.y FILE: USING LOGISTIC MODEL

DATE: 30JUNE?

USING LOGISTIC MODEL CALIBRATICN T ASSESS
THE QUALITY OF PROBABILITY PREDICTIONS
Frank E. Harrell, Jr,

Farry L. Les

Mvision of Biometry, Duke University Medical Center
Box 3363, Durham, North Carolfna 27710, USA

SUMMARY

We used a Togistic calibration model (Cox, 19B8a} to partition a
logarithmic  scoring rule {used to assess the quality of probability
predictions) 1nto indexes of discrimingtion and  thres indexes of
unrelfability. An {ndex of overall quality that 15 not penalized for a
prevalence correction i5 also proposed. Yarious tests for discrimination and
unrel fab111ty arise immediately from these indexes. Power properties of a
test for unreliability are studied.

I, INTRODUCTION

The assessment of predictive accuracy 15 of central importancs in
valideting and comparing either subjactive or model-basad predictions of event
outcomes.  When ore {s predicting a continuous outcome measurement, using
ordinary multiple linear regression for example, assessment of the quality of
predfctions can be carried out in & straightforward way using scatter
diagrams, correlations (predicted with observed), and error estimates
(predicted-observed outtomes). When, howeyer, the prediction fs  the
probabi11ty that a particular event will occur, assesswent of predictive
quality 15 much more diff{cult due to the binary nature of the outcoms.

Twp commonly wsed concepts of gquality of predictions are the
discrimination of 2 predictor {oftan called 1ts refinement), 1.2., the 2bility
of the predictor to separate or rank-grder cohservations with different
cutcomas, 2nd {1ts rellability {sometimes called validity or degree of being




calibrated) - the “correctmess" of predictions on an absolute scale. If, for
example, a predictor assigned a 20% probability of disezse for sach of a
homogenous group of 100 pestients and 20 patienis were later diaqnosed to have
the disease, the predictions would be reliable. Even though reliability 5 a
simpler concept, discrimination is easier to uniquely quantify, For example,
we may calcylate the concordance probability from the Wilcoxon-Mann-Whitney
statfstic - the praoportion of pairs of subjects, one with and one without the
putcome being predicted, such that the subject with the gutcome had the higher
predicted probability (see Harrell, et al, 1982}, We refer to this
concordance measure a5 the c-fndex. This measure is squivalent to the area
under 3 "receiver operating characteristic" curve {Hanley and Mcheil, 15982}
and s 2 1inear translation of Somers' rank correlation between predicted
probabiiities and the binary event indicator, which in the absence aof ties gn
predicted valyes is aiso equivalent to the Goodman-Kruskal rank correlation
coefficient (Goodman and Kruskal, 1975},

Reliab1lity i5 traditionally assessed by estimating the prevalence of the
event in questipn for each level of predicted probability, This method works
well when either gnly a few unfque predictions are made or the sample is
extremely large. When the predictions vary comtinuously frem 0 to @, some
grouping of the probabilities s usually necessary. This may be accomplished
by roundtng predicted probabilities into intervals or by constructing guantile
groups.  Once grouplng 1s done, a wvarfety of goodness of fit tests are
available for detecting unreliability (Lemeshow and Hosmar, 1982).

The method of grouping predicted probebilities to assess religbility has
several drawbacks when applied to predictions that range continuously from g
to 1. The most serious of these s the fact that one':s assessment of
reliability can chapge significantly depending on how the groups are formed.
in addition, when one wants to test whether the predictfons are “"significantly
unrelfable®, 1.e., whether the pbserved prevalence differs significantly from
the predicted values, an grdinary chi-square goodness-of-fit test lacks power,
[f separate samples were used for deriving amnd assessing predictions, and the
probabilities were divided into ten groups, the 12 statistic has 9 degrees of
freedom ({d.f.], which has & critical value of 156.9 at the 5% level,




1f unreliabflity could be described with only 2 d.f., the critical value is
reduced to 6.

