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 BIOMIETRICS 53, 1485-1494
 December 1997

 Hazard Regression with Interval-Censored Data

 Charles Kooperberg

 Department of Statistics, University of Washington,

 Seattle, Washingtoni 98195-4322, U.S.A.

 and

 Douglas B. Clarkson

 Data Analysis Products Division of Mathsoft Inc.,

 1700 Westlake N #500, Seattle, Washington 98109, U.S.A.

 SUMMARY

 In a recent paper, Kooperberg, Stone, and Truong (1995a) introduced hazard regression (HARE), in
 which linear splines and their tensor products are used to estimate the conditional log-hazard func-
 tion based on possibly censored, positive response data and one or more covariates. Model selection
 is carried out in an adaptive fashion using maximum likelihood estimation of the unknown coeffi-
 cients, Rao and Wald statistics to carry out stepwise addition and deletion of basis functions, and
 the Bayesian Information Criterion (BIC) to select the final model. In the present paper, the HARE
 methodology is extended to accommodate interval-censored data, time-dependent covariates, and
 cubic splines. The presence of interval-censored data means that the log-likelihood function may
 no longer be concave, presenting additional numerical challenges. The extended methodology is
 applied to a data set containing both interval-censoring and time-dependent covariates. The new
 software will be available in a future release of S-Plus.

 1. Introduction

 Consider (survival) data involving a possibly censored, positive response variable and one or more

 covariates. Assume that the uncensored response variable has a conditional density function, given

 the values of the covariates, that is positive on [0, oo).

 A basic assumption of the proportional hazards model (Cox, 1972) is that the conditional log-

 hazard function is an additive function of time and the vector of covariates or, equivalently, that the

 conditional hazard function is a multiplicative function of time and the vector of covariates. In the

 hazard regression (HARE) methodology (Kooperberg, Stone, and Truong, 1995a; hereafter referred
 to as KST), a practical approach to modeling the conditional hazard function that does not depend
 on the validity of this assumption is developed. In particular, a general framework for modeling the

 logarithm of the conditional hazard function with linear models is described. Maximum likelihood

 is used to estimate the unknown parameters of the model, and a fully automatic method involving

 stepwise addition, stepwise deletion, and the Bayesian Information Criterion (BIC) is used to select
 the final model.

 In HARE, splines and selected tensor products are used to estimate the logarithm of the condi-

 tional hazard function. The method is similar in spirit to Multivariate Adaptive Regression Splines

 (MARS; Friedman, 1991). One advantage of HARE models is that they include proportional haz-
 ards models as a subclass. The presence or absence of interaction terms between time and one

 or more covariates in the final model can be regarded as a check on the proportional hazards

 assumption.

 Under suitable conditions, Kooperberg, Stone, and Truong (1995b) obtained the L2 rate of con-
 vergence for a nonadaptive version of the methodology treated in KST. This result lends theoretical

 Key words: Cubic splines; HARE; MARS; Model selection; Survival analysis; Time-dependent

 covariates.
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 1486 Biometrics, December 1997

 support to HARE and, in particular, to the use of polynomial splines and their tensor products in

 defining the allowable spaces used in these procedures.

 There are several other nonparametric approaches to the modeling of conditional hazard func-

 tions. The KST approach is one of the few that does not start with a proportional hazards model,

 but includes it as a special case. [For further discussion of the literature, see KST and Abrahamow-

 icz, Ciampi, and Ramsay (1992).]

 Two limitations of the HARE methodology, as described in KST, are that HARE cannot deal

 with time-dependent covariates and that it is not applicable to interval-censored data. Such data

 may occur, for example, if subjects are periodically monitored for the presence of a symptom-free

 disease. In this situation, the event (start of the disease) is interval censored between the first

 examination at which the patient has the disease and the examination immediately preceding it

 (or the start of study). Proportional hazards models have been applied to both interval-censored

 and right-censored data as well as to data with related censoring schemes (see, e.g., Finkelstein,

 1986, and Huang, 1996, and the references therein). However, we know of no other nonparametric

 methodology that has been applied to interval-censored data. The parametric survival models in

 SURVREG (Preston and Clarkson, 1983), for example, can deal with interval-censored data.

 Time-dependent covariates occur especially in situations where covariates are measured at each

 examination. The proportional hazards model can easily deal with such covariates, as long as

 the covariate value is known at each event time (Kalbfleisch and Prentice, 1980). However, for the

 HARE methodology, in which the complete conditional hazard function is modeled, time-dependent

 covariates pose additional numerical challenges.

