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ABSTRACT
Sample size derivation is a crucial element of planning any confirmatory trial. The required sample size is
typically derived based on constraints on the maximal acceptable Type I error rate and minimal desired
power. Power depends on the unknown true effect and tends to be calculated either for the smallest relevant
effect or a likely point alternative. The former might be problematic if the minimal relevant effect is close
to the null, thus requiring an excessively large sample size, while the latter is dubious since it does not
account for the a priori uncertainty about the likely alternative effect. A Bayesian perspective on sample size
derivation for a frequentist trial can reconcile arguments about the relative a priori plausibility of alternative
effects with ideas based on the relevance of effect sizes. Many suggestions as to how such “hybrid”
approaches could be implemented in practice have been put forward. However, key quantities are often
defined in subtly different ways in the literature. Starting from the traditional entirely frequentist approach
to sample size derivation, we derive consistent definitions for the most commonly used hybrid quantities
and highlight connections, before discussing and demonstrating their use in sample size derivation for
clinical trials.
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1. Introduction

Randomized controlled trials (RCTs) are the gold-standard
study design for evaluating the effectiveness and safety of new
interventions. However, the real-world proportion of RCTs is
low (Wong, Siah, and Lo 2019), which negatively affects the
cost of drug development (DiMasi, Grabowski, and Hansen
2016). The sample size of a trial is a key determinant of both
cost and the chances of detecting a treatment effect (if it is
present). Purely economic arguments would suggest a utility
based approach as discussed in, for example, Lindley (1997).
In practice, the specification of a utility function for a clinical
trial is often impeded by the difficulty of quantifying ethical
considerations and compliance with health authority guidelines.
For instance, an RCT with an unnecessarily large sample size
(“overpowered”) would be unethical if the treatment showed a
substantial effect and the consequences of being randomized to
the control arm were severe. Too small an RCT (“underpow-
ered”) would also be unethical if it resulted in future patients
being deprived access to an effective treatment due to a substan-
tial effect going undetected. Consequently, the majority of RCTs
derive their sample size based on desired Type I and Type II
error rates.

The traditional approach to determining the sample size for
a trial is to choose a point alternative and derive a sample size
such that the probability to reject the null hypothesis exceeds
a certain threshold (typically 80% or 90%) while maintaining a
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specified maximal Type I error rate (typically 2.5% one-sided).
The maximal Type I error rate is usually realized at the boundary
of the null hypothesis and can thus be computed without further
assumptions. The Type II error rate, however, critically depends
on the choice of the (point) alternative for which there are
at least two ways of justifying its choice. The first is based
on a relevance argument, which requires the specification of a
minimal clinically relevant difference (MCID). The probability
to reject the null hypothesis is typically monotonic in the effect
size and consequently the power for all other relevant differences
will be even larger than under the MCID. For guidance on the
choice of the MCID see, for example, Cook et al. (2018). The
second perspective is based on a priori considerations about
the likelihood of the treatment effect. Here, an a priori likely
effect is used as the point alternative (typically larger than the
MCID) implying that the resulting sample size might be too
small to detect smaller but still relevant differences reliably
although the potential savings in terms of sample size might still
outweigh the risk of ending up with an underpowered study.
The core difference between these approaches is that a MCID-
based sample size is not subject to uncertainty since the MCID
is generally considered fixed based on relevance arguments. In
contrast, choosing the point alternative based on considerations
about the relative a priori likelihood of effect sizes implies that
there is an inherent uncertainty about the effect size, and thus
the required sample size—otherwise no trial would be needed
in the first place.
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Other approaches to sample size calculation which are
beyond the scope of this article may target a certain width of
the confidence interval for the AUC (Obuchowski 1998), or the
standard error of an estimate (Grouin et al. 2007; Thompson
2012). Group-sequential or adaptive trial designs which allow
a trial to be stopped early if the observed effect is much smaller
or larger than anticipated are another way to cope with a priori
uncertainty about the effect size at the planning stage (Jennison
and Turnbull 2000; Bauer et al. 2016; Wassmer and Brannath
2016).

Consider the case of a one-stage, one-arm Z-test (see Sec-
tion 5 for a two-arm trial example) where the interest lies in
testing the null hypothesis H0 : θ ≤ θ0 = 0 at a one-sided
significance level of α. Let Xi, i = 1, . . . , n, be iid observations
with mean θ and known standard deviation σ . Under suitable
regularity conditions, the mean is asymptotically normal and
Zn := √

n
(
Xn − θ0

)
/σ

·∼ N
(
θn, 1

)
, where Xn := 1/n

∑n
i=1 Xi

is the sample mean and θn := √
n(θ − θ0)/σ . The critical

value for rejecting H0 is given by the (1 − α)-quantile of the
standard normal distribution, z1−α , and is independent of n.
The probability of rejecting the null hypothesis for given n and
θ is

Prθ [ Zn > z1−α] = 1 − �
(
z1−α − θn

) = �
(
θn − z1−α

)
, (1)

where � is the cumulative distribution function (CDF) of the
standard normal distribution. Often, Prθ [ Zn > z1−α] is seen as
a function of θ and termed the “power function.” This terminol-
ogy may lead to confusion when considering parameter values
θ ≤ θ0 and θ ≥ θMCID, since the probability to reject the null
hypothesis corresponds to the Type I error rate in the former
case and classical “power” in the latter. For the sake of clarity we
therefore use the neutral term “probability to reject.”