¥arious indexes have been proposed far assessing the accuracy of
probability forecasts [see DebGroot and Feinberg 1982, Hilden, Habbsma, and
BEjerregaard, 1978, and Spiegelhalter, 19BE& for detajled discussiopns and
bibl1ographies]. One commoniy used accuracy index is Brier's {1950} quadratic
scoring rule. This index is 2 "proper scoring rule", meaning that a predictor
optimizes the Brier index by predicting the trus probability of the event in
question. Brier's 1index Thas been decomposed fnte reliability and
discrimination components (Hilden =t al., 1978, Spiegelhalter, 1986, Yates,
1982, Blattenberger and Lad, 1985, DeGroot and Feinberg, 1982) and a test for
reliabTlity based on one decomposition has been proposed [Hilden et al,,
1978).

Logarithmic scoring rules (Good, 19%2}) are also popular, and Cox [1958h)
has presented one related test for rellabfliity based on Tinear log odds
altermatives to perfect rellability. In contrast to Brier's index, less work
has been done to decowpese legarithmic scorfrg rules into  indexes of
reliability and discriminatipn, The method presented In Section 2 allows
decomposition of an overall qualfty measure into diseriminatfon and various
unrelfabi1ity companenis, each chance-corrected, and admits straightforward
11kelihood ratio and score tests for sigeificant discrimination and
unreliability.

Throughout the discussion we sssume that predictions and outcomes are
stochastically independent. This 1s true if, for example, 2 regression model
{e.g., a logistic model) was derived from a "training" sample and predictive
accuracy was assessed on an Tndependent "test" sample, which is often the only
way to obtain an ynbfated validation of the antire madeling process.

2. DESCRIBING ACCIRACY USING CALIERATION

Suppose that opne could estimate the "calibration curve" - the relatipn-
ship between the predicted probability and the trye probability of the svent.
Given an estimate of this relitionship, one way to gquantify the unreliabil{ity




of predictions is to measure what has to be done tp make the calibration curve
superimpased on the ddeal curve (a2 45 degree 1ine). Discrimination, on the
other hand, s related to whether or not the predictions are in any way
related to the outcomes, f.e., whether or not the cafibration curve is
harizontal,

Thus the problem pf quantifyfng unreliabiiity and discrimination can be
solved by estimating the relationship between predicted and chserved values.
Since observed values are binary, the reTationship 15 stated in terms of the
probability that the outcome occurs, The method of maximum Tikelihood can be
used to estimate this relationship even when nmo two predictions zre the same.
The method anly assumes that predictions are related to outcomes through a
sMooth curve that Tnterpolates between different predictions,

For a simple predictor variable X, the Togfstic reoression model (Cox,
19583, 1956, Walker and [uncan, 1967) relates X to the probability of anm
event. Let the event or outcome variable be dengted by Y, where Y=1 when the
event occurs and YeO otherwite, The model s as follows:

Probffsl X} ® mccmmmecmamaoeae. . [2.1)
1+ exp[-{a+rbx)}]

where exp{x} is e, the natural antilogarithm. Cox {1958b, 1970) proposed
using the linear logist{c model to relate "subjective probabil{tias" to
"objective probabilitias™. Let the predicgted probabilities of T1'¥E’**"Tn =1
ke denoted by Pl' PE' “eey Pn for n subjects, or cases. Let the truye
[c?ITHratedJ probabilities be denoted by Pi's PEI""' P,". We can estimate
P, giver P, by estimating the relatfonship between Py and ¥,. Py 15 first
transformed from a O-1 scale to an unlimited scale tp better fit the model.
The logistic calibration model js:

Prob{¥ =1 P.} = —mo-mommmmee- : (2.2)
1+ Exp[-{a+hL1}]




where L1 - 1ugit{Fi] = lng[P1f{1-F1}}. The mpde] can be restated as

Fil S mmrmssmsEsssmsEmA e o mm - {21-3}

Figure 1 shows the shape of calibration curves for varfous values of & and b,
The tdeal relationship [no calibration required) {3 found on the curve marked
a=0, b=1.

