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A Sensitivity of Probability of Success with re-

spect to the definition of “success”

The degree to which PoS(n) and PoS'(n) differ numerically is visualized in
Figure |1l It depicts the proportion of the individual components of PoS'(n) for
varying prior standard deviation and prior means. The sample size is fixed at
n = 150, g = 0, the maximal type I error rate is o = 0.025, and the minimal
clinically important difference is yc;p, = 0.1. A truncated normal prior on [—1,1]
with varying mean and standard deviation was used. The contribution of type I
errors (component “A” in Figure [1) to PoS’(n) is mostly negligible unless the
prior is sharply peaked at an effect size slightly smaller than the null. The
a priori probability of a relevant effect size is close to zero in these cases and so
is PoS'(n).
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Figure 1: Components of PoS’'(n) for n = 150, 6 = 0, a = 0.025, Oycp = 0.1
and varying prior mean and standard deviation; numbers correspond to overall
PoS’(n); proportions in individual pie charts correspond to: A = probability to
reject and null effect (type I error), B = probability to reject and irrelevant but
non-null effect, C = probability to reject and relevant effect (PoS).

B Literature review of terminology

A structured overview of the literature on “hybrid” Bayesian sample size deriva-
tion in the context of clinical trials is given in Table [l The table relates
publications in the field to the terms defined in Figure 2 of the main text. Pub-
lications with a similar take on the matter are grouped. In the following, we
highlight a few particularly interesting contributions and how they relate to the

definitions used in this manuscript.



The majority of the manuscripts only consider the marginal probability to
reject Ho (PoS’(n)). Many publications refer to|O’Hagan and Stevens (2001) or

|O’Hagan et al| (2005), where this quantity was introduced as “assurance”. The

range of names for what we call the “marginal probability to reject Ho” is, how-
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ever, quite diverse: “assurance”, “probability of success”, “predictive probability
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of success”, “average probability of success”, “probability of statistical success”,
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“probability of study success”, “predictive power”, “predictive frequentist power”,
“expected power”, “average power”, “strength”, “extended Bayesian expected
power 1”7, and “hybrid Neyman-Pearson-Bayesian probability”.

However, only a handful of authors elaborate on the intricacies of defining
what exactly constitutes a “success” and whether to consider an unconditional
measure of success or to condition on the presence of a relevant effect for sample
size derivation (Spiegelhalter and Freedman, [1986; Brown et al., [1987;|Shao et al.l
2008; 12010; |Ciarleglio et al., |2015). Most publications fail to define explicitly

what exactly constitutes a “success”. However, the use of PoS’(n) implies that

rejection of the null hypothesis, irrespective of its truth, must be considered a

success. Our analysis confirms the statement in [Spiegelhalter et al.|(2004) that

PoS’(n) can be used as a practical approximation to PoS(n) in many situations.
The exact definition of “probability of success” becomes more interesting when

allowing for Oycp > g, a potential extension rarely considered in the literature

(see, e.g., Brown et al. 1987, for the binary case).

The exact choice of wording should not be given too much weight. However,
we feel that any notion of power in the “hybrid” Bayesian/frequentist setting
should be conditional on a relevant effect (or at least a non-null effect) to
preserve the conditional nature of the purely frequentist power. Using the term
“power” to refer to a joint probability like the ‘expected power’ of
(1987) and |Ciarleglio et al| (2015)) (our PoS(n)) or the “average/expected power”
of |Spiegelhalter et al.| (2004) (our PoS’(n)) is potentially misleading. Others
suggest “conditional expected power” for EP(n) to distinguish it from “expected
power” (our PoS’(n)) (Brown et al., [1987; Ciarleglio et al.,2015). This wording,

however, may lead to confusion when also considering interim analyses where

“conditional power” is a well-established term for the probability of rejecting the

null hypothesis given 6, and partially observed data (Bauer et all, [2016]).
A particularly interesting publication is (2010). They extend hybrid

sample size derivation in the normal case to also incorporate uncertainty about

the variance and clearly distinguish between PoS’(n) = “extended Bayesian

expected power 17, PoS(n) = “extended Bayesian expected power 2”7, and



EP(n) = “extended Bayesian expected power 3”. Apart from nomenclature, our
definitions of these three quantities only differ in that they assume the standard
deviation to be fixed and the fact that we accommodate the optional notion of a
relevant effect via 6yc;p. The former makes explicit formulas more manageable,
the latter is important to keep sample sizes small in situations with vague or
conservative prior information but substantial relevance thresholds.
and Rufibach et al|(2016) are also the only publications we found that study the
distribution of the quantities that are averaged over. In |Ciarleglio et al| (2015)),

the distinction between all three quantities is also made explicit (“expected
power” is our PoS’(n), “prior-adjusted power” is our PoS(n), and “conditional

expected power” is our EP(n)).

Table 1: Selected publications on “hybrid” sample size derivation based on error
rates.

Concept References Notes

Marginal Crook and  Termed ‘strength’; application in multi-
probability to (1982) nomial contingency tables.

reject H

Spiegelhalter Only implicitly mentioned; discussing
and Freedman! close relation to PoS(n), termed ‘ex-

(1986)) pected /average power’ in |Spiegelhalte
(2004).