Assume that a point alternative θalt > θ0 is given. A sample
size can then be chosen as the solution of

n∗
θalt

:= argmin :
n

n

subject to: Prθalt [ Zn > z1−α] ≥ 1 − β . (2)

Since Prθ [ Zn > z1−α] is monotone in θ , Prθ [ Zn > z1−α] ≥
1 − β ∀θ ≥ θalt and if θalt = θMCID, the null hypothesis
can be rejected for all clinically relevant effects with a proba-
bility of at least 1 − β . This approach requires no assumptions
about the a priori likelihood of the value of θ but only about
θMCID and the desired minimal power (see also Chuang-Stein
2006; Chuang-Stein et al. 2011, sec. 3). However, the required
sample size increases quickly as θMCID approaches θ0. The prob-
lem is aggravated if the null hypothesis is defined as H′

0 : θ ≤
θMCID and θMCID > 0, that is, if the primary study objective
is to demonstrate a clinically important effect. In either case
it is impossible to derive a feasible sample size based on the
MCID alone (Chuang-Stein et al. 2011). Due to the difficulties
of eliciting a sample size in such situations, in practice, trial-
ists may resort to back-calculating an effect size in order to
achieve the desired power given the maximum feasible sample
size (Lenth 2001; Grouin et al. 2007; Lan and Wittes 2012). One
way of justifying a smaller sample size is to simply consider a
likely point alternative θalt > θMCID instead. This pragmatic
approach is unsatisfactory since it ignores any uncertainty about
the assumed effect (Lenth 2001).

In the following, we first review approaches to quantify-
ing the probability to reject the null hypothesis when a prior
distribution is available. Wherever necessary, we refine exist-
ing definitions to improve overall consistency. We then dis-
cuss their application to sample size calculation. We exclu-
sively focus on what is termed a “hybrid” Bayesian-frequentist
approach (Spiegelhalter, Abrams, and Myles 2004). This means
that, although Bayesian arguments are used to derive a sample
size under uncertainty about the true effect, the final analysis
is strictly frequentist. A structured overview of all quantities
considered is provided in Figure 2. We present a review of the
literature on the subject in the supplemental material, showcas-
ing the confusing diversity of terminology used in the field and
relating our definitions back to the existing literature. Finally, we
apply the methods to a clinical trial example and conclude with
a discussion.

2. Bayesian Assessment of the Probability to Reject
the Null Hypothesis

One way of incorporating planning uncertainty is to make
assumptions about the relative a priori likelihood of the
unknown effect size. This approach can be formalized within a
Bayesian framework by seeing the true effect θ as the realization
of a random variable � with prior density ϕ(θ). At the planning
stage, the probability to reject the null hypothesis is then given
by the random variable RPR(n) := Pr�[ Zn > z1−α] (“random
probability to reject”). We explicitly denote this quantity as
“random” to emphasize the distinction between the (conditional
on � = θ) probability to reject given in Equation (1) and the
unconditional “random” probability to reject. The variation of
the random variable RPR(n) reflects the a priori uncertainty
about the unknown underlying effect that is encoded in the
prior density ϕ(·). We define the random variable “random
power” as RPow(n) := Pr �≥θMCID [ Zn > z1−α]. Note that
RPow(n) = RPR(n)|� ≥ θMCID. The distribution of either the
(unconditional) random probability to reject the null hypothesis
or the (conditional) random power can then be used to define
summary measures. We discuss some options in the following.