=== Figure 1 About Here ---

Hote that when a=0 and b=], Pf‘ = F1. and no ¢alibration 15 required. When no
s1ope calibration 15 vequired (b=1],

R — ] {2.4)
Py + (1-P )expf-a}

In this case, where only a preyalence adjustment is made, exp{a) is the odds
ratio of the corrected to the uncorrected overall prevalence, and the calibra-
tion mpde! s identical to the simplest form of Bayes' rule, It should be
recognized that a simpler calibration model such as Fi‘ = 2+bP, cannot be used
because this would allow P1' to be less than U pr greater than 1.

In many cases where a model has not been developed carefully on a data-
set, predictions from the model will be found too extreme when they are
validated in an independent sample because of overfitting the original data-
set. for example, & probability of death of .1 may need to be calibrated to
.25, and a prediction of .9 calibrated to .75. The corresponding logistic
calibration for this example is obtafned wsing a=0, b=.5 in equation (2.3). If
predfctions need fo be shrunk symmetrically toward 2 probability of .5 and a
predicted probability of P 15 caiibrated to & value of P', the calibrating
equatfon 2 derdved from (2.3) using a=0, b=logit{P')/Togit{F).




The parameters & and b can be estimated by maximizing the posterior
11kel1hood of the observed data {Pi' 71' 1#1,2,....0), or equivalently by
minimizing -2 times the log-1fkelihood function,

n
L=-2 & [Y, log(Py'} + {1-1,) Togl1-p.'}].
ful
(2.58)
n
=2 E [?1 ta+bL1] -lng{1+exp{a+hL1}}]
fal

L can be thought of as measuring Information or quality of the predictions in
relation to the osutcomes, given 8 and b.

3, DERINATION OF ACCURACY ITNDEXES

The following notation will be used:

L{a,b} = minimum L for 211 2,b
L{a,1] = mfniwum L for 211 a subject tp b=l
L{a,0) = minimum L for a1l a subject to h=0

- -EE[T11ugP+{1-Yi}lng{l-F]]
value of L at a=0, b=1
- -EE[T11ugP1+{l-Y1}Tng{1-P1}].

L{0,1)

where P-E¥Tfn. We compute the wnreliability U of the predictigns from the

difference in quality of the uncelibrated predictions and the guality of
sTope- and Tntercept-calibrated predictions:

U= [L{0,1) - L{a.b) - 2]/n . (3.1)
Since L{O,1) - L{a, h} fs a Tkelthood ratip statistic for tasting H,: a=0,b=1

with an asymptotic 1 distribution having expected vilue 2 if H ls true, U
has expected velug 0 if the predictions are reliable. Division hy the sample




size makes the range of U {ndepandent of n. U can be decomposed into U = UP +
”s‘ where 1.IFI 1s the unreliability due to the need for an gverall prevalence
correction [correction of intercept on logit scale] and Ll5 is unceliability
dug to the need for a slope correction given any nesded prevalence correction:

U, [L{0,1) - L{a,1} = 1]/n (3.2)
U, = [L{a,1) ~ Lia,b} - 11/n . (3.3}

up is the difference in guality of the best uncalibrated predictor and an
intercept-calibrated predictor. U, 1s the difference in qualfty of the best
intercept-calibrated predictor and the best slope- and intercept-calibrated
predictor. The -1 term causes each index to have expected value 0 1f the
corresponding type of wnraliability is truly absent. Large wvalues of the
unreliabiltty indexes mean that the predictions are unreljabTe. MHegative
values fndicate better reliability than one would expect by chance,

Likelihood ratio statistics are immediately available for testing each
type of unraliability:

Asymptotfc
Null Hypothesis IE d.f.
Significant total unreliakility L{D,1}-Li{a,b} Fd (3.4}
Hn:a-n.bsl
Significant ynreliability due to  L{0,1)-L{a,l] 1 {3.5}
overall prevalence error
Hn:a-n b=1
S5Tgnificant unreliability due to L({a,1)}-L{a,b] 1 {3.6)
slope error given prevalance
correction
Hn:bll




