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Tutorial

Increasingly, researchers in the psychological sciences 
and psychiatric epidemiology work together on interdis-
ciplinary research teams. Such collaborations are benefi-
cial because there is a wealth of knowledge that can be 
shared by each discipline. However, collaboration is 
most fruitful when these groups can speak a common 
language. Many psychological researchers use some 
form of a visual diagram in their research processes. For 
example, model diagrams (also known as path models) 
are frequently used in psychology to visualize the asso-
ciations examined within a structural equation model 
(SEM). As another example, it is increasingly common 

for psychiatric epidemiologists (and epidemiologists in 
general) to use causal directed acyclic graphs (DAGs). 
Visually, SEM diagrams and causal DAGs look similar, 
often leading researchers familiar with one to wonder 
how the other differs. However, despite visual similarity, 
these models are used for different research purposes. 
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Abstract
Many psychological researchers use some form of a visual diagram in their research processes. Model diagrams used with 
structural equation models (SEMs) and causal directed acyclic graphs (DAGs) can guide causal-inference research. SEM 
diagrams and DAGs share visual similarities, often leading researchers familiar with one to wonder how the other differs. 
This article is intended to serve as a guide for researchers in the psychological sciences and psychiatric epidemiology 
on the distinctions between these methods. We offer high-level overviews of SEMs and causal DAGs using a guiding 
example. We then compare and contrast the two methodologies and describe when each would be used. In brief, SEM 
diagrams are both a conceptual and statistical tool in which a model is drawn and then tested, whereas causal DAGs are 
exclusively conceptual tools used to help guide researchers in developing an analytic strategy and interpreting results. 
Causal DAGs are explicitly tools for causal inference, whereas the results of a SEM are only sometimes interpreted 
causally. A DAG may be thought of as a “qualitative schematic” for some SEMs, whereas SEMs may be thought of as 
an “algebraic system” for a causal DAG. As psychology begins to adopt more causal-modeling concepts and psychiatric 
epidemiology begins to adopt more latent-variable concepts, the ability of researchers to understand and possibly 
combine both of these tools is valuable. Using an applied example, we provide sample analyses, code, and write-ups for 
both SEM and causal DAG approaches.
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The purpose of this article is to explain these differences 
to researchers familiar with either SEMs or causal DAGs 
so they may begin identifying places in which incorpo-
rating the other method into their work would be 
beneficial.

Both SEM diagrams and causal DAGs depict the exist-
ing state of knowledge of relationships pertaining to a 
research question of interest by showing known and/or 
assumed linkages between variables and/or constructs 
(Glymour & Greenland, 2008; Greenland et  al., 1999; 
Hernán & Robins, in press-a; Pearl, 1995; Rohrer, 2018; 
Suzuki et al., 2020; VanderWeele & Rothman, 2021) and 
do so via a series of nodes (i.e., variables) and arrows. 
However, there are key distinctions in how SEM dia-
grams and causal DAGs are used in research. SEM dia-
grams are both a conceptual and statistical tool in which 
a model is drawn and then tested. On the contrary, 
causal DAGs are exclusively conceptual tools used to 
help guide researchers in developing an analytic strategy 
and interpreting results (VanderWeele, 2012). In addi-
tion, the types of DAGs used in epidemiologic research 
are specifically causal (Glymour & Greenland, 2008; 
VanderWeele & Rothman, 2021), whereas SEM results 
are only sometimes interpreted causally.

Although there is a large and growing literature on 
each of these topics, including existing tutorials on DAGs 
(Digitale et al., 2022; Jansen et al., 2012; Rohrer, 2018; 
Shrier & Platt, 2008) and structural equation modeling 
(Kline, 2015; Lei & Wu, 2007; Schumacker & Lomax, 
2016), the aim of this article is to bring these approaches 
together by providing a high-level overview of structural 
equation modeling and causal DAGs. This tutorial is 
meant to guide researchers in the psychological sciences 
and psychiatric epidemiology; the primary goals are to 
discuss the overlap and differences between the struc-
tural equation modeling and causal DAG approaches 
and consider what each can offer. Although we highlight 
that the two approaches have more overlap than differ-
ences, particularly in terms of visual similarities, the 
difference in underlying meaning is critical and affects 
the use case for each method. To illustrate this, we use 
an applied example of modeling the effects of depres-
sion severity on cognition (Butters et al., 2000; Ganguli 
et al., 2006; Nebes et al., 2000; Paterniti et al., 2002) and 
approach this research question from both a structural 
equation modeling perspective and a DAG/causal mod-
eling perspective.

What Is Structural Equation Modeling?

“Structural equation modeling” is an omnibus term that 
covers various types of models, such as latent-variable 
models, confirmatory factor analysis, latent-growth mod-
els, and path analysis (Kline, 2015). The goal of SEMs is 

to find a parsimonious way to explain the relationships 
between variables/constructs, often by testing multiple 
nested models. In this primer, we refer to the model 
diagram (also known as a path model) as a depiction of 
a given SEM (any type; Kline, 2015). The model diagram 
is a tool researchers can use to decide which relation-
ships they wish to analyze among variables in the model 
before analysis. Ultimately, the statistical analysis cor-
responds to exactly what is drawn in the diagram.

Elements of a SEM diagram

Nodes. Variables in SEM diagrams are labeled as either 
“manifest” or “latent.” A manifest variable is a variable that 
a researcher directly observes or measures. Manifest vari-
ables are usually depicted in path models using a square 
or rectangle. A latent variable is a variable that cannot be 
directly measured but can be identified using a series of 
manifest variables (described below). Latent variables are 
usually depicted in path models using a circle or ellipse.

Arrows/paths. In the commonly used reticular-action-
model notation (McArdle & McDonald, 1984), directional 
arrows are used to specify direct effects of one variable on 
another (i.e., X → Y suggests X predicts Y), whereas bidi-
rectional arrows are used to specify a covariance among 
two variables (i.e., Z ↔ M suggests there is a covariance 
between Z and M). In an SEM, if a bidirectional arrow is 
specified, the covariances are considered part of the model 
and can be interpreted for strength and direction. The 
absence of a bidirectional arrow between variables means 
the researcher is assuming there is no effect or residual 
covariance between two variables.