2.1. A Prior Quantile-based Approach

Spiegelhalter and Freedman (1986) note that a power constraint
for sample size derivation could be computed based on “[...] a
somewhat arbitrarily chosen location parameter of the [prior]
distribution (for example the mean, the median or the 70th
percentile).” This essentially means that the prior uncertainty
is collapsed by choosing a suitable location parameter of the
prior distribution of � for θalt. Using a location parameter of the
unconditional prior distribution to assess the rejection proba-
bility, however, is difficult to interpret when the chosen location
parameter lies within the null hypothesis (i.e., for skeptical prior
distributions). Instead, we follow a similar idea but motivate the
choice of location parameter in terms of the a priori distribution
of random power and thus conditional on a relevant effect. Let
Qp[Y] denote the p-quantile of the random variable Y. Then

Q1−γ [ RPow(n) ] = inf
x

Prϕ(·)
[

RPow(n) ≥ x
] ≥ γ (3)
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is the (1 − γ )-quantile of the random power.1 The probability
to reject is a monotone function in θ . Hence,

Q1−γ

[
RPow(n)

] = Q1−γ

[
Pr �≥θMCID [ Zn > z1−α] ]

= PrQ1−γ [� | �≥θMCID][ Zn > z1−α] . (4)

Reducing random power to a certain quantile of its distribution
is thus equivalent to evaluating the probability to reject at the
corresponding quantile of the conditional prior distribution.
Other than with Spiegelhalter and Friedmann’s unconditional
approach, who addressed the issue of the location parameter
potentially falling within the null hypothesis by using uncon-
ditional p-quantiles with sufficiently large p, any quantile of
the conditional prior distribution is guaranteed to be larger
than θMCID. The quantile approach is practically appealing since
it reduces to justifying the choice of θalt in a Bayesian way.
However, it is complicated by the need to choose the additional
parameter γ .

2.2. Probability of Success

Spiegelhalter and Freedman (1986) also proposed the use of
the “probability of concluding that the new treatment is supe-
rior and of this being correct (PSs in their notation) to derive
a required sample size. The quantity has subsequently been
referred to as “prior adjusted power” (Spiegelhalter, Abrams,
and Myles 2004; Shao, Mukhi, and Goldberg 2008), and is also
discussed in Liu (2010) and Ciarleglio et al. (2015). In the
situation at hand, it is

PoS(n) := Pr[ Zn > z1−α , � ≥ θMCID ] (5)

=
∫ ∞

θMCID

∫ ∞

z1−α

φ(z − θn) ϕ(θ) d z d θ , (6)

where φ is the probability density function (PDF) of the stan-
dard normal distribution. Here, we are more general than pre-
vious authors in that we allow θMCID > 0 and use a tighter defi-
nition of “success”: a trial is only successful if the null hypothesis
is rejected and the effect is relevant. Whenever θMCID = 0 this
coincides with the definitions used previously in the literature.

The definition of PoS(n) critically relies on what is consid-
ered a “success”. Spiegelhalter and Freedman only considered a
significant result a success if the underlying effect is also non-
null (i.e., the joint probability of nonnull and detection). More
recently, a majority of authors tend to follow O’Hagan et al. who
define the probability of success by integrating the probability
to reject over the entire parameter range (O’Hagan and Stevens
2001; O’Hagan, Stevens, and Campbell 2005) and term this
“assurance”. For a more comprehensive overview of the terms
used in the literature, see Section B in the supplemental material.
The alternative definition for probability of success introduced
by O’Hagan et al. corresponds to the marginal probability of
rejecting the null hypothesis irrespective of the corresponding

1Here, we choose to make the dependency of Prϕ(·)
[

RPow(n) ≥ x
]

on the
prior density explicit by using the index “ϕ(·)” since the random variable �

does not appear directly in the description of the event “RPow(n) ≥ x.”
We omit the index “ϕ” whenever � appears explicitly.

parameter value

PoS′(n) := Pr[ Zn > z1−α] (7)

=
∫ ∞

−∞

∫ ∞

z1−α

φ(z − θn) ϕ(θ) d z d θ (8)

= PoS(n)

+ Pr[ Zn > z1−α , 0 < � < θMCID ]︸ ︷︷ ︸
probability of rejection and irrelevant effect

+ Pr[ Zn > z1−α , � ≤ 0 ]︸ ︷︷ ︸
probability of a Type I error

. (9)

The decomposition in Equation (9) shows that the implicit
definition of “success” underlying PoS′(n) is at least question-
able (Liu 2010). The marginal probability of rejecting the null
hypothesis includes rejections under irrelevant or even null
values of θ . This issue was first raised by Spiegelhalter, Abrams,
and Myles (2004) for point null and alternative hypotheses. For
more practically relevant scenarios with prior mean greater than
θ0 = 0 and θMCID ≈ θ0, the contribution of the average Type I
error rate to PoS′(n) is almost negligible (see supplemental
material, Section A). If θMCID = 0, the numeric difference
between PoS and PoS′ is negligible since the maximal Type I
error rate is controlled at level α and the power curve quickly
approaches zero on the interior of the null hypothesis. Spiegel-
halter, Abrams, and Myles (2004) thus argued that PoS′(n) can
be used as an approximation to PoS(n) in many (but not all)
practically relevant situations.