 Iri this paper, we extend the hazard regression methodology to interval-censored data and time-

 dependent covariates. In the next section, we describe the HARE model, including the extensions

 for interval-censored data, and we also summarize the model-selection techniques developed in

 KST. An example of the use of the HARE methodology is described in Section 3. This example

 comes from an ongoing study of the natural history of anal dysplasia in gay men. The data involves

 interval-censoring and time-dependent covariates. The software for the new version of HARE, which

 employs cubic splines, will be available in a future version of S-PLUS. The version described in KST

 is publicly available from STATLIB. An extension of this program, which employs linear splines

 and can deal with interval-censored data but not with time-dependent covariates, is available from
 the first author.

 2. The HARE Model

 2.1 Linear Models for the Conditional Log-Hazard Function

 Let M be a positive integer, and let T be a positive random variable whose distribution may depend

 on a vector of M (possibly time-dependent) covariates x(t) (xi(t), . . ,XM(t)), t > 0. Suppose
 x(t) lies in the subset X = X1 x ... x XM of RM for each t > 0. Let A(. x(s), s > 0) denote the
 conditional hazard function of T given x(s), s > 0, which is assumed to exist and to be positive on
 (0, oc), and let a(. I x(s), s > 0) denote the conditional log-hazard function. We assume that the
 conditional hazard function at time t depends only on the value of the covariates at that time; that

 is, we assume that A(t I x(s), s > 0) = A(t I x(t)) and hence that ca(t I x(s), s > 0) = a(t I x(t)).
 Standard algebra now yields that the values at time t of the corresponding conditional density

 function f(t I x(s), s > 0), conditional survival function S(t I x(s), s > 0), and conditional
 cumulative hazard function A(t I x(s), s > 0) depend on the values of the covariates only up to
 time t. Thus, we can write these values as f(t I x(s), s < t), S(t I x(s), s < t), and A(t I x(s), s < t).

 Let 1 < p < oc, and let G be a p-dimensional linear space of functions on [0, oo) x X such that

 g(. x) is bounded on [0,oo) for g C G and x C X, and let B1,..., Bp be a basis of this space.
 Consider the model

 p

 a(t I x(t);f3) Z !jBj(t I x(t)), t > 0, (1)
 j=1

 for the conditional log-hazard function, where /3 =(/3,... 13p)T. Observe that A(t I x(t);f3)
 expce(t I x(t);f3), A(t I x(s),s < t;/3) = f A(s I x(s); 3)ds, f(t I x(s),s < t;/3) A(t I
 x(t); /3) exp(-A(t I x(s), s < t;/3)), and S(t I x(s), s < t;/3) exp(-A(t I x(s), s < t; 3)) for
 /3 C RP and t > 0.

 2.2 Censoring and Likelihood

 Given possibly censored survival data and a set B1, . . . , Bp of basis functions, we will estimate the
 coefficients /3 in (1) by maximum likelihood.

This content downloaded from 
�������������172.3.44.142 on Thu, 13 Mar 2025 12:29:21 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Hazard Regression 1487

 Let T be the survival time, let x be the vector of covariates for a randomly selected individual,

 and let C = [Cl, C,] be a (random) subinterval of [0, oc) so that it is known only that T C C.

 If T is uncensored, then C = {T}; if T is right-censored at C, < T, then C = [C,, oc); if T is
 interval-censored, then 0 < Cl < T < Cu < oc. It is assumed that T is independent of the type
 of censoring given x, that when T is censored it is independent of C given x, and that T has

 conditional hazard function A(. x(s), s > 0) given x. Let 6 = 0 if T is right-censored, 6 1 if T is
 uncensored, and 6 = 2 if T is interval-censored. Note that the partial likelihood corresponding to

 C= (cl,cu), 6, and x is given by

 FPCu I I(S#1)

 [f (ci I x(s), s <_ c0)1(= / f(tl| x(s),s < t)dt

 =[S(c I |X(S), s < Cl)] (6=) [f (C, I x(s), s < Cl)] (6=)

 [S(c1I x(s), s < C) - S(cu I x(s), s < CU)]

 Set

 0(cl,t, 8 x(s), s < t; = 8a(c, I x(cl);)- A(c, I x(s), s < cl), t > cl > 0 and 6 C {0,1},

 and

 c(c, cu, 2 1 x(s), s < cu) = log[S(c, I x(s), s < cl) - S(cu I x(s), s < cl,)], C,,, > ci > 0.