Analytic technique. There are multiple types of analyses 
that fall under the structural equation modeling umbrella, 
and the elements of the model diagram will reflect the 
analysis under consideration. For example, a latent- 
variable model specifies the strength and direction of rela-
tionships among latent or manifest variables, and a mea-
surement model specifies relationships between a single 
latent variable and multiple manifest variables that com-
prise the latent variable (in the case of measurement mod-
els, manifest variables are called “indicators”). Path analysis 
is a type of structural equation modeling in which relation-
ships are observed only among manifest variables (Harlow, 
2014). Thus, a model diagram for path analysis will not 
contain any circles because there are no latent variables. A 
measurement-model diagram will show a single circle with 
arrows toward multiple squares (i.e., manifest variables 
loading onto the latent variable). A latent-variable model 
will contain multiple measurement-model diagrams with 
arrows among the latent variables to show their interrela-
tionships. There are other types of SEMs (e.g., latent growth 
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curve models) beyond the ones listed here. For a further 
discussion of structural equation modeling, see Harlow 
(2014), Kline (2015), or Newsom (2015).

The model diagram serves as the structure for the 
hypothesized variance-covariance matrix among the 
manifest variables. This hypothesized matrix is then 
compared with the observed variance-covariance matrix, 
which is the basis for the χ2 used to determine model 
fit (Harlow, 2014; Kline, 2015). Good fit would be indi-
cated by a nonsignificant χ2 (p > .05), which suggests 
there is no evidence of a difference between the hypoth-
esized and observed matrix. This does not imply evi-
dence in favor of the null hypothesis (Altman & Bland, 
1995), just that no difference was found between the 
two matrices. Moreover, the χ2 test is highly sensitive, 
and a significant result can occur even when there is a 
tolerable amount of model misspecification. Thus, 
researchers using SEMs generally consult additional fit 
indices, such as the comparative fit index (CFI), Tucker-
Lewis index (TLI), root mean square error of approxima-
tion (RMSEA), and standardized root mean square 
residual (SRMR). Values closer to 1.0 suggest better fit 
for the CFI or TLI, for which values of .90 or higher are 
generally considered acceptable but values of .95 or 
higher are preferred (Hu & Bentler, 1999). Values closer 
to 0 suggest a better fit for the RMSEA or SRMR, for 
which values of .08 and lower are generally considered 
acceptable. However, note that these guidelines are for 
a specific type of confirmatory-factor-analysis model 
used by Hu and Bentler (1999) in their simulation study, 
and recent studies have suggested these guidelines may 
not be appropriate for other types of SEMs (McNeish & 
Wolf, 2020). For more reading on fit indices, including 
cutoff scores and the differences between the multiple 
types, see Harlow (2014), Hu and Bentler, Kline (2015), 
and McNeish and Wolf (2020).

An additional consideration in structural equation 
modeling is the estimator used to derive estimates and 
standard errors of the model parameters. Whereas maxi-
mum likelihood (ML) estimation is commonly used in 
an SEM, the ML estimator can become biased when the 
data are nonnormal, when categorical variables are 
included in the model, or when small sample sizes are 
modeled. In these situations, researchers may need to 
use a different estimator (e.g., diagonally weighted least 
squares) or robust corrections to the standard errors 
(Savalei, 2014). Robust standard errors can be used with 
any estimator and can correct for issues that arise when 
modeling the covariance matrix as long as the data meet 
the assumptions of the ML estimator. For additional read-
ing on robust SEM, see Savalei (2014).

If good model fit is found, it is common practice to 
then test a series of “nested models” to see whether a 
more parsimonious model shows good fit to the data 
(Harlow, 2014; Kline, 2015). This allows researchers to 

achieve the overall goal of structural equation modeling, 
which is to find a parsimonious way to explain the 
hypothesized relationships.

Mediators. In structural equation modeling, mediators 
refer to a variable M that is on a pathway between an 
exposure X and outcome Y. This allows for the testing of 
direct effects on the pathway from X to Y and indirect 
effects of the pathway X to M to Y. Mediators are easily 
included in structural equation modeling, and it is possi-
ble to include more than one mediator (M1 to Mk) between 
X and Y, given the flexibility of the structural equation 
modeling framework (Little et al., 2007). Multiple consid-
erations need to be made when testing for mediation in 
structural equation modeling, including whether the data 
are cross-sectional or longitudinal, tests of multiple plau-
sible mediation models, and the absence of potentially 
relevant variables that influence X, M, and Y. Testing 
whether X predicts M and whether M predicts Y in a single 
analysis does not necessarily mean the researcher is test-
ing for mediation—these variables could be correlated 
because of shared causes. For more considerations on 
mediation in structural equation modeling, see Little et al. 
(2007).

Latent variables. One of the main strengths of SEMs is 
the ability to incorporate latent variables without estimat-
ing a proxy. A latent variable is not directly measured but 
is instead mathematically inferred from other variables. In 
the case of structural equation modeling, this is done 
using a measurement model in which a latent variable is 
identified from one or more manifest (i.e., observed) vari-
ables. The measurement model attempts to account for 
measurement error on each item, which improves the 
construct validity of the construct being measured com-
pared with possible proxies of the latent variable, such as 
scoring a scale or averaging a series of items. For example, 
the Mini-Mental State Examination (MMSE) is a 22-item 
measure that ranges from 0 to 30 when scored, and lower 
scores indicate worse cognitive function (Folstein et  al., 
1983). However, the MMSE total score will generally con-
tain measurement error because of measurement error on 
each individual item. As an alternative, structural equation 
modeling can be used to identify a latent variable using 
the 22 items of the MMSE. This provides the researcher 
with an MMSE factor score that has, at least theoretically, 
parsed out measurement error on the basis of the mathe-
matical model used to identify the factor score. The factor 
score can be identified within one large SEM that includes 
both the measurement models and relationships among 
constructs or, alternatively, can be identified separately in 
a measurement model and then used as a variable in a 
second SEM focusing solely on relationships among con-
structs. Although latent variables are useful for reducing 
measurement error, the researcher still must assume the 
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measurement model is appropriate for the latent variable. 
If this assumption is incorrect, results could be biased 
(Rhemtulla et al., 2020). For more on latent variables and 
factor scores, see Borsboom et  al. (2003), Curran et  al. 
(2016), and Rhemtulla et al. (2020).