Which definition of “success” is preferred depends on per-
spective: a short-term oriented pharmaceutical company may
just be interested in rejecting the null hypothesis to monetize a
new drug, irrespective of it actually showing a relevant effect.
This view would correspond to PoS′(n). Regulators and compa-
nies worried about the longer term consequences of potentially
having to retract ineffective drugs, may tend toward the joint
probability of correctly rejecting the null. We take the latter
perspective and focus on PoS(n).

2.3. Expected Power

Probability of success is an unconditional quantity and therefore
depends on the a priori probability of a relevant effect

PoS(n) = Pr[ Zn > z1−α , � ≥ θMCID ] (10)

=
∫ ∞

θMCID

Prθ [ Zn > z1−α] ϕ(θ) d θ (11)

= Pr[ Zn > z1−α|� ≥ θMCID ] Pr[ � ≥ θMCID ] (12)
= E

[
Pr �≥θMCID [ Zn > z1−α] ]

︸ ︷︷ ︸
= E[ RPow(n) ] =: EP(n)

Pr[ � ≥ θMCID ] .

(13)

This means that PoS(n) can be expressed as the product of
the “expected power”, EP(n), and the a priori probability of
a relevant effect (see again Spiegelhalter, Abrams, and Myles
2004 for the situation with point hypotheses). Expected power
was implicitly mentioned in Spiegelhalter and Freedman (1986)
(PSs/P·s in their notation) as a way to characterize the properties
of a design.
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Unfortunately, the terms “expected power’‘ and “probability
of success” are sometimes used interchangeably in the literature
(see supplemental material Section B). Expected power is merely
a weighted average of the probability to reject in the relevance
region θ ≥ θMCID, where the weight is given by the conditional
prior density

ϕ(θ | � ≥ θMCID) := ϕ(θ) 1θ≥θMCID

( ∫ ∞

θMCID

ϕ(y) d y
)−1

,

(14)

which means

EP(n) =
∫ ∞

θMCID

Prθ [ Zn > z1−α] ϕ(θ | � ≥ θMCID) d θ . (15)

PoS(n), on the other hand, integrates the probability to reject
over the same region using the unconditional prior density (see
Equations (11) and (15)). Thus, in contrast to PoS(n), expected
power does not depend on the a priori probability of a relevant
effect but only on the relative magnitude of the prior density
(“a priori likelihood”) of relevant parameter values. Since the
conditional prior density differs from the unconditional one
only by normalization via the a priori probability of a relevant
effect, it follows from Equation (13) that EP(n) and PoS(n) differ
only by the constant factor Pr[ � ≥ θMCID ].

Comparing expected power to a quantile of the random
power (see Section 2.1), an advantage lies in the fact that no
additional parameter γ needs to be specified. However, unlike
the quantile approach (compare Equation (4)), forming the
expected value cannot simply be interchanged with the nonlin-
ear probability to reject:

E
[

RPow(n)
] �= PrE[� | �≥θMCID][ Zn > z1−α] . (16)

The probability to reject at the prior expected effect given that
the effect is relevant is thus different from “expected power.”

3. Prior Choice

A major issue in the Bayesian modeling of uncertainty is the elic-
itation of an adequate prior. As illustrated in Rufibach, Burger,
and Abt (2016), the prior crucially impacts the properties and
interpretability of any Bayesian functional of a design’s power
curve. Often, there is no direct prior knowledge on the effect
size of interest. Researchers are then often tempted to use a vague
prior, typically a normal prior with large variance, as, for exam-
ple, advocated in Saint-Hilary et al. (2019). Assuming a non-
informative, improper prior for � would imply that arbitrarily
large effect sizes are just as likely as small ones. Yet, in clinical
trials, the standardized effect size rarely exceeds 0.5 (Lamberink
et al. 2018). We thus illustrate the characteristics of the different
approaches to defining power constraints under uncertainty
using a convenient truncated Gaussian prior. The truncated
Gaussian is conjugate to a Gaussian likelihood and allows us to
restrict the plausible range of effect sizes to, for example, liberally
[−1, 1]. Also, the truncated Gaussian is the maximum entropy
distribution on the truncation interval, for a given mean and
variance, which can be interpreted as a “least-informative” prop-
erty under constraints on the first two moments. Prior elicitation
is also discussed in Spiegelhalter, Abrams, and Myles (2004). A

more formal prior elicitation framework is SHELF (Kinnersley
and Day 2013; Oakley and O’Hagan 2019) and Dallow, Best,
and Montague (2018) discusses how SHELF is routinely used
by pharmaceutical companies.

4. Application to Sample Size Calculation

Any functional of a design’s power curve that depends mono-
tonically on n can be used to derive a sample size by imposing a
(w.l.o.g.) lower boundary on its value. For the classical frequen-
tist approach to sample size calculation, this functional is the
probability to reject the null hypothesis at θalt or at θMCID.