Simple score tests are alse available for testing the first two
hypothases above, avoliding the need for iterative calculations [Rao, 1973}, &
2 d.f, asymptotic HE score statistic for Hﬂ: a=0, t=1 15 given by

- - - - -1 -
[E[Ti Pij ELif?i PT}] EP1{1 PT} ELiFT{l Pij r{vi Pil (3.7)
2
Al d.f. test statistic for Hn: a=0 b=1 15
(E(¥,-P,)1%/EP, (1-P)) (3.8)
These score tests turn out to be fdentical to those proposed by Cox {1958b).

fox aiso presented a test for whether predicted probabilities are overly
#1spersed even though they are corrvect oh the average {Hu; b=l as=h},

The index of discrimination is derived by computfng the difference in
quality of the best constant predictor (cne that on the average correctly
prediets the overall prevalence of the evant) and the best calibrated
predictor:

D = [L{2,0} - L{a,b) - 1]/n. (3.9]

O has expected value D if there 15 no discrimination {b=0), The Tikelihood
ratio statistic for testing whether the predicticns have any discriminatory
ability {Hn:h-ﬂ] is Lfz.,0) - Lf{a.b), having asymptotically z chi-square
distribution with 1 4.f. under Hn'

An overall summary index for the guality of predictions 1s derived by

computing the difference in quality between the best comstant predictor and
the quality of the predictions as they stand [with no calibration):

¢ = [L{a,0) - L{0,1} + 1]/n, (3.1

It can readily be seen that § = discrimination - total unreliability = 0 - 1,
The summary fndex § 15 a simple translation of the lpgarithmic scoring rule




5imple score tests are also avatlable for testing the First twe
hypotheses above, avoiding the need for fterative calculations {Rac, 1973). A
Z d.f, asymptotic IE score statistic for Hyi 8=Q» b=l fs given by

-1
Z
Al d.f. test statistic for Hy: a=l b=1 fs
(0y,-P 1% /zR (1P ) (3.8)
These score tests turn put to be identical to those proposed by Cox {1958b).

Cax also presented a test for whether predicted probabilities are overly
dispersed even though they are correct on the average an: b=l a=0].

The index of discrimination is derived by computing the difference in
quality of the best constant predictor (one that on the average correctly
predicts the pverall prevalence of the event) and the best calibrated
predictor:

b = [L{a,0) - L{a,b} - 1]/n. {3.9)

D has expected value 0 if there 35 no discrimination {b=0). The likelihood
ratio statistic far testing whether the predictions have any discriminatory
ability {Hn:h-ﬂ} is L{a,0] - L{a,b}, having asymptotically a chi-square
digtribytion with 1 4.f. under Hu‘

An overal]l summary index for the gquality of predictions s derived by

computing the difference in quality between the best constant predictor and
the quality of the predictions as they stand {with no calibration):

Q = [L{a,0) - L{D,1] + 1]/n. [3.10)

It can readily be seen that ] = discrimination - total unrellability = @b - I,
The summary index 0 15 & simple translation of the Togarithmic scoring rule
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(see Good (1952), Cox (1970, Eq. 4.34), and Shapiro (1977)). The reference
point for Q is the best constant predictor, whereas other authors used as
reference a predictor having constant probability 0.5.

The value of Q is invariant with respect to the form of the calibrating
model. This result follows from 1) when a=0 and b=1, P1 = Pi s Mmaking the
log-1ikelihood function (here L(0,1)) dependent only on the observed data, and
2) when b=0, the calibrated probabilities do not make use of the predicted
probabilities so that PiI = P, the overall broportion of events that occurred
(ZYi/n). Hence (3.10) reduces to

Q= (2/n) Z[Y; log (P;/P) + (1-Y;) Tog (1-P5)/(1-P)1 + 1/n, (3.11)
An index of quality can also be constructed which does not pena]ize‘
predictions for being wrong by a constant prevalence correction. This index is

derived from the difference in quality of the best intercept-corrected predic-
tions from the qua]ity of the best constant predictor:

= [L(a,0) - L(a,1)]/n = D - U,. (3.12)

Since score statistics can be used to approximate likelihood ratio
statistics, simpler unreliability indexes can be constructed by substituting

(3.8) for L(0,1)-L(a,1) in (3.2) and (3.7) for L(0,1)-L(a,b) in (3.1). This

approach has two disadvantages, though. First, score statistics are not
additive as are partitions of log-likelihood. Second, score statistics may
not adequately quantify information content for situations far from the null
hypothesis.