 These are the contributions to the log-likelihood corresponding to 6 C {0, 1} and 6 = 2, respectively.

 To maximize the likelihood function and to examine its concavity, we need expressions for the

 partial derivatives of k( *). For notational convenience, set S(t) = S(t I x(s), s < t; B),

 D(t) B IA(t x(s)s?t;) x _ j x(u))expa(u x(u);3)du, 1 < j < P, t > 0,

 and

 E1(t 2 A(t x(s), s < t; 3)
 j( )~~~lo 090k

 t

 JB ( I x(u))Bk(u I x(u)) expa(u I x; /)du, 1 < j,k < p, t > 0. (2)

 Then

 j /(cl,t, 6 i x(s), s < t;63) =Bj (c, I x(cl)) + D (cl), t > cl > 0 and 6 C {0, 1},

 0((cl, c 2 x(s), s < cu;/3) D)(cj)S(cj) - D)(cu)c,) Cm > C1 > 0,

 2 f, (cl, t, 6 1 x(s),s < t; 3) Ej k(cl), t > cl > 0 and h8 C {0,1}, (3)

 and

 d-2 0(cl (ctu,2 1 x(s), s < cu;B

 (Ejk(cl) + Dj (cl)Dk(cl))S(cl) - (Ejk(cu) + Dj(ctL)Dk(cu))S(cu)
 S(cl) - S(cu)

 (D.(cl)S(cl) - Dj(cu)S(cu))(Dk (cl)S(cl) - Dk(cu)S(cu)) cu > C, > ? (S(Cl) -S(Cu))2 , C1 1>0
 It follows from (2) and (3) that 0(t, 6 8 x;.) is a concave function on RP if 6 C {0,1}.

 2.3 Maximum Likelihood Estimation

 Consider n randomly selected individuals. For 1 < i ?< n, let Ti be the survival time, C= [Cij, Ci?,]
 the censoring interval, and xi(t), t < Ci.j', the covariates for the ith such individual. The log-likeli-
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 1488 Biometrics, December 1997

 hood function corresponding to the observed data (Ci, hi, xi,(t), t < Ocit,), 1 < i < n-, and the linear
 model for the conditional log-hazard function discussed in the previous section is given by

 e~~~~(c 6. = X, Cl,C7 ,X (t) , t < Ci.;U ; 0) , pCR (4)
 If hi C {0, 1} for all i, this is a concave function on RP and the maximum likelihood estimate /3 for

 g3 can be found using the Newton-Raphson method (see KST). However, if hi = 2 for some i, then

 ?(/3) may not be concave.

 One numerical procedure for calculating /3 when the log-likelihood function is not necessarily

 concave is to modify the Newton-Raphson method slightly by subtracting a small positive constant

 from the diagonal of the Hessian so that the modified Hessian is negative definite. In particular,

 let S(O3) denote the score at /3 [that is, the p-dimensional column vector with entries 01(03)/03j],
 and let H(03) denote the Hessian at /3 [that is, the p x p matrix with entries a21(/3)/oj 3k].
 The modified Newton-Raphson method for computing 3 is to start with an initial guess 3(?) and
 iteratively determine 3(7n+1) from i (m) according to the formula

 Here, G(3H(n)) - HQ3(7))-aL, with a slightly larger than the largest eigenvalue of H( 3(17)) if this

 eigenvalue is positive and a = 0 otherwise. This ensures that G is negative definite (see Kennedy

 and Gentle, 1980, Section 10.2.2). Furthermore, ,u is the smallest nonnegative integer such that

 I ((") - 2 t [GG3() )V 1S(/3(t )) > I(( -2 t1 [GG3(') )I IS( ( m))).
 The routine we used, the S-Plus function nlminb (FORTRAN version developed by Gay, 1984),

 incorporated these and other features expected in a modern optimization algorithm. We experienced

 no difficulties in any of the interval-censored examples we have tried so far. This experience is

 consistent with that of Kooperberg and Stone (1992) in the context of logspline density estimation.