Using expected power as the functional, let n∗
EP be the

smallest n that satisfies EP(n) ≥ 1 − β . The power function
is monotonically increasing in θ and thus expected power is
strictly larger than power at the minimal relevant value when-
ever Pr[ � > θMCID ] > 0. This implies a constraint on expected
power is less restrictive than a constraint on the probability to
reject the null hypothesis at θMCID. Consequently, for the same
threshold 1 − β , the required sample size under an expected
power constraint is smaller. Since expected power and proba-
bility of success differ only by a constant factor, any constraint
on EP(n) can be transformed to a corresponding constraint on
PoS(n)

PoS(n) ≥ 1 − β ⇔ EP(n) ≥ (1 − β) / Pr[ � ≥ θMCID ] .
(17)

Furthermore, PoS(n) = EP(n)Pr[ � ≥ θMCID ] and EP(n) ≤
1, thus PoS(n) can never exceed the a priori probability of a
relevant effect. This implies the usual conventions on the choice
of β as the maximal Type II error rate for a point alternative
cannot be meaningful in terms of the unconditional PoS(n),
since the maximum attainable probability of success is the
situation-specific a priori probability of a relevant effect. The
need to recalibrate typical benchmark thresholds when con-
sidering probability of success was previously discussed in the
literature. For instance, O’Hagan, Stevens, and Campbell (2005)
state that “[t]he assurance figure is often much lower [than the
power], because there is an appreciable prior probability that
the treatment difference is less than δ∗”, where δ∗ corresponds
to θMCID in our notation. A similar argument is put forward
in Rufibach, Burger, and Abt (2016, Section 2) for PoS′(n).
The key issue is thus whether one is interested in the joint
probability of rejecting the null hypothesis and the effect being
relevant, PoS(n), or the conditional probability of rejecting the
null hypothesis given a relevant effect, EP(n).

To make the difference between EP(n) and PoS(n) for sample
size calculation more tangible, consider a situation in which the
a priori probability of � ≥ θMCID is 0.51. The probability of
success is then only 41% (for 80% expected power) or 46% (for
90% expected power). A sponsor might want to increase these
relatively low unconditional success probabilities by deriving
a sample size based on a minimal PoS(n) of 1 − β instead.
The choice of 1 − β is limited by the a priori probability
of a relevant effect (0.51 in this case). Using Equation (17) a
minimal probability of success of 0.5 is equivalent to requiring
an expected power of more than 98%. In essence, the attempt to
increase PoS(n) via a more stringent threshold on EP(n) implies
that low a priori chances of success are to be offset with almost
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Figure 1. Required sample size plotted against prior parameters (Normal truncated to [−0.3, 0.7], with varying mean and standard deviation); θMCID = 0.1; EP = Expected
Power, PoS = Probability of Success, quantile = quantile approach with γ = 0.5 and γ = 0.9, respectively.

certain detection (EP(n) ≈ 1) in the unlikely event of an effect
actually being present.

Alternatively, let n∗
γ be the smallest n that satisfies

Q1−γ [ RPow(n) ] ≥ 1 − β . By definition, this implies that the
a priori probability of exceeding a probability to reject of 1 − β

given a relevant effect would be at least γ . Since Prθ [ Zn > z1−α]
is monotonic in θ , this problem is equivalent to finding the
smallest n that satisfies Pr Q1−γ [�≥θMCID ]

[
Zn > z1−α

] ≥ 1 − β .
Consequently, this “prior quantile approach” can be used
with any existing frequentist sample size formula. It is
merely a formal Bayesian justification for determining
the sample size of a trial based on a point alternative
θalt := Q1−γ [ � ≥ θMCID ] ≥ θMCID and reduces to powering
on θMCID whenever the target power needs to be met with
absolute certainty for all relevant effects (γ = 1).

4.1. Required Sample Sizes for Various Prior Choices

Let θMCID = 0.1 and the maximal feasible sample size be 1000.
Figure 1 shows the required sample sizes under the expected
power, probability of success, and quantile approaches (γ =
0.5, 0.9). We use α = 0.025 and 1 − β = 0.8 for all methods.

For probability of success, large prior uncertainty implies low
a priori probability of a relevant effect and thus the required
sample sizes explode for large prior standard deviations (in
relation to the prior mean). For very large standard devia-
tions, the constraint on probability of success becomes infeasible
(white area). The expected power criterion leads to a completely
different sample size pattern. Since expected power is defined
conditional on a relevant effect, large prior uncertainty increases
the weight in the upper tails of the power curve where power
quickly approaches one. Consequently, for small prior means,
larger uncertainty decreases the required sample size. For large
prior means, however, smaller prior uncertainty leads to smaller
sample sizes since again more weight is concentrated in the tails
of the power curve. The characteristics of the prior-quantile
approach very much depend on the choice of γ . When using the
conditional prior median (γ = 0.5) the approach is qualitatively
similar to the expected power approach. This is due to the fact
that computing power on the conditional median of the prior
is close to computing power on the conditional prior mean.