4. POWER OF TEST FOR UNRELIABILITY

The 1ikelihood ratio test for toté] unreliability given in (3.4) is
difficult to study because of the iterative calculations required. It has
been shown in a similar situation that score tests have equivalent power
functiohs as likelihood ratio tests (Lee et al, 1983). Therefore we study the
power properties of the score test given by (3.7).




1
In genaral, E{Y1}=F1 and the :gore vector [z{?ihpij_ ELi{Ti'P1}I i
asympiotically normal with mean vector and covariance matrix given
respectively by

L(Py-P,)

ELT{F;-Pi]
‘ I ' ' (4.1)
EPifl—Pil fL1P1{I-Pi]

1 ] 2 [ ] [ ]

It follows that the sgore statistic for testing H,:2=0, b=1 has mean m and
variance v given by

B GrAY Ay (4.2)

v = 2ee[1AV)2] + &y AVAL

whare A {1: the matrix Inverse in (3.7). The distribution of (3.7) can be
approximated by & scaler multfple of a non-central xz random yariable ﬂxgil}
with 2 d.f. and noncentrality & by equatfng the first two moments of such 2
distribution to {4.2) {Johnson and Kotz, 1970}, yielding

8= [n- (n° - v}2)2
(4.3}
L= mfa -2,
If “é'l-u represents the l-o quantile of a central 12 distribution haying 2
d.f., the power of 2n o-level test Tor unreliabilfty can be approximated by

Z s Fi 2
To test the adequacy of this spproximation as well as the adequacy of the

central IE rutl distrfbution for {3.7), Z000 samples of varying sizes werws
simulated for each of a variety of setups in which only two distinct
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predictions were made. Here k observations were assigned a predicted
probability of Py and k ware assigned 2 pruhat:i‘lit.y of Pp- Corresponding
actuyz] population probabilities were by and p,.  Power was estimated by
computing the fractfon of score statistics excesding xgi_95=5.99. Resuits for
=06 are found inm Table 1. It can be ceen that type T arror 1t well
controlled and that (4.4} appears to be a satisfactory power approximation.

=== Table 1 About Hers ---

The powar approximation fn (4.4] can be ysed to estimate the sample size
necessary to achfeve a power of f for an a«level test of total unreliability.
Suppose that k prediction: are wmade at each qf glprnhahiltty levels, Pye Pps
Pra pg and that the true probabilitfes are pl, pE, R pg. The total sample
size 15 thus kg, Define Tj-lugit Py Then the quantities in {4.2) are given by

o ¥ ol ¥ ¥
m=trAY +ku Ay

: {4.5)
v 2 tel (A + ek T AT,
where )
A* _ EPJEI‘PJ} Eljpj{I'Fj}
2
EIJPJII'FJJ I]JPJ{I'Fj}
. EFJII‘PJ} E‘JFJ{I'PJ}

¥ = ‘ | ) . (4.6)
E‘jPJ{I-PJ} Eljpjil-Pj}

I{pj-pj}

Elj[ﬂj“ﬁj} '

and a1l susmations are over J=1, 2, ..., G.

i1




The following Tterative algorithm converges guickly to a salutign for k:

= 0; p=1

*

Inittalizn k1u$t

ioop X: Compute A= non-central ity paramater of :E distribution such

£ g} = 1-f

that Prob {y3{1} < X3:1-q

et mo= 8 {(1+2)
* & wl % %
5et k=[m-trA ¥ J/u A
Set g=[ m- (me-vil/2y2
where v = 2te[(AV 1°) + 4k AV AT