 2.4 Model Selection0

 When modeling the log-hazard function with a linear model (1), the remaining issue to be resolved

 is the choice of G. Initially, we let G be the space of constant functions. Thus, a(t I x(t);'3) = 1
 for t > 0, so that a does not depend on t or the vector x of covariates. Then we proceed with
 stepwise addition, successively replacing a (p - 1)-dimensional space Go by a p-dimensional space

 G containing Go as a subspace. The candidates for the new basis function (a function that together

 with a basis of Go spans G) depend on which functions are already in G. For the model selection
 described here, it does not matter whether a covariate is time dependent.

 Here we describe model selection in HARE when linear splines are used. The new implementation

 of HARE also allows the use of cubic splines, complicating the variable selection strategy, though

 the basic ideas remain essentially unchanged. [See Clarkson and Kooperberg (1996) for details.]
 Some remarks about other issues that arise when using higher-order splines are discussed in the
 next section.

 Functions that are always allowed as basis functions of G are (i) piecewise linear splines in time

 that are of the form B(t x(t)) = (tk-t)+, where (t)+ = max(t,O) and tk is a fixed positive number,
 called a knot, and (ii) linear functions in any of the covariates xn(t) for 1 K m K< Al. Supposing

 that a linear function B(t I x(t)) = xmn(t) is in G, piecewise linear splines in that covariate of the
 form B(t x(t)) = (Xm,(t)- X.nk)+ can also be used as basis functions (but not otherwise); here the
 knot xrnk is a fixed number in the range Xrn of xm (t). Tensor products of any two basis functions
 in the model that depend on different (single) variables are also allowed. Thus, for example, if

 (tk - t)+ and xmn(t) are basis functions of G, then B(t I x(t)) = (tk -t) ?+xm(t) is also allowed in
 the model. There is one other rule: tensor products of a basis function B(t I x(t)) = (x.,, (t) -xmk)?+
 and any other basis function can only be a basis function when the tensor product between xm

 and that basis function is in G.

 To decide which basis function to add to a space Go, we compute Rao (score) statistics:

 1. for all spaces that can be obtained from Go by adding a basis function B(t x(t)) =xn7 (t) to

 the model;

 2. for all allowable spaces that can be obtained from Go by adding a basis functionl to Go that
 is a tensor product of two basis functions that depend on different variables that are in Go;
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 Hazard Regression 1489

 3. for a space that can be obtained from Go by adding a basis function corresponding to a

 potential new knot in time, using a heuristic search algorithm to find the best location for this

 new knot, where every observed or censored time in the data set is a candidate;

 4. for a space that can be obtained from Go by adding a basis function corresponding to a
 potential new knot in a covariate that is already in the model, using a heuristic search algorithm

 to find the best location for this new knot, where every value of the covariate in its range in

 the data is a candidate.

 As the new space G, we choose the one corresponding to the largest Rao statistic. The use of Rao

 statistics can be motivated by examining a quadratic approximation to the log-likelihood function
 near the maximum likelihood estimate QO of 30 in Go. In particular, it is easily shown that if the
 log-likelihood function were exactly quadratic, then the Rao statistic would be twice- the increase of

 the log-likelihood for adding a basis function. [See Kooperberg, Bose, and Stone (1997) for details.]
 Upon stopping the stepwise addition stage, we proceed to stepwise deletion. Here we successively

 replace the p-dimensional space G by a (p -1)-dimensional subspace Go. The basis functions of
 the subspace Go must satisfy the same rules listed above that applied during stepwise addition. In

 particular, at each step we choose the candidate space Go such that the Wald statistic for a basis
 function that is in G but not in Go is smallest in magnitude. The use of Wald statistics during

 stepwise deletion can be motivated in the same way as the use of Rao statistics during stepwise

 addition.

 During the combination of stepwise addition and stepwise deletion, we get a sequence of models

 indexed by v, with the vth model having p, parameters. Let li, denote the log-likelihood of the vth
 model, and let

 AICa,p = -21, + app (5)

 be the Akaike Information Criterion with penalty parameter a for this model. We select the model

 corresponding to the value iv of v that minimizes AICa,p. In light of KST and our experience in the
 present investigation, we recommend choosing a = log n as in BIC due to Schwarz (1978). Section 3

 contains a further discussion of the choice of the penalty parameter a in the presence of censoring.

 Since the log-likelihood function may not be concave, good starting values for the (modified)
 Newton-Raphson iterations are even more crucial than usual. In the context of stepwise addition,

 we use the maximum likelihood estimate from the previous model, which is possible since the new

 linear space contains the previous one as a proper subspace. In the context of stepwise deletion, the

 starting value 3 (0) can be obtained by considering a quadratic approximation to the log-likelihood

 tt )

 2.5 Innovations

 The new implementation of HARE has a number of additional features, some of which have already

 been mentioned.