What Is a DAG?

DAGs have many different uses, but in the context of 
epidemiologic research, DAGs refer specifically to causal 
DAGs (hereafter referred to as “DAG”; Glymour &  
Greenland, 2008; Greenland et  al., 1999; Hernán &  
Robins, in press-a; Pearl, 1995; Rohrer, 2018; Suzuki 
et  al., 2020; VanderWeele & Rothman, 2021). When 
researchers conduct observational data analysis, in 
which establishing causation is difficult, stating assump-
tions about the relationships among variables can help 
them reason about the likelihood that an observed sta-
tistical association represents a causal effect (Glymour 
& Greenland, 2008). DAGs provide a systematic tool for 
illustrating and reasoning about these assumptions in 
the context of estimating a specific exposure-outcome 
causal relationship. DAGs require the researcher to iden-
tify all common causes of an exposure and outcome and 
all common causes among all variables already in the 
DAG that might affect estimation of the target causal 
effect. DAGs are not an analytic technique, but a way of 
depicting assumptions about variables so that researchers 
may choose an appropriate analytic strategy to answer a 
given research question.

Elements of a DAG

Nodes. Nodes often represent variables measured in a 
study but can also represent unmeasured constructs. Even 
constructs that are unmeasured in a given study should be 
included in a DAG if they affect two or more variables in 
the graph because the purpose of the graph is to under-
stand the full set of processes underlying how the observed 
data came to be. It is straightforward to incorporate mani-
fest (i.e., observed) variables in DAGs. If a construct typi-
cally modeled as a latent variable is depicted in a DAG, it 
is usually drawn as a single summary variable; the items 
comprising the latent construct are not usually depicted.

Arrows/paths. If the goal is to use DAGs for causal infer-
ence, then the nodes in a DAG must be connected only by 
unidirectional arrows, also called “edges.” Because arrows 
point only one way, DAGs are considered “directed.” Arrows 
encode the possibility that one variable may cause another, 
whereas the absence of an arrow implies the stronger 
assumption that there is no direct causal relationship at all 
between two variables. In other words, including an arrow 
allows the possibility that a causal relationship has any 

strength, including zero, whereas the omission of an arrow 
requires that the casual relationship have a strength of 
exactly zero (i.e., no causal effect).

Although bidirectional arrows are not allowed in 
DAGs, note that some researchers do use bidirectional 
dashed arrows to indicate the presence of an unmea-
sured or unknown common cause of two variables 
(Pearl, 2000) or a latent variable causing two other vari-
ables (Richardson et al., 2017). These dashed arrows are 
by convention a shorthand for two directed arrows and 
an “unknown” or latent node. Bidirectional arrows 
should not be used to represent bidirectional causation 
in a causal DAG (Murray & Kunicki, 2022).

The arrows in DAGs are nonparametric: There is no 
need to specify and indeed no convention for specifying 
an assumed nature of the association (e.g., a linear or 
quadratic association) between two linked variables in 
the drawing of a DAG. This sets DAGs apart from SEMs, 
which generally assume a linear relationship between 
two variables unless otherwise specified. It has been 
argued that causal DAGs can be considered graphical 
representations of nonparametric SEMs (Pearl, 2012).

A series of arrows forms a path. A path is directed if 
it follows the direction of all arrows in the path. Such 
paths represent causal relationships. A path is “nondi-
rected” if it goes against the direction of at least one 
arrow in the path (i.e., into the arrow head). Such paths 
are noncausal yet nevertheless may lead to the observa-
tion of statistical associations (see below). Note that no 
directed path in a DAG may form a closed loop, making 
DAGs acyclic. This makes feedback loops impossible. 
However, bidirectional associations can be depicted by 
showing constructs measured at various times as sepa-
rate variables (e.g., X0 → M1 → X2).

Fundamental structures in DAGs. DAGs are primarily 
used to identify biasing paths and the variables that must 
be adjusted for (or must not be adjusted for) to “block” 
these biasing paths. This process relies on identifying sev-
eral fundamental structures (e.g., mediators, confounders, 
and colliders). These structures are briefly described below, 
and further discussion of these structures can be found in 
the substantial literature on these topics (Glymour & 
Greenland, 2008; Greenland et al., 1999; Hernán & Robins, 
in press-a; Pearl, 1995; Rohrer, 2018; Suzuki et al., 2020; 
VanderWeele & Rothman, 2021).

Mediators. In the context of causal inference, media-
tors are variables that explain the mechanism by which 
one construct affects another. In other words, mediators 
lie on the “causal pathway” between an exposure and an 
outcome. The directed nature of DAGs makes mediators 
readily identifiable as intermediate variables in chains. For 
example, in the chain, X→ M → Y, X causes M, and M 
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in turn causes Y. M is therefore a mediator of the causal 
association between X and Y.

Confounders. Confounders are causes of the outcome 
that are associated with but not affected by the exposure 
(VanderWeele & Rothman, 2021). Confounding can be 
depicted graphically using a fork structure (i.e., X ← C → 
Y). In this example, C causes X and also causes Y, making 
C a confounder of the association of X and Y. This type of 
structure is often referred to as a “backdoor path” between 
exposure and outcome because it involves moving “back-
ward” through (i.e., going against the implied direction of) 
at least one arrow.