Gillett| (1994 Termed ‘average power‘; focus on repli-

cation.

O’Hagan and Termed ‘assurance’ or ‘expected power’;

1} different from our notion of expected
power which is conditional on a relevant
effect, see also (IO’Hagan et al.|7 |2005P.




Concept

References

Notes

Chuang-Stein

(2006)

rouin t
(2007))
Daimon) (2008

|Sha0 et ___al |

(2008)

2010

B
o

Termed ‘average probability of success’;
discusses other definitions of ‘success’
based on additional criteria for the ob-
served point estimates; discusses how
basing the sample size on relevance argu-
ments alone is theoretically correct but

ineffective if evidence for larger effect

sizes is available, see also |[Chuang-Stein

Fr) oy

Termed ‘predictive power’ and ‘predic-
tive probability to reject Hy’; review of
regulatory aspects, discussion of interval-
based sample size calculation, and utility

considerations.

Termed ‘hybrid Ney-
man—Pearson—Bayesian (hNPB) prob-
ability‘; application in non-inferiority

setting.

Termed ‘adjusted power’; review of reg-
ulatory aspects, discussion of interval-
based sample size calculation, and utility

considerations.

Termed ‘extended Bayesian expected
power 1’; extended by treating variance
as unknown, also consider PoS(n) and
EP(n).

Termed ‘average power’; discusses up-
per limit of ‘average power‘ depending
on prior choice and suggest truncated
priors which would be very close to con-

ditioning on a relevant effect.



Concept

References

Notes

Carroll| (2013

§| 2014

E

(2015)

Walley et al.

(2015)

Ciarleglio et al.

(2015)

(2016)

Termed ‘assurance’ and ‘probability of
success’ (PoS); discusses other defini-
tions of success but all definitions are
also exclusively based on observed quan-
tities (minimum threshold on point esti-
mate), see also |Chuang—Stein| (|2006P.

Termed ‘predictive frequentist power’;
also discusses sample size derivation

based on Bayesian decision criteria.

Termed ‘assurance’; discusses ideas of
|O’Hagan et al.| (2005) in time-to-event
setting.

Termed ‘probability of success’; consid-
ers priors on mean and standard devi-
ation; discuss upper limit on probabil-
ity of success in the more complex two-

parameter situation.

Termed ‘average probability of success’;
discussed in context of historical data

integration.

Termed ‘assurance’ or ‘probability of suc-
cess’; extension to multi-parameter situ-

ations.

Termed ‘expected power’; also consider
EP(n) and PoS(n), very similar settings
considered in|Ciarleglio et al|(2016);
|rleglio and Arendt| (I2017P.

Termed ‘assurance’ or ‘probability of suc-
cess’; in-depth discussion of the distribu-
tion of the probability to reject the null
hypothesis.



Concept

References

Notes

Probability of
success

Saint-Hilary

.

oy

and Zhang
(013):
et al| (2015);
05 [

T

Termed ‘predictive probability of suc-
cess’; consider both ‘statistical success’
(p-value < ) and ‘clinical relevance’ (0b-
served effect above relevance threshold),
see also |Saint—Hilary et al.| (|2019|).

Termed ‘assurance’ and ‘expected
power’; discusses conditional nature of
the (frequentist) probability to reject
the null hypothesis from a Bayesian

perspective.

Termed ‘probability of statistical suc-
cess’, ‘probability of success’, ‘assurance’,
‘predictive power’; discusses extensions
to multiple studies or entire drug devel-

opment programs.

Termed ‘assurance’, ‘probability of suc-
cess’, ‘probability of study success’; prac-

tical applications in various settings.

Only implicitly mentioned, termed
‘prior adjusted power’ in
; discusses close relation to
marginal probability to reject Hg (sug-
gesting the latter as practical approxi-

mation).



Concept

References

Notes

Expected

power

Brown et all Termed ‘expected power’; also discusses

1987

2008

B
o

2010

Ciarleglio et al.

oo

Brown

(1987)

Spiegelhalter

et al. (2004
ﬂ 2010

Ciarleglio et al.

(2015)

‘conditional expected power’ which cor-

responds to our definition of EP(n).

Shao et al| Termed ‘adjusted power; application of

the ideas of [Spiegelhalter et al.| (2004)
to binary setting, define probability of

success but approximate it with the
marginal probability to reject Ho.

Termed ‘extended Bayesian expected
power 2’; extended by treating variance
as unknown, also considers PoS’(n) and
EP(n).

Termed ‘prior-adjusted power’; also con-
siders EP(n) and PoS’(n), very similar

settings considered in [Ciarleglio et all
(l2016|); |Ciarleglio and Arendt| (|2017|).

Termed ‘conditional expected power’;
also discusses unconditional expected
power which corresponds to our defini-
tion of PoS(n).

Not named; referencing [Brown et al.

)

Termed ‘extended Bayesian expected

power 3’; extended by treating variance
as unknown, also consider PoS(n) and
PoS(n).

Termed ‘conditional expected power’;
also considers PoS(n) and PoS'(n), very
similar settings considered in
let al] (2016); [Ciarleglio and Arendt

(2017).
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