 Cubic splines. A one-dimensional function that is continuous and piecewise linear is called a linear

 spline. The basis functions used in the model-selection procedure of the previous section are linear

 splines. A twice continuously differentiable, piecewise cubic function is called a cubic spline. The
 new implementation of HARE can use either linear or cubic splines for its basis functions. In

 either case, we require that the conditional log-hazard function be linear in its tails. Additionally,

 time-dependent covariates must be constant in the upper tail.

 The model-selection strategy with cubic splines is generally the same as the one with piecewise

 linear splines outlined above. A complication is the fact that cubic polynomial basis functions

 depend on more than one knot. The tail conditions also complicate the basis functions and thus

 knot-selection procedures. Even so, it is still possible to develop model-selection algorithms in which

 addition and deletion of basis functions is, essentially, addition and deletion of knots. [See Clarkson
 and Kooperberg (1996) for details.]

 Categorical covariates. The new implementation of HARE can also accommodate categorical

 covariates. Let Vi denote a subset of the possible values of the categorical covariate. HARE allows
 as basis functions indicator variables that are set to 1 if the value of the covariate is in Vi and
 0 otherwise. HARE considers all possible subsets 14 not currently in the model and chooses the

 subset yielding maximurm Rao statistic when building a model. Wald statistics are used for removing
 basis functions from the model. Basis functions for categorical covariates can also enter the model

 in tensor products with other basis functions.
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 1490 Biometrics, December 1997

 Time-dependent covariates. So far, we have acted as if time-dependent covariates are known at

 every time t. In practice, time-dependent covariates are often measured at discrete time points,

 usually when patients come in for examinations. For continuous covariates, the new implementation

 of HARE allows for piecewise linear (constant in the tails) interpolation of the time-dependent

 covariates. For categorical covariates, the new implementation allows piecewise constant time-

 dependent covariates.

 While the implementation of time-dependent covariates is conceptually straightforward, their

 presence considerably complicates the coding. For example, since the number of times at which the

 covariates are measured may be different for each subject, it is no longer convenient to use a matrix

 to store the data. Rather, a list of vectors (where each vector may have a different length) is used.
 Also, even for piecewise linear splines, numerical integration methods may be required to compute

 the integrals in the log-likelihood when continuous time-dependent covariates are in the model.

 Numerical integration is not as complicated as it might first appear, however, since all integrals

 are sums of integrals of the form fa' p (t) exp P2 (t) dt, where P1 and P2 are polynomials. Integrals
 such as these are easily computed using Gaussian quadrature (Abramowitz and Stegun, 1964), but

 complicated bookkeeping is required to keep track of the limits a and b of integration.

 3. An Example

 The data for our example come from an ongoing study of the natural history of anal dysplasia in

 gay HIV-positive and HIV-negative men who are enrolled in the AIDS Prevention Project of the

 Seattle-King County Department of Public Health. At enrollment, subjects undergo an interview,

 anal examination with collection of specimens, in particular for cytology (pap smear for detection

 of cancer or precancer), and collection of blood for CD4 count and other serologic tests. Subjects
 return every 3 to 6 months for follow-up interviews, collections of specimens for cytology and CD4

 count, and anal exams. Evidence of precancer is our event of interest. The data is interval-censored

 since we do not know the precise time between two interviews when the precancerous conditions

 developed. In all, there were 897 subjects, but since in our analysis we include only patients who

 had no precancerous conditions when they entered the study, 626 subjects remain. As the event,

 we consider the first detection of precancer (high- or low-grade squamous intraepithelial lesions,

 SIL). Among the 626 subjects, there were 250 events. Of the corresponding 250 subjects, 99 had
 developed SIL at their first return visit. The observation time for these subjects was thus interval

 censored between 0 and the time of their first visit, the median of which was 21 days. The other

 151 events were interval-censored, with median times to the lower and upper end of the censoring
 interval being 241 and 434 days, respectively, and the median length of the interval being 161 days.

 The remaining 399 subjects were right-censored with a median follow-up time of 441 days.