Colliders. A collider is a variable that is caused by two 
other variables. In the simple DAG, X → L ← Y (where 
X and Y cause L), L is a collider. Imagining X, L, and Y as 
Boolean (true/false) variables can help illustrate the logic 
regarding colliders. It can be intuited that if L is true, then 
at least one of X or Y (but not necessarily both) must also 
be true. Likewise, if L is true but X is false, then it follows 
that Y must be true. In other words, within a given level 
of L, X and Y are related despite no actual causal effect 
between these variables (Glymour & Greenland, 2008; 
Greenland et al., 1999; Hernán & Robins, in press-a; Pearl, 
1995; Rohrer, 2018; Suzuki et  al., 2020; VanderWeele & 
Rothman, 2021).

Interaction. Although not a fundamental structure in a 
DAG, note that the potential for interaction between two 
(or more) variables can be gleaned from a DAG. If nodes 
point to a single variable, then an investigator may choose 
to assess whether these variables interact to affect that 
variable (i.e., whether the effect of an exposure on an 
outcome changes according to whether another exposure 
is present or absent; VanderWeele et al., 2021). Statistical 
methods for assessing interaction are beyond the scope 
of this article but were comprehensively described in 
Vanderweele et al. (2021).

Analytic technique

As described previously, DAGs are primarily used to 
identify biasing paths and the variables that must be 
adjusted for (or must not be adjusted for) to block these 
biasing paths. If the goal is to isolate the causal effect 
of an exposure (X) on an outcome (Y), the following 
rules apply.

First, mediators should generally not be adjusted for 
in a statistical analysis. This is because they are part of 
the causal effect of interest. Second, and on the contrary, 
confounders should generally be adjusted for. Using the 
language of DAGs, the backdoor path between X and Y, 
through C, must be blocked to validly estimate the causal 
effect of X on Y. Third, colliders should generally not 

be adjusted for because they do not induce bias on their 
own. However, conditioning on (i.e., adjusting for) a 
collider induces an association among its causes, which 
can potentially create a new backdoor path between X 
and Y (VanderWeele & Rothman, 2021). This phenom-
enon is called “collider bias” (Glymour & Greenland, 
2008). An exception is when there are additional collid-
ers that block any new backdoor paths.

The above rules can be used to identify a “sufficient 
set” of variables that can be adjusted for to block all 
backdoor paths between the exposure and outcome of 
interest without introducing new biasing pathways. A 
sufficient set need not include all confounders because 
sometimes adjusting for a single confounder blocks more 
than one biasing path. In addition, a sufficient set should 
account for any new biasing paths created through 
adjustment (e.g., by adjusting for a collider).

There are many ways to adjust for the variables in a 
sufficient set. Often, statistical adjustment in the analysis 
or matching or restriction in the study’s design stage are 
effective. In certain situations, such as when adjustment 
for time-dependent confounders would induce bias, as 
can happen if time-dependent confounders are affected 
by prior exposure (Hernán & Robins, in press-b), statisti-
cal techniques such as inverse probability weighting 
(Robins et  al., 2000) or g-computation (Robins, 1986) 
are needed.

Novel applications of DAGs

Finally, we briefly discuss the use of data to empirically 
build or verify causal DAGs. Methods for testing a hypoth-
esized DAG against the available data are gaining traction 
in some subfields. Likewise, methods are being devel-
oped to allow researchers to discover “pseudo-DAGs” 
(i.e., ancestral graphs with partially directed or undi-
rected edges, including completed partially directed acy-
clic graphs, partial ancestral graphs, and maximal 
ancestral graphs) directly from data with minimal expert 
input. However, both these approaches are hampered by 
the reality that DAGs are designed to test specific exposure- 
outcome relationships and as a result, may contain vari-
ables that are confounders on one path but mediators 
on another path. Likewise, variables that are irrelevant 
to the target effect of interest may cause bias in the test-
ing process or in the automated-learning process. These 
methods should thus be used with caution and should 
not overrule expert knowledge about the appropriate 
DAG structure.

Regardless of the generation method, DAGs should 
summarize researchers’ best knowledge of a topic; can 
be used to determine whether variables are mediators, 
confounders, or colliders; and can help guide model-
ing decisions regardless of the modeling strategy 
selected.



6 Kunicki et al.

Applied Example: Applying Structural 
Equation Modeling and DAG Concepts 
to the Study of the Association Between 
Depression Severity and Cognition

To illustrate how the principles described in this article 
can be applied in practice, we present an applied exam-
ple of modeling the effects of depression severity on 
cognition. There is a well-documented association 
between depression/depression severity and cognition 
in existing literature (Butters et al., 2000; Ganguli et al., 
2006; Nebes et al., 2000; Paterniti et al., 2002). However, 
studying this association is complicated by challenges 
such as measuring depression accurately and the poten-
tial for confounding and collider bias.

We generated a synthetic data set using the R package 
synthpop and data from the 2016 and 2018 sweeps of 
the Health and Retirement Study (HRS; all participants 
provided informed consent) to illustrate this example 
( Juster & Suzman, 1995; Nowok et al., 2016; Quintana, 
2020). Briefly, synthetic data are data generated to retain 
the statistical properties of real data (in this case, the 
HRS) while being fully anonymous because the results 
cannot be linked to any individual (Nowok et al., 2016; 
Quintana, 2020). This enables researchers to share data 
that otherwise may not be possible to be made open 
access and eliminates the potential for identifying par-
ticipants. For further discussion of synthetic data, see 
Nowok et al. (2016) and/or Quintana (2020).

After we restricted the sample to participants who 
participated in both the 2016 and 2018 HRS sweeps and 
who specifically provided data for the variables used in 
the example, the sample size was 4,389. The synthetic 
data were generated using these 4,389 participants. 
Because this analysis was for illustrative purposes, we 
did not incorporate HRS survey weights.