St Kp..q = ki 90 to X Toop

5. EXAMFLES OF YALUES OF THE IMDEXES

To help 1n interpreting the values of the indexes, consider a series of
simple examplies in which k subjects receiva one prediction, Pys and another k
subjects receive a predicted probability of Po- The first k subjects have an
observed prevalence of the event of Ul and the second ¥ have a prevalence of
UE‘ The resulting calibration parometer est{imaztes (a and b}, accuracy indexes,
and chi-square statistics are in Table Z for k=100. Fopr comparisoh, the ¢
index 15 2lsp given, aTong with a version of Brier's score defined by B = 1 -
aysrage of {PT-?q}E.

--= Table 2 About Hare ---
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Lines 1 and 2 in the tabie dewonsitrate the values of the {ndexes when thave 15
perfect reliability and low tp moderate discrimination, respectively. Similar-
Ty, Mines 3-5 correspond to backwards predictiops (e.g.. predict .25 and .75,
observe .75 and .25 with increasing discriminmation. Total unreliability is
statistically significant for Mnes 3-6, & and 9. Lines 5-9 are more typical
examples of unreliability. The measure of overall quality, 0, s negative
{Tines 3-€) when the discrimination is net good enough to overcome seripus
unrelfabi11ty. The 1ndex of discrimination, D, ranked the discrimination of
predictions in the same order 2s the absolute value of c-.5. The rankings of Q
and B are very similar but both differ from those of the absolute value of
c-.5, They have similar rankings as c.

It appears that predictions fer which U does not exgeed about Q.05 are
reliakble for the most part. Statistical s{gmificance of U can also be used to
quantify unreliabi1{ty, although the power of this assessment dspands on the
sample size (significamt unreliability §s present at the o=.05 level 1f
U=1,99/n; for up and L'IE the critical levels are 2.84/n). It can be shawn that
for this situation {k predictfons at each of two probabilitiss), the
unreliability index is given by

b = 8 109lp,/(1-p 30700,/ (1-0, 3140, 0g(p,/ (1-py 10700,/ (1-051] (5.1)
+ log [{1-p;}{1-p,]1/((1-0,)(1-0,)] -2/n.

The analyst can use {5,1) to estimate acceptable Tevels of U for Fixed e Ps
by wvarying ﬂl and DE and Judging U by whether 01 and UE are meaningfully
different from Py and Py - A plot of U with respect to 01 and UE 15 shown 1in
Figure 2 whem k=100 (n=200) for the four combinations pl=.25, pE=.?5; py=.B5,
p2=.E5; p1=.5. pE-+4; and p1'+1, pE-.E.

To show examples of the values of the new indexes as well as the result-
ing estimates of the calibration or reliability curves when the predictions
are continuous, the predictive accuracy of two Togistic regression models was
consfdered. For both wodels, the oufcome varighle was complete response to
treatment of non-Hodgkin's l1ymphomd, and the predictions were developed
(Harrell et al,, 1%85] using a training sawmple of 110 patients (50 with
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complete response, 60 without), These predictions were evaluated on & separate
test sample of 116 patients. The first model was developed using a standard
stepwise variable selection method with 25 candidate variables, far too many
for only 50 cases of complete response. The second model used the incomplete
principal component method, which effectively reduced the 25 variables to only
I, The accuracy fndexes are foumd fn Table 3. Corresponding p-values for
significant unrellability or discriminration are in parenthesis, Reliability
piots using the estimated a and b may be Tound in Figure 1. The results
fndicate significant unreliab{lity {both types) and 1ittle discriminatfon
abflity for model 1, resuTting in unacceptable predictions [Q=-.1%). The
extreme predictions from model 1 cannot be trusted, which §s frequently the
case when two many predictor variables are used with small sample sizes,
Model Z has moderate need for a prevalence correction [Upt.ﬂﬁl but nat for a
slope carrection, and has better discrimination than mpdel 1, resylting in far
better overall quality (Q=.03 vs, -,1%), This f{mprovement in predigtive
accuracy s due to the data reductton resulting from fitting principal
components.