Since the power function is locally linear around the center
of mass of the conditional prior, this approximates computing
expected power by interchanging forming the expected value
and computing power (i.e., first average the prior and then
compute power or average over power with weights given by the
conditional prior). For a stricter criterion (γ = 0.9) the required
sample sizes are much larger. Higher uncertainty then decreases
the (1−γ )-quantile toward the minimal relevant effect and thus
increases the required sample size.

4.2. Connection to Utility Maximization

In a regulatory environment, and most scientific fields, the
choice of α is a pre-determined quality criterion. Yet, the exact
choice of the threshold 1 −β is much more arbitrary. In clinical
trials, 1 − β = 0.9 or 1 − β = 0.8 are common choices when a
classical sample size derivation is conducted. From the previous
section, it is clear a threshold 1 − β which is independent of
the specific context of a trial only makes sense when using con-
ditional quantities like the probability to reject at a conditional
prior quantile or EP(n) to derive a required sample size.

Unconditional measures such as PoS(n) tend to be easier to
interpret and arise naturally in the context of utility maximiza-
tion or maximal expected utility (MEU). An in-depth discussion
of the MEU concept is beyond the scope of this article and we
refer the reader to, for example, Lindley (1997) or Lai (1984) for
a discussion of utility considerations in a sequential setting. We
focus on highlighting the fact that the choice of the constraint
threshold 1 − β can be justified by making the link to MEU
principles. This merely formalizes arguments discussed in a
classical sensitivity analysis where the final sample size or power
is fixed. In particular, the final power might deviate from the
default 80% or 90% depending on the effect on sample size and
thus costs.

Assume that the maximal Type I error rate is still to be
controlled at level α. For sake of simplicity, further assume that a
correct rejection of the null hypothesis yields an expected return
of λ (in terms of the average per-patient costs within the trial).
Ignoring fixed costs, the expected trial utility is then

U(n) := λ PoS(n) − n . (18)
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Figure 2. Structured overview of all quantities related to “power” that are introduced in Section 1 to 2.2. The symbols used in the text (Sym.), their exact definitions (Def.),
and verbal interpretation (Int.) are summarized in the respective boxes. The relationships between the individual quantities are given as labeled arrows. For a structured
overview of previous mentions and synonyms used in the literature, see Table 1 in the supplemental material.

The utility-maximizing sample size is n∗
U(λ) := argmaxn U(n).

The same n would be obtained when determining the sam-
ple size based on expected power if the threshold 1 − β =
PoS

(
n∗

U(λ)
)
/ Pr[ � ≥ θMCID ] = EP

(
n∗

U(λ)
)

was used. Sim-
ilarly, one could start with n∗

EP for a given β and derive the
corresponding λ such that n∗

U(λ) = n∗
EP. This value of λ

would then correspond to the implied expected reward upon
successful rejection of the null for given β . Under the assump-
tion of a utility function of the form (18), λ and β can thus
be matched such that the corresponding utility maximization
problem and the constraint minimization of the sample size
under a power constraint both lead to the same required sample

size. Consequently, practitioners are free to either define an
expected return upon successful rejection, λ, or a threshold on
the minimal expected power, 1−β . We give a practical example
of this process in Section 5.

5. A Clinical Trial Example

Consider the case of a clinical trial designed to demonstrate
superiority of an intervention over a control with respect to
the hazard ratio of overall survival. The required sample size
for a log-rank test can be derived under the assumption of
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Figure 3. Left panel: prior PDF; middle panel: probability to reject the null hypothesis as function of the hazard ratio exp(−θ); right panel: CDF of random power (probability
to reject given � > θMCID = 0.05) for the four different design choices.

proportional hazards. Let n be the overall sample size across
both treatment arms, η the anticipated proportion of study
participants dying within the follow up time of the study, and
ξ the hazard ratio of the intervention relative to the control
arm. The log-rank test z-statistic is asymptotically normally dis-
tributed with mean − log(ξ)

√
η n/4 and standard deviation 1

(Schoenfeld 1981). Here, the sign implies that ξ < 1 (superiority
of the intervention) corresponds to larger Z-scores. For the
sake of simplicity, we further assume that η = 0.33 is known
although one could also assume a prior distribution over this
nuisance parameter. Up to the constant factor

√
η/4 this setting

corresponds to the previously discussed one-arm Z-test if we
define θ := − log(ξ).