We operationalized depression severity using the 
eight-item Center for Epidemiological Studies–Depres-
sion Scale (CESD8). Each item was scored from 0 to 1; 
higher scores indicate more severe depression. After 
reverse-coding two items, we calculated a sum score, 
which was used as the exposure in the DAG-informed 
analysis. The eight items were used to create a latent 
variable in the SEM analysis (Turvey et al., 1999). Coef-
ficient omega of the CESD8 latent variable was 0.86 in 
the synthetic data, indicating good reliability. We note 
that whereas depression is used as a latent variable for 
didactic purposes in this example, in practice, depres-
sion research could benefit from focusing on specific 
symptoms instead of factor or sum scores (Fried, 2015; 
Fried et al., 2014; Fried & Nesse, 2015).

Cognition was defined by the total score on the Tele-
phone Interview for Cognitive Status (TICS; Brandt et al., 
1988) measure. The outcome considered in this analysis 
was standardized TICS score, representing the number 
of standard deviations a participant’s score was from the 
mean TICS score.

We also obtained age, gender, years of education, and 
moderate physical activity (whether participants took 
part in “mildly energetic” activities more than once a 
week, one time a week, one to three times a week, or 
hardly ever/never, as indicated in the previous [2016] 
HRS sweep). The synthetic data and R code used to 
conduct these analyses are available at https://osf.io/
jua95/?view_only=f2f19ad9871a4657a21b73066e0da49a.

SEM applied to the depression severity/
cognition example

We first took a structural equation modeling approach 
to answering this question. Because we were interested 
in the association between depression severity and cog-
nition, we built a model diagram, as shown in Figure 1. 
To demonstrate the ability of structural equation model-
ing to incorporate multiple constructs, we also included 
a potential mediator of the association between depres-
sion severity and cognition: physical activity.

In Figure 1, there is one circular node, three larger 
square nodes, and three smaller square nodes. The 
depression-severity construct is represented by the circu-
lar node, indicating it is a latent variable in this analysis. 
The three smaller square nodes below the depression-
severity node represent the individual item indicators 
that comprise the latent variables for that construct (note 
that there are eight items, but we show “D1, . . . , D8” 
for simplicity of the model). The three larger square 
nodes are age, physical activity, and cognition, which 
were treated as manifest variables in this analysis. Note 
that some variables, such as physical activity here, can 
be manifest variables in some analyses and latent 

Depression
Severity

...D1 D8

Age

Phys.
Act.

Cognition

Fig. 1. Model of depression severity, physical activity, and cognition, 
controlling for age.

https://osf.io/jua95/?view_only=f2f19ad9871a4657a21b73066e0da49a
https://osf.io/jua95/?view_only=f2f19ad9871a4657a21b73066e0da49a
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variables in other analyses, depending on the way in 
which they are measured and conceptualized. Other 
variables, such as depression severity, may be harder to 
directly measure and thus are often conceptualized as 
latent variables.

There are numerous pathways connecting the 12 
nodes in Figure 1 (note that seven nodes, D2–D7, are 
summarized with the “ . . . ” node). Starting with the 
depression-severity node, there are pathways to each of 
the item indicators representing D1 through D8. These 
represent the loadings of individual items onto the latent 
factor, labeled “depression severity.” By convention, the 
arrows for loadings are directed from the latent factor 
to the individual measured items. This can be seen as 
an assumption that the underlying latent factor is a cause 
of the measured item score (Borsboom, 2005; Borsboom 
et al., 2003). There are also pathways from depression 
severity to physical activity and cognition representing 
hypothesized effects of depression severity on both 
physical activity and cognition. The estimates of these 
paths can be interpreted as if they were regression coef-
ficients. Next, moving to the physical-activity node, there 
is a pathway to cognition (representing a hypothesized 
effect of physical activity on cognition). Finally, there 
are two pathways from age: one to depression severity 
and one to cognition. Age is included as a covariate in 
this model diagram to illustrate that we wanted to 
include the hypothesized effect of age on depression 
severity and cognition. Whereas in reality age likely 
plays a role in predicting physical activity (Godfrey 
et  al., 2013), we left out this pathway in this didactic 
example.

The pathways of interest for our structural equation 
modeling analysis were those from depression severity 
to physical activity, from physical activity to cognition, 
from depression severity to cognition, from age to 
depression severity, and from age to cognition. For each 
of these five pathways, our SEM estimated a regression 
coefficient describing its strength and direction. Depres-
sion severity, age, physical activity, and cognition also 
have variances that were estimated in the analysis. We 
did not specify any covariances in this model diagram.

After specifying the model diagram in Figure 1, we 
fit the model to the data and compared the hypothesized 
(i.e., model-implied) variance–covariance matrix with 
the observed variance–covariance matrix.

In general, a researcher may wish to drop the indirect 
effects of depression severity to physical activity and 
physical activity to cognition by either not specifying 
these paths or fixing them to 0. This model would be 
considered nested because it would be a smaller version 
of the initial, or full, model. This “reduced” model would 
then be compared with the full model using a Δχ2 test. 
A significant result (p < .05) would suggest the full model 

showed better fit than the reduced model, whereas a 
nonsignificant result would suggest the reduced model 
showed comparable fit with the full model. In the latter 
case, the reduced model would be preferred because it 
would be a more parsimonious representation of the 
data. Whereas the parsimony principle would suggest 
the “best” model is the simplest one, researchers should 
also consider the theory guiding their research question 
to determine whether a simpler model (i.e., direct or 
indirect) is more useful than a full (i.e., both direct and 
indirect) model. Nonnested models may also be com-
pared by consulting the Akaike information criterion or 
Bayesian information criterion, in which smaller values 
suggest better fit (Kline, 2015; Vrieze, 2012). For more 
on structural equation modeling, nested-model compari-
son, and determining model fit, see Harlow (2014), Kline 
(2015), or Schumacker and Lomax (2016).