 We used 14 covariates. Six time-dependent covariates were measured at every visit, including

 three types of HPV (human papillomavirus, which causes genital warts): HPV 16/18/45 status,

 HPV 31/33/35 status, HPV 6/11 status; HIV status; CD4 count; and whether the subject had a
 new partner since his previous visit. The other eight covariates were all fixed at entry of the study:

 the age of the person, the age at first receptive anal intercourse, a variable indicating the cumulative

 number of male partners (coded on a scale from 0 to 6), smoking, IV drug use, a history of warts,

 syphilis serology, and race. While in practice the assumption that the conditional hazard function

 only depends on the current value of the covariates may be questionable, it seems reasonable to

 make that assumption in the current situation.

 Prior to our analysis, it was hypothesized by Professor Critchlow (private communication) that
 HPV, and in particular HPV 16/18/45, is the primary cause of SIL; that HIV and/or low CD4

 count increases risk of SIL; and that there is an interaction between low-risk HPV (HPV 6/11) and
 HIV in that these HPV infections are more likely to result in SIL among HIV-positive than among

 HIV-negative subjects. This interaction had not been established by other analyses.

 The model that HARE selected (see the second and third columns of Table 1) included a constant
 term, a basis function in time, linear basis functions for three of the HPV variables, HIV status,

 age, age at first anal intercourse, and interactions between HPV 6/11 and time and between HPV

 6/11 and HIV status. The basis function in time is a cubic spline that decreases smoothly and
 is constant beyond 40 days. Because of the HPV 6/11 x time interaction, the model is not a
 proportional hazards model.

 From the coefficients in the second column of Table 1, we note that positive HPV 16/18/45,
 HPV 3 1/33/35, and HIV status increase the risk of SIL. Decreasing age, a low age of first receptive

 anal intercourse, and a large number of partners also increase the risk of SIL. Since the coefficient

 of the HPV 6/11 x HIV interaction is negative, we note that HPV 6/11lis a larger risk factor for
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 Table 1

 HARE analysis of the cytology data

 Default value for a 8.71 < a < 31.56

 Basis function Coefficient Std error Coef/Std err Coefficient Std error Coef/Std err

 Constant -8.9801 0.4752 -18.8959 -9.6415 0.2436 - 39.5747
 Time 2.7670 0.4074 6.7924 3.8101 0.1871 20.3689
 HPV 16/18/45 0.4484 0.1108 4.0483 0.5999 0.1025 5.8541
 HPV 6/11 0.8399 0.1856 4.5233 1.1883 0.1688 7.0389
 HIV 1.6623 0.2974 5.6486 1.9322 0.2780 6.9510
 HIV x HPV 6/11 -0.9760 0.1995 -4.8936 -0.9558 0.1996 -4.7892
 HPV 31/33/35 0.4010 0.1225 3.2740 NA NA NA
 CD4 -0.0007 0.0002 -2.9186 NA NA NA
 Age -0.0387 0.0105 -3.6694 NA NA NA
 Age at first anal
 intercourse 0.0521 0.0128 4.0880 NA NA NA

 Number of partners 0.1466 0.0495 2.9621 NA NA NA
 HPV 6/11 x time 0.8129 0.2737 2.9702 NA NA NA

 HIV-negative men, which contradicts the hypothesized effect. Further exploratory data analysis

 suggested that in this data set the interaction should have a negative sign.

 An advantage of HARE over traditional proportional hazards modeling is that HARE not only

 estimates the effect of covariates, but it also provides a (smooth) estimate of the underlying hazard

 function. In Figure 1, we show the log-hazard function for the cytology data for an HIV-negative

 subject of age 30, age at first anal intercourse of 18, with HPV 16/18/45 and HPV 31/33/35 equal

 to 0 throughout, 5 partners, with a CD4 count of 1000, and with HPV 6/11 equal to 0 (negative,

 dashed curve) and 1 (positive, solid curve). The nonproportionality of the HARE model is evident

 from this figure since the spacing between the log-hazard functions changes with time. Since these

 conditional hazard functions are constant beyond 45 days, we truncated the plot at 80 days.