Let the prior for the treatment effect on the log hazard
ratio scale be given by a truncated Normal distribution on
[ − log(1.5), − log(0.5) ] ≈ [ −0.41, 0.69 ] with mean 0.2 and
standard deviation 0.2 (pre-truncation). The corresponding
prior density on the hazard ratio scale is given in the left panel of
Figure 3. The MCID is set to θMCID = 0.05 which corresponds
to a hazard ratio of approximately 0.95. In this setting the a priori
probability of a relevant effect is approximately 0.86. Figure 3
shows the prior density on the hazard ratio scale, the curves of
the rejection probability corresponding to the required sample
sizes derived from constraints on a minimal probability to reject
of 1 − β = 0.8 at θMCID (MCID), at Q0.5[ � ≥ θMCID ] ≈ 0.26
(quantile, 0.5, hazard ratio: 0.77), at Q0.9[ � ≥ θMCID ] ≈ 0.10
(quantile, 0.9, hazard ratio: 0.91), or a minimal expected power
of 1 − β = 0.8 (EP), as well as the CDFs of the corresponding
distribution of random power.

The MCID criterion requires n = 35,799. The quantile
approach (with γ = 0.9) reduces this to n = 9806 while still
maintaining an a priori chance of 90% to exceed the target power
of 80%. The quantile approach with γ = 0.5 results in the lowest
sample size of n = 1434 at the cost of only having a 50% chance
to exceed the target power of 80%. The EP approach is more
liberal than the quantile approach (γ = 0.9) with n = 2588
but still guarantees a chance of exceeding the target power of
roughly 65% (Figure 3, right panel). A sample size based on
PoS(n) ≥ 1 − β = 0.8 cannot be derived in this example
since the a priori probability of a relevant effect is 0.78, lower

than 0.8. The large spread between the derived sample sizes
shows how sensitive the required sample size is to the changes
in the power constraint. Clearly, the MCID approach is highly
inefficient, as accepting a small chance to undershoot the target
power with the quantile approach (γ = 0.9) already reduces the
required sample size by more than two thirds (from n = 35799
to n = 9806). At the other extreme, constraining power on the
conditional prior median (quantile approach, γ = 0.5) leads to
a rather unattractive a priori distribution of the random power:
by definition, the probability to exceed a rejection probability of
0.8 is still 0.5 but the a priori chance of ending up with a severely
underpowered study is non-negligible (long left tail of the CDF
in the right panel of Figure 3). The corresponding unconditional
success probabilities (PoS) are: 0.77 for MCID, 0.62 for EP, 0.73
for the quantile 0.9, and 0.53 for the quantile 0.5 approach.

These considerations leave the trial sponsor with essentially
two options. One option is to consider a range of scenarios
for the quantile approach with values of γ between 0.5 and
0.9 in more detail. A decision on the exact value of γ could
be reached by considering the corresponding distributions of
RPow(n). Alternatively, the intermediate EP approach could be
used. The required sample size for an (expected) power of 80%
is n = 2588. Note that with this option, there is an implicit
tradeoff inherent to expected power: there is a roughly one-in-
five a priori probability to end up in a situation with less than
50% power (see Figure 3, right panel).

In a situation where 1 − β = 0.8 is not set in stone,
further insights may be gained by making the link to utility
maximization explicit. One may consider that the sponsor has
no way of quantifying the reward parameter λ directly. Decision
making is then guided by mapping the threshold on expected
power to the implied reward λ as discussed in Section 4.2. Fig-
ure 4 shows this “implied reward” as a function of the minimal
expected power constraint. An expected power of 0.8 is achieved
if the expected reward upon successful (i.e., the effect is indeed
relevant) rejection of the null hypothesis is approximately 20,489
times the average per-patient costs within the planned trial.
Using the curve depicted in Figure 4, the plausibility of certain
reward levels can be discussed with the trial sponsor. When
the average per-patient costs are well-known in advance, the
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Figure 4. Example of utility-maximizing implied reward λ for varying expected power.

scale can be transformed to monetary units. For example, con-
sider the expected average per-patient costs are 30,000 $US.
The sample size corresponding to an expected power of 0.8
is maximizing the utility if the expected reward is 30, 000 ×
20, 489 = 61.85 × 107 $US. The utility-maximizing reward for
an expected power of 0.9 would be approximately 70,534, that
is, 211.60 ·107 $US. Even without committing to a fixed value of
λ, these considerations can be used to guide the decision as to
which of the “standard” power levels (0.8 or 0.9) might be more
appropriate in the situation at hand.

Of course, one might also directly optimize utility if the
reward upon successful rejection of the null hypothesis can be
specified. To that end, assume that a reward of 30 × 107 $US is
expected. Under the same assumption about average per-patient
costs, this translates to λ ≈ 10,000. The utility-maximizing
sample size is then n = 1590 and the corresponding utility-
maximizing expected power is 0.71.

