean parameter curves = mean value

curves. (Rich and well-behaved data!)
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Note that, if the model is correct, NONMEM produces likelihood estimates in this case. Using

information matrix for standard errors.

NONMEM method: GEE method:

standard 95%

estimate error confidence limits

I 439.5 19.59 401.1, 477.9

k 0.4751 0.02428 0.4275, 0.5227

C0 340.2 14.23 312.3, 368.1

standard 95%

estimate error confidence limits

I 434.9 17.91 399.8, 470

k 0.469 0.02219 0.4255, 0.5125

C0 340.6 14.68 311.8, 369.4

Vonesh-Carters method:

standard 95%

estimate error confidence limits

I 435.0 17.91 399.9, 470

k 0.469 0.02219 0.4255, 0.5125

C0 340.6 14.68 311.8, 369.4

Almost identical results!
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Analysis of six-week ACTH experiment

Design model: C0 and I are assumed to be treatment specific: (C0, I) for a patient in

treatment group i takes the form mi + ξ, where ξ ∈ N(0, D), where mi is a 2-vector and

D is a 2× 2 covariance matrix!

In all 5× 2 + 1 = 11 mean value parameters!

NONMEM method, since it is the correct likelihood method in this case.
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Graphical display of result
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Analysis results of six-week ACTH experiment Done both with the hessian (left)

and the robust (right) covariance estimator:

standard 95%

Parameter estimate error confidence limits

I800 450.8 26.84 398.2, 503.4

I1600 424.3 26.76 371.8, 476.7

I3200 367.4 25.13 318.1, 416.6

Ipred 293.5 22.26 249.9, 337.1

Ipbo 487.8 28.03 432.9, 542.8

k 0.5129 0.02597 0.462, 0.5638

C0,800 303.2 31.07 242.3, 364.1

C0,1600 277.9 32.58 214.1, 341.8

C0,3200 206.4 32.57 142.5, 270.2

C0,pred 236.2 29.72 178.0, 294.5

C0,pbo 346.8 31.08 285.9, 407.7

standard 95%

error confidence limits

34.23 383.7, 517.9

33.1 359.4, 489.1

29.21 310.1, 424.6

19.32 255.6, 331.3

24.85 439.1, 536.6

0.02989 0.4543, 0.5715

24.18 255.8, 350.5

49.22 181.5, 374.4

41.97 124.1, 288.6

14.61 207.6, 264.9

22.26 303.2, 390.4

index.html


75/98 P�i?
22333ML232

Ultimate objective: to find dose relation

Take the mean estimates of the I:s with

its covariance matrix, and do a weighted

linear regression for the three Pulmicort

doses.

Then we estimate the dose of Pulmicort

dose that, on average, gives the same ef-

fect as that of prednisolone 10 mg O.D.

Confidence intervals are obtained using

Fiellers method.

dose 95% confidence limits

11935 4390, 915940
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Onset of action of peak flow

Background: To demonstrate clinical efficacy of an inhaled GCS requires larger studies, in

which patients, at home, measure or assess and record into diary cards, among other

things, peak expiratory flow (PEF) in the morning and evening.

Objective: To demonstrate the clinical efficacy of a new GCS, RPL in short.

Study Design: A parallel group study with two groups, RPL 100 µg b.i.d. and Placebo.

Double-blind and double dummy. Two weeks baseline followed by four weeks of treatment.

Diary cards – about 35 PEF morning measurements per patient.

Traditional analysis Compute two variables

1. Mean of all baseline measurement, to be used as baseline

2. Mean of last 14 days on treatment, to be used as effect variable
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Result of traditional analysis:

standard 95%

estimate error confidence limits

Effect 47.95 8.084 31.89, 64.01

INTERCEPT 440.6 5.59 429.5, 451.8

SD = 39 L/min (analysis uses baseline as covariate)

• Ignores half the data on treatment.

• If we took the average over the full treatment period, we would mix steady state and

onset of action, leading to deflation of effect size.

• Single measurements from early withdrawals weight equal to completers data. Problem?

We attempt a mixed effects model which

• Uses all data, but differentiates between onset of action and steady state.

• Is as close as possible in philosophy to the traditional analysis

• Focuses on population mean behavior - first order approximation
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NONMEM model for diary card data

• To model the mean placebo behavior, use a simple quadratic polynomial in time:

E(ypbo) = E0 + b1t + b2t
2 + b3t

2

where t is number of days since randomization.

• To model the effect, use the function

f(b, t) = Emax(1− e−kt),

which starts at zero and asymptotically reaches Emax with a rate determined by k (which is

ln 2/time to reach 50% of effect).

• The effect of RPL is modelled by

E(yrpl) = E(ypbo) + f(b, t).