Following these steps, we fit and compared three 
models. Model 1 was considered the full model, with all 
five of the pathways estimated (depression severity to 
physical activity, physical activity to cognition, depres-
sion severity to cognition, age to depression severity, 
and age to cognition). Model 2 was considered the  
indirect-effects model, in which the pathway from 
depression severity to cognition was fixed to 0. Model 
3 was considered the direct-effects model, in which the 
pathways from depression severity to physical activity 
and physical activity to cognition were fixed to 0. We 
established a priori that if the full model showed good 
fit to the data, it would be compared with the indirect 
and direct models. If significant differences were found 
using the Δχ2 test, the full model would be retained for 
interpretation. If, however, no significant differences 
emerged, the more parsimonious model (indirect or 
direct) would be retained for interpretation. Each of 
these three models has different implications. The full 
model implies both direct and indirect (through physical 
activity) effects of depression on cognition are necessary 
to explain the relationship between depression and cog-
nition. The direct model implies only the direct effect is 
necessary to explain this relationship. The indirect model 
implies only the indirect relationship is necessary.

We fit the full model and indirect- and direct-effects 
models to the synthetic data. All three models showed 
good fit to the data, except for the SRMR for the direct 
model and the χ² for each model. However, as discussed 
previously, a significant χ² alone is not enough to deter-
mine poor model fit. All fit indices results are reported 
in Table 1.

The results of the Δχ² test showed a significant dif-
ference between the full and direct models and between 
the full and indirect models. This suggested that the 
additional pathways contained in the full model led to 
significant improvements over the direct or indirect 
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models. Thus, the full model was retained as the final 
model for analysis (Harlow, 2014; Kline, 2015). The results 
of the full model are shown in Table 2 and Figure 2. 
They suggested a negative relationship between depres-
sion severity and physical activity (β = −0.26, p < .001), 
a negative relationship between depression severity and 
cognition (β = −0.07, p < .001), and a positive relation-
ship between physical activity and cognition (β = 0.03, 
p < .001) after adjusting for age.

Causal DAG approach applied to the 
depression severity/cognition example

The results of the structural equation modeling analysis 
suggest that depression severity affects cognition indi-
rectly through an effect on physical activity. However, 
depression and physical activity have a bidirectional 
association, meaning it is plausible physical activity pre-
ceded depression. A causal DAG approach can be useful 
in helping to think through the temporal ordering of 
variables and to make inferences about which variables 
actually caused which other variables. An example of 
such an approach follows. We present this approach as 
an alternative approach to the previous structural equa-
tion modeling analysis using the same synthetic data set.

We began by building the DAG shown in Figure 3. 
The exposure and outcome of interest should be added 
to the DAG first. Therefore, we began by adding depres-
sion severity and cognition. As stated previously, it is 
important to remember that in a DAG, the absence  
of an arrow is a stronger assumption than the presence 
of an arrow. Therefore, if we are interested in the effect 

of depression severity on cognition, we should start by 
ensuring that all common causes of depression and cog-
nition are identified and added to the DAG. Existing 
literature suggests that common causes of depression/
depressive symptoms and cognition include age, gender, 
education, and physical activity. These should be indi-
cated on the DAG. Note that we refer here to physical 
activity as measured before depression assessment. This 
is crucial given both the time-varying nature of depres-
sion and physical activity and the bidirectional associa-
tions between them. Note that all arrows in the DAG 
represent moving forward in time.

We must next consider whether any set of variables 
added to the DAG so far have common causes, add these 
to the DAG, and then continue this process in a recursive 
manner until all common causes are added. We must 
also consider how these common causes are linked with 
each other. We need not be limited by variables available 
in the data because the goal is to accurately depict the 
complete set of causal processes that gave rise to our 
data. Deciding when to stop adding common causes is 
a subjective decision. When satisfied that all common 
causes are on the DAG, the DAG can be used to identify 
which variables ought to be adjusted for in the statistical 
analysis.

For simplicity, we assume the DAG in Figure 3 com-
prehensively depicts all common causes among mea-
sured and unmeasured constructs (in reality, another 
researcher may choose to add additional common 
causes, such as genetic factors or other comorbid men-
tal-health conditions). We can now use the DAG to deter-
mine which variables must be adjusted for. We can do 

Table 1. Structural Equation Modeling Fit Indices Results

Model χ² (df      ) CFI RMSEA [90% CI] SRMR Δχ² (df  )

Full 1225 (42)*** .98 .05 [.05, .05] .06 —
Direct 2985 (44)*** .96 .08 [.07, .08] .10 573 (2)***
Indirect 1472 (43)*** .98 .05 [.05, .06] .07  88 (1)***

Note: CFI = comparative fit index; RMSEA = root mean square error of approximation; 
CI = confidence interval; SRMR = standardized root mean square residual. Δχ² refers to 
comparison with the full model.
***p < .001.

Table 2. Full Model Results

Parameter
Unstandardized 

estimate (b)
Standard 

error p value
Standardized 
estimate (β)

Depression severity to cognition –0.31 0.03 < .001 –0.07
Physical activity to cognition 0.08 0.02 < .001 0.03
Age to cognition 0.24 0.002 < .001 0.75
Depression severity to physical activity –0.35 0.02 < .001 –0.26
Depression severity to age –0.01 0.001 < .001 –0.09
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this by identifying backdoor (i.e., biasing) paths from 
depression to cognition. In this case, backdoor paths 
include the following:

Depression severity ← Age → Cognition

Depression severity ← Gender → Cognition

Depression severity ← Education → Cognition

Depression severity ← Physical activity → 
Cognition

Depression severity ← Age → Physical activity → 
Cognition

Depression severity ← Age → Education → 
Cognition

Depression severity ← Gender → Education → 
Cognition.

To block all backdoor paths, age, gender, education, 
and physical activity (all measured before depression 
measurement) must be adjusted for. This is the sufficient 
set for adjusting for confounding. Note that no mediators 
or colliders are included in the sufficient set. After a 
sufficient set is established, researchers can choose from 
a variety of strategies for adjustment: Statistical control 
in a multivariable model, restriction, matching, and 
inverse probability weighting are some options. These 
decisions regarding adjustment can be applied to any 
model that best aligns with the type and distribution of 
the data (e.g., logistic regression, Cox regression, mixed 
models). For this example, we chose a multivariable 
linear regression model, adjusted for the sufficient set 
of confounders noted previously.