=== Table 3 About Here ---

&. COMPUTER SOFTWARE

A 5AS {1985) wacro 15 available from the authors for calculating all of
the indexes mentioned in this paper as well 2s for drawing the relfability
plot. Another SAS program is available for power and sample sfize calculations
tased on (4.4} and {4.7).

7. COWCLLSIONS

We sought a method of assessing predictive quality havimg the following
properties: (1) no grouping of predictions is required, {2) an overall measure
of the quality of predictions can be forwally decomposed into a simple sum of
{ndexes pf wnreliability and discrimination, (3) the index of unrellability
can be further decomposed into an 1ndex of unrelfability due to the need for
an overall prevalence {constant) correction and ynrelizbility due to a more
complicated correction, (4} the method yielded as a byproduct an fndex of

14




overall predictive guality that was nat penalized for a prevalence correction
and {5) the wmethod automatically ylelds formal statistical tésts [with reasons
akle power) for significant unralfability {ang 1ts two comporents) and for
significant discriminatory ability. The logistic regression wmodel, when wsed
to calibrate predicted probabilities ta obsérved ooicomes was usefel in
meeting these goals. The power approximation given dn [4.4) 15 adequate for
egstimating the sample size needed to conduct studies such as those designed to
test diagnostic accuracy of physicians or probability models.
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Table 1

Simulzted and Approximated Powar af
Score Test for Unralfability

o=, 05
Fredicted True Simulatad Piwer by
k& Probabilities  Probabilittes  Power (4.4}
P P2 P P2
10 .25 .75 +25 T% .050 Wil
.10 75 063 083
20 25 - h .25 T8 . 050 080
.10 75 197 .191
a0 25 «15 25 i 034 050
.10 15 293 329
40 .25 -7h .25 T5 55 050
.10 5 518 ATS
100 25 «715 .25 .75 058 050
15 .75 &45 .k
.15 85 Bel 873
.02 .95 2 .95 042 50
A0 95 B 950
10 .95 .10 95 051 050
02 95 . 786 .T83
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Table 2

Examples of Yalues of the Indexes

1 .40 .60 .40 .80 O 1-.005 0-005 0-.001 0 .04 B .04 A0 .76
2 .25 .15 .28 5 O 1 -006 ¢-.005 ©0-.01 O .26 52 .27 .75 .8l
3 .40 .60 .60 .40 O -1 -.005 0 .l60 32 .15 32 .04 A -,.12 .40 .72
4 28 .75 75 .25 O -1 -,005 ©1.100 220 1.10 220 .26 %2 -.B3 .25 .56
5 ,10.%0 .90 .10 O =1 -.005 ( 3.500 703 3.50 703 .73 147-2.80 .10 .27
& .40 .70 .60 .90 .95 1.43 .18 37 005 2 .19 39 ,12 25 -.07 .70 .80
Foo.20 .70 25 W% & %8 .0l 3-005 0,004 3 .26 %52 2% .75 .81
g .28 .70 .2% .90 .F6 1l.69% .04 10 .0& 13 .11 23 .47 9% . 3§ .83 .84
§ .25 .86 .25 .90 1.59 2.84 .13 28 .15 31 .28 59 .47 95 .19 .83 .80
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Table 3

Comparing Predictive Accuracy of Two Logistic Regression Modals

Quantity

= o o
=

= — I —

o

Figure 1 Legend:

Figure 2 Legend:

-7
3
14 (.0001)
.07 {.003)
.21 [.0001)
03 [.045)
-.1%
-4

12
-.4
1.4
.05 [.007}
~.003 [.4)
06 {.018}
.08 {.001}
.03
.08

Four logistic calfbration {relfability) curves,
including one for a reliable predictor [a=0, b=I).

Contour graphs of U {given by 5.1} as & function of chserved
proportions 0, and IJ2 Tha center of aach sat 13 [pl. 92]‘
the trus probabilities. The comtours correspond to U = O
{inner contour), .01, .02, .... .10 (outer contour).
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