• We assume only E0 and Emax to be random parameters. Thus, again, a quasi-linear problem. k

is parametrized in ln k.
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NONMEM results for diary card data However, we estimate using the first order,

GEE-method, because we want total focus on the population mean curve!

standard 95%

estimate error confidence limits

E0 443.8 9.863 424.5, 463.2

Emax 47.78 8.89 30.36, 65.21

ln(k) -1.886 0.3621 -2.596, -1.177

b1 -0.2264 0.5548 -1.314, 0.8609

b2 0.0442 0.05239 -0.05848, 0.1469

b3 -0.001652 0.001422 -0.004438,0.001135

Within subject SD = 33.9
Random effects SD: E0 = 94.6, Emax =
41.7

SD in ANOVA ≈
√

41.72 + 33.92/14 = 42.7
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Comparison to traditional analysis

• Almost the same result!

• Robust Estimator that is used, is slightly unbiased. Can be improved on! Nonlinear

confidence intervals are slightly shorter in this case.

• Important extra information: The time to half the maximal effect (of the population mean

curve) is estimated to 4.6 days, with a 95% confidence interval of (2.2, 9.3) days.
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Dose response in the presence of a partial agonist

Background: A drug stimulating a receptor is called an agonist (to the receptor). If the

response it gives is not maximal, it is called a partial agonist. In asthma: terbutaline is

a full but short-acting agonist for the β2-receptor (leading to dilatation of airways in the

lung), whereas salmeterol is a long-acting, partial agonist. It is also slow in terms of onset

of action.

Objective: To see if the response to terbutaline is compromised if the patient is on regular

treatment with salmeterol.

Study Design: A (double-blind, double-dummy) 2-period crossover study: one period with

regular treatment with salmeterol, one with placebo. After each treatment period the

dose response to terbutaline is investigated.
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Individual data and mean data

The figure to the right

shows both individual

data and mean data

for the dose response

test after

pre-treatment with

investigational drug.
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The purpose of the analysis....

... is to see if we can demonstrate

that more terbutaline is needed

to achieve a given response, up

and above the baseline response

of the partial agonist.

The clinical implication could be

that the baseline treatment with

the partial agonist compromises

your ability to relieve an acute

attack that broke through. (If

there are such attacks is another

matter.)
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Regression model for dose response experiment For the placebo curve we use a

classical sigmoidal dose-response curve (with Hill coefficient one):

EP (D) = E0 + Emax
D

ED50 + D
.

Here dose D is the cumulative dose. For the salmeterol treatment we use

ES(D) = E0 + Emax
D + αED50(P − 1)

ED50P + D
,

which can be rewritten

ES(D) = (E0 + γEmax) + (1− γ)Emax
D

ED50P + D
, γ = α(1− 1

P
).
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Model rational

• The model for salmeterol increases monotonically from the baseline E0+γEmax to Emax.

The parameter P measures any possible shift in dose required, i.e. how much the full

agonist and the partial agonist interact. P is the parameter of interest!

• if P > 1, a high enough response requires more dose of the full agonist when given

together with the partial agonist, than without it:

(to get the response E0 + αEmax requires dose

– D = αED50/(1− α) without, but

– D = (α− γ)ED50P/(1− α) with the partial agonist.

The latter is larger when P > α/(α− γ).)

• The first form of the salmeterol model can be motivated from the chemical steady state:
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Analysis

We analyze these data under four different

first order models:

Two estimation methods:

1. GEE estimated

2. NONMEM

Two models for D:

1. Unconstrained

2. Diagonal

We see that three agree well, but the NONMEM with diagonal D differ from them.

A reasonable explanation is that

• The variance model is miss-specified

• NONMEM cares equally much about fitting to mean as to covariance
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Conditional first order vs first order We compare the GEE approach with diagonal D.

First Order 95%

Parameter estimate confidence limits

ED50 38.92 23.1, 65.59

P 31.54 2.53, 393.2

α
1−α

1.259 0.6301, 2.516

Emax 0.6441 0.4659, 0.8904

E0 1.584 1.354, 1.852

Conditional First Order 95%

Parameter estimate confidence limits

ED50 100.1 42.66, 234.9

P 34.53 5.162, 231

α
1−α

0.6304 0.3118, 1.275

Emax 0.8056 0.6514, 0.9964

E0 1.452 1.231, 1.713

The conclusion is that P > 1
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Lecture 6: Generalized linear mixed effects models

In which we discuss another type of nonlinear mixed effects models, those based on generalized

linear models.
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The generalized linear model (GLM)

A distribution from the exponential family can be written in terms of its natural parameter θ

as

p(y|θ, φ) = exp(
ytθ − b(θ)

φ
+ c(y, φ))

The basic property of this is that µ = E(y) = b′(θ) and V (y) = φb′′(θ). The first of these

equations defines θ = θ(µ).

For a generalized linear model we assume that there is a link function g(t) such that g(µ) = Aβ.