The results of the linear regression are shown in 
Table 3. In the unadjusted model, a 1-unit increase in 
CESD8 score (representing greater depression severity) 
was associated with lower cognition (β = −0.13, 95% 
confidence interval [CI] = [−0.12, −0.15]). After adjusting 
for the sufficient set of confounders identified with the 
DAG, this association persisted, although it was slightly 
attenuated (adjusted β = −0.06, 95% CI = [−0.04, −0.07]). 
This means that for every 1-unit increase in CESD8 score, 
the mean cognition score decreased by about 0.06 SD, 
adjusting for age, gender, education, and prior physical 
activity.

In interpreting our findings, note that in choosing 
variables for the sufficient set, we made the crucial 
assumption that the measures of physical activity 
reported in the 2016 sweep represented behavior before 
the day of the interview, that depression severity repre-
sented symptoms experienced on the day of the inter-
view, and therefore that our measure physical activity 
represented behavior that preceded depression. Although 
we believed this was reasonable, if this assumption is 
not believed, one solution would be to use data on 
confounders measured in a previous study cycle, such 
as 2014 data. However, the use of earlier confounder 
data comes itself with an assumption—that the con-
founders measured in 2014 are sufficient to block back-
door paths observed on the DAG. This assumption may 
also be incorrect. If we were convinced that all backdoor 
paths had been sufficiently blocked by our analysis and 
that our assumptions about temporal ordering of the 
data were correct, then the adjusted result could be 
interpreted as a causal effect of increased depression 
severity on cognition.

This analysis did not consider mediation, but media-
tors could be added to the DAG to depict causal  
mechanisms—including physical activity—explaining 
the association between depression severity and cogni-
tion. The DAG in Figure 4 depicts mediation by physical 
activity following depression measurement. We can see 
from this DAG that although earlier measures of physical 

Age

Phys.
Act.

Cognition

...D1 D8

b =
 −0.3

5,

β = −0.2
6

b = −0.31, β = −0.07

b = 0.08, β = 0.03

b =
 −0

.01
, β

 =
 −0

.09

b = 0.24, β = 0.75

Depression
Severity

Fig. 2. Structural equation modeling full-model results. β refers to 
the standardized estimates; b refers to the unstandardized estimates.

Gender

Age Education

Prior Physical
Activity

Depression
Severity

Cognition

Fig. 3. Directed acyclic graph depicting the causal association 
between depression severity and cognition.
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activity have an effect on depression, later values of 
physical activity are affected by depression and therefore 
are believed to lie on the causal pathway from depres-
sion severity to cognition. The DAG in Figure 4 demon-
strates why we were careful not to adjust for physical 
activity measured after depression screening. Had we 
done so, we would have eliminated some of the causal 
effect we were attempting to measure. Note that if a 
researcher is specifically interested in mediation by 
physical activity following depression, then a separate 
causal-mediation analysis that includes these later con-
structs can be conducted (Richiardi et al., 2013; Valeri 
& VanderWeele, 2013). Such an analysis is beyond the 
scope of the current example.

Discussion

Comparing SEMs and causal DAGs

The similarities and differences between model diagrams 
for SEMs and causal DAGs are summarized in Box 1. The 
two key distinctions that should be highlighted are as 
follows.

Key Distinction 1. SEM diagrams do not necessarily 
depict causal relationships, whereas causal DAGs are 
always meant to describe causal relationships. This affects 
the meaning and use of arrows. Because arrows in causal 
DAGs represent both causal relationships and the concept 
of temporality, it is crucial that each arrow points in a 
single direction. Because arrows in SEM diagrams do not 
necessarily imply causation, but rather covariance, double- 
headed arrows are allowed (Greenland & Brumback, 
2002). Note that some users of both DAGs and SEMs 
include double-headed arrows as a shorthand for unknown 
common causes. Although this approach can simplify a 
complex graph, note that it technically violates the rules of 
a DAG (Haber et al., 2022).

Key Distinction 2. Structural equation modeling always 
uses the same general analytic technique (i.e., comparing 
a hypothesis with an observed covariance matrix), whereas 
causal DAGs are not associated with any particular statisti-
cal model. In structural equation modeling, the model dia-
gram is drawn to reflect a specific model the researcher 
plans to test. In other words, a researcher simultaneously 
draws a model diagram and decides on an analytic 

Table 3. Results of DAG-Informed Analysis of the Association Between Depression Severity and Cognition Incidence

Unadjusted model Fully adjusted modela

 
Unstandardized 

estimate (b)
Standardized 
estimate (β)

Unstandardized 
estimate (b)

Standardized 
estimate (β)

1-unit increase in CESD8 score −0.24 [−0.27, −0.21] −0.13 [−0.12, −0.15] −0.10 [−0.12, −0.08] −0.06 [−0.04, −0.07]

Note: The 95% confidence intervals are shown in brackets. DAG = directed acyclic graph; CESD8 = Center for Epidemiological Studies–
Depression Scale.
aAdjusted for gender, age in years, years of education, and amount of moderate physical activity.

Gender

Age Education

Prior Physical
Activity

Depression
Severity

Subsequent
Physical
Activity

Cognition

Fig. 4. Directed acyclic graph depicting the causal association between depression severity 
and cognition with time-varying health behaviors.
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strategy. DAGs, on the other hand, are best thought of as 
a tool that precedes statistical-analysis decisions. DAGs 
depict assumptions the researcher is comfortable making, 
and these assumptions can guide in choosing an analytic 
technique and aid in interpreting results.

Another important difference between a DAG-based 
analysis and a structural equation modeling analysis is 
that researchers typically do not consider model fit as a 
primary criterion for assessing a DAG-based analysis, 
and covariates in such an analysis should generally not 
be assessed for significance or removed to make the 
model more parsimonious because they are selected 
based on a priori knowledge.