6. Discussion

The concept of “hybrid” sample size derivations are well-
established in the literature on clinical trial design. Nevertheless,
the substantial variation in the terminology used and small
differences in their exact definitions can be confusing. Our
contribution here is to highlight connections between different
quantities and provide a naming scheme using definitive termi-
nologies (see Figure 2). Any naming scheme necessarily has a
subjective element to it and ours is by no means exempt from
this problem (see also https://xkcd.com/927/). We encourage a
clearer separation between terminology for joint probabilities
(avoiding the use of the word “power”) and for probabilities
that condition on the presence of an effect. An explicit def-
inition (in formulae) of any quantities used should be given
when discussing the subject. Referring to terms like “expected
power” or “probability of success” are too ambiguous given their
inconsistent historical use.

A hybrid approach to sample size derivation can incorporate
the uncertainty about the true underlying effect into the design.
This approach allows a natural distinction between arguments
relating to the (relative) a priori likelihood of different param-
eter values (encoded in the prior density) and relevance argu-
ments (encoded in the choice of θMCID). The fact that these
components can be represented naturally within the hybrid
approach has the potential to make sample size derivation more
transparent.

The hybrid quantity considered most commonly in the lit-
erature is the marginal probability to reject H0. It is important
to appreciate that this quantity includes the error of rejecting
the null hypothesis incorrectly. In many practical situations this
problem is numerically negligible and PoS′(n) ≈ PoS(n). If,
however, the definition of “success” also takes into account a
non-trivial relevance threshold θMCID > θ0, the distinction
becomes more important. Given the great emphasis on strict
Type I error rate control in the clinical trials community it seems
at least strange to implicitly consider Type I errors as “successful”
trial outcomes.

While EP(n) is independent of the a priori probability of a
relevant effect and only depends on the relative a priori likeli-
hood of different effects through the conditional prior, PoS(n)

does depend on Pr[ � ≥ θMCID ]. Although Spiegelhalter,
Abrams, and Myles (2004), see this as a disadvantage of EP(n), it
is actually a necessary property to use it for sample size deriva-
tion without recalibrating the conventional values for 1−β (see
also Brown et al. 1987). Unconditional quantities like PoS(n) do,
however, play a key role in utility maximization approaches (see
Section 4.2) and in communicating the risks associated with the
conduct of a study.

The “quantile approach” is an alternative concept to sample
size calculation, which uses a different functional of the prob-
ability to reject the null hypothesis given a relevant effect. It
considers a Bayesian justification for powering on a particular
point alternative and is thus easy to implement. Instead of the
mean, we propose to use a (1 − γ ) quantile of this distribution.
Compared to expected power, this allows direct control of the
left-tail of the a priori distribution of the probability to reject
the null hypothesis given a relevant effect. Controlling the lower
tail of the power distribution explicitly can be desirable since a
sample size derived via a threshold for expected power might
still lead to a substantial chance of ending up with an under-
powered study. This flexibility comes at the price of having
to specify an additional parameter, γ . To choose between the
expected power and the prior quantile approach, it is advisable
to not only plot the corresponding power curves but also the
resulting distribution of RPow(n) (see Figure 3).

Finally, it should be stressed again that the key frequentist
property of strict Type I error rate control is not affected by the
fact that the arguments for calculating a required sample size
are Bayesian. In fact, at no point, is Bayes theorem is invoked.
The Bayesian perspective is merely a principled and insightful
way of specifying a weight function (prior density) that can
be used to guide the choice of the power level of the design,
or as Brown et al. (1987, p. 30) put it: “This proposed use of

https://xkcd.com/927/
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Bayesian methods should not be criticized by frequentists in that
these methods do not replace any current statistical techniques,
but instead offer additional guidance where current practice is
mute.”
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Supplemental Materials

Code to reproduce all figures is available at https://github.com/kkmann/
sample-size-calculation-under-uncertainty/tree/0.3.0 and permanently
backed up to zenodo.org (Kunzmann et al. 2020). A non-interactive version
of the Jupyter notebook used to create the figures for this publication is
available at https://github.com/kkmann/sample-size-calculation-under-
uncertainty/blob/0.3.0/sample-size-calculation-under-uncertainty.ipynb
An interactive version of the repository at the time of publication is
hosted using mybinderhub.org and Binder (Jupyter et al. 2018) at https://
mybinder.org/v2/gh/kkmann/sample-size-calculation-under-uncertainty/0.
3.0?urlpath=lab/tree/sample-size-calculation-under-uncertainty.ipynb.

A shiny app implementing the sample size calculation procedures
is available at https://mybinder.org/v2/gh/kkmann/sample-size-calculation-
under-uncertainty/0.3.0?urlpath=shiny/shiny-app/. The interactive services
are made available free of charge and thus only provide limited perfor-
mance; the startup of the interactive link and the shiny app may take up
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