Examples

• Logistic regression (binomial regression) and relatives, like Probit, for binary response

• Poisson regression for counts

• Multinomials, extending the binary case

• Gaussian, Gamma, Inverse Gaussian etc...
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Poisson Regression

For a Poisson model we have

p(y) = e−mmy/y! = exp(y lnm−m− ln y!) =⇒ θ = ln m, b(t) = et φ = 1.

• Fifty-nine epileptics suffering from partial seizures were randomized to receive either pro-

gabide or placebo.

• The number of seizures in each of four two-week intervals were recorded, together with

the number of seizures during an eight-week baseline period.

• To analyse this we use the following model:

lnµij = ln tij + θ0 + θ1Time + θ2Treat + θ3Time ∗ Treat,

where tij = 8 if j = 0 and tij = 2 if j > 0 and where Time is 0 at baseline and 1 else

and Treat is 1 if the treatment is progabide and 0 if it is placebo.
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Here is a plot of the individual data
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Result of Poisson Regression

Source Deviance df P

Null 3581.8 294

Model 6.3849 3 0.0943

Residual 3575.4 291

Estimated (Pearson) Dispersion parameter: 19.68 (It is set to 1)

standard 95%

Parameter estimate error confidence limits

Intercept 1.348 0.03406 1.281, 1.414

Time 0.1118 0.04688 0.01996, 0.2037

Treat 0.02753 0.04668 -0.06397, 0.119

Time∗Treat -0.1047 0.06503 -0.2322, 0.02273

Overdispersion indicates (substancial) correlation between observation – natural since we study

different individuals, with different seizure rates, repeatedly.
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Clusters of GLMs - the marginal approach (GEEs)

Overdispersion leads to faulty standard errors for coefficient estimates. One way to remedy

that is to use the robust estimator:

standard 95%

Parameter estimate error confidence limits

Intercept 1.348 0.1574 1.039, 1.656

Time 0.1118 0.1159 -0.1154, 0.3391

Treat 0.02753 0.2218 -0.4072, 0.4622

Treat∗Time -0.1047 0.2134 -0.5231, 0.3136

This is essentially the GEE technique (the marginal approach to analysis of this data). The

GEE technique is built around two concepts:

• Correct mean function specification, but covariance structure a guess

• Compensate the wrong covariance structure by using the robust estimator for parameter

covariance.
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The generalized linear mixed effects model

Another way to account for inter-subject variability is to let some parameters depend on

subject. Let

βi = Aiβ + Ciξ, ξ ∈ N(0, D).

Write

µi(β, ξ) = g−1(Aiβ + Ciξ)

and we get

Lm(β, D, φ) =
N∏

i=1

∫
e−Qi(β, D, φ, ξ)/2 dξ,

where

Qi(β, D, φ, ξ) = −2 ln p(yi|θi, φ) + ξtD−1ξ + ln(det 2πD).

This integral can be approach in complete analogy with the Gaussian case (θi = θi(β, φ) is

the individual, natural parameter for a GLM).
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In the Poisson case we get

µi(β, ξ) = exp(Aiβ + Ciξ)

which means that we can compute the mean value curve explicitly:

µi(β, D) = (det 2πD)−1/2

∫
µi(β, ξ)e−ξtD−1ξ/2dξ = exp(Aiβ + CiDCt

i/2).

Concerning the likelihood, we have

ln p(yi|θi) = yi(Aiβ + Ciξ)− exp(Aiβ + Ciξ)− ln yi!,

so the integral to compute becomes

Lm(β, D) ∝ (det 2πD)−1/2

∫
exp(yi(Aiβ + Ciξ)− exp(Aiβ + Ciξ)− ξtD−1ξ/2)dξ
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Random intercept only

As a first GLMEM, consider the case with only the intercept being random. Corresponds to

each subject having an individual basic seizure intensity.

Result:

standard 95%

Parameter estimate error confidence limits

Intercept 1.034 0.1888 0.6634, 1.404

Time 0.112 0.04689 0.02009, 0.2039

Treat -0.02209 0.2906 -0.5917, 0.5475

Treat*Time -0.1051 0.06481 -0.2321, 0.02197

The random SD was estimated to 0.78

(note that 1.35 ≈ 1.03 + 0.782/2)
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To the right is a diagnostic

plot of this data

We see that subject 49 has

a heavy influence on the re-

sult. Excluding him, we get

a Treat*Time of the order

-0.31 and statistically signif-

icant! That subject has an

unusual set of counts.
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Random intercept and time

Next we consider the case where both the intercept and time parameters are random. Thus

each individual have a basic, individual seizure intensity, which may differ between baseline

period and treatment period.

Result:

standard 95%

Parameter estimate error confidence limits

Intercept 1.071 0.1854 0.7072, 1.434

Time 0.001038 0.1113 -0.2172, 0.2193

Treat 0.05131 0.2555 -0.4495, 0.5521

Treat*Time -0.3088 0.1482 -0.5992,-0.01838

D =

 0.1221 −0.2926

−0.2926 1.191



We see that Treat*Time is significant, implying an effect of the treatment!
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