Despite visual similarities, SEM diagrams and causal 
DAGs are used for different purposes, and choosing one 
is not necessarily an “either/or” question. There are con-
siderations researchers should make when exploring the 
use of structural equation modeling or causal DAGs. If 
the research aim is to assess the relationships among 
multiple latent variables, structural equation modeling 
may be an appropriate tool. Indeed, structural equation 
modeling could be useful for researchers who wish to 
examine interrelationships among several mental-health 

constructs (e.g., depression and anxiety). Using different 
forms of structural equation modeling, psychiatric epi-
demiologists could study the direct and indirect effects 
of covariates on mental health (i.e., using path analysis 
or latent variable modeling) or study how change in  
one construct is related to change in another construct 
over time (i.e., using a form of longitudinal structural 
equation modeling called “parallel process modeling”;  
Newsom, 2015). Structural equation modeling is also 
useful when latent variables are involved in a research 
question because it can parse out measurement error on 
the individual items comprising the latent variable.

If the research question of interest is specifically a 
causal question, a causal DAG can be useful. Causal 
inference is becoming increasingly popular in psycho-
logical science because it allows causal claims to be 
made when a randomized controlled trial (RCT) cannot 
be conducted (Rohrer, 2018). Indeed, there are many 
situations in which an RCT cannot be conducted in psy-
chological research. For example, researchers cannot 
randomly assign participants to develop symptoms of 
depression or anxiety, experience chronic stress, lose a 
loved one, or engage in substance use behavior. A 

Characteristics SEM diagrams Causal DAGs

Purpose To depict a hypothesized model exactly 
as the researcher plans to test it, using 
structural equation modeling, with a goal 
of selecting the best parsimonious model 
of the hypothesized relationships.

To elucidate assumptions about the causal links 
between variables to make correct analytic 
decisions. DAGs can help estimate a “specific causal 
effect” of a single exposure on a single outcome.

Arrows Imply prediction or covariance. Arrows 
are parametric, meaning all depicted 
relationships are assumed to be linear 
unless otherwise specified. Single- or 
double-headed arrows are allowed.

Imply causation. Arrows are nonparametric, meaning 
arrows can represent any statistical relationship 
between variables (linear, quadratic, etc.). The 
nature of the relationship (linear, quadratic, etc.) is 
not typically specified. Arrows may point in only 
one direction.

Lack of an arrow 
between nodes

Implies assumption that there is an 
absence of an effect or that there is no 
covariance.

Implies assumption of a lack of causation. This 
assumption is critical for reasoning with DAGs.

Nodes Manifest shown in rectangles, latent shown 
in ellipses.

More commonly, manifest. Latent variables must be 
treated as manifest variables.

Common causes Can include only nodes that are being 
estimated in the model (i.e., of interest 
to the researcher). If results are to be 
interpreted causally, all common causes 
must be included.

Must include all common causes among all variables 
in the model, whether or not they are available in 
the data.

Analytic technique Use the structural equation modeling 
procedure of comparing a hypothesized 
variance–covariance matrix with the 
observed variance–covariance matrix.

A useful tool for deciding on an analytic approach. 
Causal relationships among the depicted nodes help 
determine the most appropriate analytic strategy for 
the research question.

Box 1. Summary of Differences Between Structural Equation Model (SEM) Diagrams and Directed Acyclic Graphs 
(DAGs)
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researcher could use a causal DAG to depict the current 
state of knowledge regarding how variables are linked 
and then—if the researcher is willing to accept the 
assumptions outlined in the DAG—build a model that 
can elicit a causal effect of an exposure on an outcome 
of interest.

Can SEMs and DAGs be combined?

There may be situations in which a researcher wishes 
to combine the flexibility of structural equation model-
ing with the causal inference capabilities of DAGs. Such 
a combination is certainly possible because a DAG can 
be thought of as a “qualitative schematic” for a particular 
class of structural equation modeling (i.e., linear struc-
tural equation modeling), or a nonparametric SEM 
(VanderWeele & Rothman, 2021). Conversely, structural 
equation modeling may be thought of as an algebraic 
system for a causal DAG (VanderWeele & Rothman, 
2021). Indeed, previous research suggesting SEMs cannot 
be causal has been criticized (Bollen & Pearl, 2013), and 
the field of structural causal models shows that research-
ers can readily combine principles of DAGs in a struc-
tural equation modeling framework (Pearl, 1998, 2012).

If a researcher does interpret the results of structural 
equation modeling causally, there are multiple strong 
assumptions that must be acknowledged. First, one must 
assume all confounding and collider stratification is cor-
rectly specified in the system of equations. The rules of 
causal DAGs described in this article can aid in ensuring 
this is the case. Second, one must assume that all rela-
tionships between variables are linear or otherwise 
specify the correct nature of the relationship among 
constructs. This is a very strong assumption, perhaps 
stronger than the graphical assumptions (VanderWeele 
& Rothman, 2021). In summary, structural equation mod-
eling can be a powerful tool as long as certain strong 
assumptions hold. Even if these assumptions do not 
hold, it can be a useful hypothesis-generating tool 
(VanderWeele & Rothman, 2021). For more in this  
area, see Pearl (2012), Kline (2015, Chapter 8), and 
VanderWeele and Rothman (2021).

Conclusions and future directions

Researchers in the psychological sciences and psychiat-
ric epidemiology often work together, so understanding 
the methodology and terminology used by each field is 
valuable—especially as psychology begins to adopt 
more causal-modeling concepts (Rohrer, 2018) and pub-
lic health (especially psychiatric epidemiology) begins 
to adopt more latent-variable concepts (van de Pavert 
et al., 2017). Both SEM diagrams and DAGs are graphical 
tools for researchers to help conceptualize and guide 
their research. Structural equation modeling is a flexible 

analytical technique for modeling relationships among 
multiple constructs. DAGs are a tool for making deci-
sions about which variables to adjust for so that associa-
tions can be interpreted causally. Psychologists and 
psychiatric epidemiologists can use these approaches in 
their work and may find it useful to become better 
acquainted with both approaches if they are familiar 
with only structural equation modeling or DAGs.
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