 In practice, the values of the time-dependent covariates change during the study. In Figure 2, we

 show the estimated conditional log-hazard function for three patients in the data set. The patient

 whose conditional hazard function is the solid line is an HIV-negative male who first had SIL

 diagnosed after 1149 days. His HPV 6/11 status increased from 0 to 2 between 904 days and 1145

 0

 10

 0

 0

 0 20 40 60 80

 Days

 Figure 1. Log-hazard functions for two hypothetical subjects for whom the values of the time-

 dependent covariates do not change. Solid: HPV 6/11 is 1; dashed HPV 6/11 is 0. The distance
 between the curves at 0 days is almost twice as large as at 80 days.
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 I
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 Figure 2. Log-hazard functions for three subjects for whom the value of HPV 6/11 varied over

 time.

 days, explaining the sharp rise in the hazard function. The dotted line is for an HIV-negative male

 whose HPV 6/11 and HPV 16/18/45 status changed a number of times during the study, which

 explains why his hazard function goes up and down so much. The dashed line is for an HI V-positive

 subject; his hazard function is clearly much higher than those for the other two subjects.

 Since the time origin is arbitrary, it appeared strange that the hazard functions in Figure 1,

 for subjects whose timne-dependent covariates do not change, were not constant. However, personal
 communication with Professor Cathy Critchlow revealed that some of the subjects do not have

 their SIL status measured at their first visit, due to the extra amount of administration needed at

 that time, and have absence of SIL recorded in their record. Some of these subjects presumably

 already had SIL at that time. Since these patients get diagnosed at their second visit, we have a

 number of extra subjects who are interval censored between the first and the second visit that are

 erroneously added to the data set, yielding a peak in the hazard rate close to 0.

 It is of interest to look at smaller models selected by HARE. As it turned out, the model

 summarized in the second and third column of Table 1 was optimal for a between 5.54 and 7.08,

 while the default value for a was log 626 =6.44. Were a chosen between 8.71 and 31.56, a much

 smaller model with only six basis functions would be selected. Interesting enough, this model still

 contains the three effects that were hypothesized by Professor Critchlow prior to our analysis as

 being the most influential: an effect of HPV 16/18/45, an effect of HIV status, and an interaction

 between HPV 6/11 and HIV status. (If a were chosen between 7.08 and 8.71, a nonproportional

 model with eight basis functions would be selected.)

 Since this smaller model does not contain any interactions with time, it is a proportional hazards

 model. It is of interest that HARE automatically compares proportionlal and nonproportional
 hazards models. Actually, the interface to HARE makes it possible to force HARE to fit a

 proportional hazards model. When we did this, we again obtained the model summarized in columns

 four and five of Table 1.

 In general, it is reasonable to examine models for a variety of choices of the penalty parameter a

 in (5). In particular, it is plausible that, if a substantial number of the observations are censored,

 then a should be smaller than lognr.- For example, if we add a subject that is right-censored at
 0 or interval-censored between 0 and oo, this would increase rn by 1, and hence it would increase
 a =log ni, but it clearly would not increase the amount of signal in the data.

 4. Concluding Remarks

 The HARE methodology, as described in KST and extended in this paper, should be a useful

 addition to the survival analysis toolkit. Its features make it easy to try a variety of models. In

 particular, linear proportional hazard models, additive proportional hazards models, proportional
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 hazards models with time-varying coefficients, and nonproportional hazards models can convenient-

 ly be fitted and compared.

 There are many studies that yield interval-censored data. However, most survival analysis

 methods cannot deal with such data. The extension of HARE to deal with time-dependent

 covariates and interval censoring should increase its applicability.
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 RESUME

 Dans un article recent Kooperberg, Stone et Truong (1995a) ont defini une regression de force de
 mortalite ('hazard regression' (HARE)) dans laquelle des fonctions splines lineaires et leur produits
 tensoriels sont utilises pour estimer la fonction du logarithme de la force de mortalite conditionnelle
 basee sur des reponses positives pouvant etre censurees et sur une ou plusieurs covariables. Un
 modele de selection adaptatif est mis au point utilisant, l'estimation du maximum de vraisemblance
 des parametres inconnus, les statistiques de Rao et Waid pour l'entree ou la sortie des fonctions
 de base, et le critere de l'information bayesienne (BIC) pour la selection du modele final. Dans
 le present article la methodologie HARE est generalisee pour prendre en compte des donnees
 censuree par intervalle, des covariables temps-dependantes et des fonctions splines cubiques. La
 presence de donnees censurees par intervalle signifie que la fonction de log-vraisemblance ne peut
 plus etre concave, introduisant des problemes numeriques supplementaires. La methode generalis6e
 est appliquee a un jeu de donnees ayant a la fois des censures par intervalle et des covariables
 temps-dependantes. Le nouveau logiciel sera disponible dans une version prochaine de S-Plus.
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