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Abstract
Determining independent variable relative importance is a highly useful practice in organizational science. Whereas techniques to determine independent variable importance are available for normally distributed and binary dependent variable models, such techniques have not been extended to multicategory dependent variables (MCDVs). The current work extends previous research on binary dependent variable relative importance analysis to provide a methodology for conducting relative importance analysis on MCDV models from a dominance analysis (DA) perspective. Moreover, the current work provides a set of comprehensive data analytic examples that demonstrate how and when to use MCDV models in a DA and the advantages general DA statistics offer in interpreting MCDV model results. Moreover, the current work outlines best practices for determining independent variable relative importance for MCDVs using replicable examples on data from the publicly available General Social Survey. The present work then contributes to the literature by using in-depth data analytic examples to outline best practices in conducting relative importance analysis for MCDV models and by highlighting unique information DA results provide about MCDV models.
Keywords
relative importance, R-square, dominance analysis, ordinal logistic regression, multinomial logistic regression


Joseph N. Luchman, Fors Marsh Group LLC, Iowa City, IA, USA

Corresponding author(s): 
Fors Marsh Group LLC, 1010 N. Glebe Road #510, Arlington, VA 22201, USA. Email: jluchman@gmail.com


Organizational science researchers and practitioners often wonder how important an independent variable is in terms of predicting a dependent variable. For example, human resource managers wonder which incentives best attract job applicants, advertisers wonder which product attributes best foster perceptions of value in consumers, and policy makers wonder which issues drive stakeholder opinion. Questions of independent variable importance are informed by statistical analysis that discerns the proportionate contribution an independent variable makes toward predicting a dependent variable compared to other independent variables, that is, independent variable relative importance (Grömping, 2007; Johnson & LeBreton, 2004).
The question of how to determine relative importance in statistical analysis such as linear regression has intrigued statisticians and research methodologists for decades (for reviews, see Budescu & Azen, 2004; Johnson & LeBreton, 2004), however methodologists are increasingly converging on the idea that relative importance can be determined by examining the extent to which an independent variable reduces prediction error, compared to other independent variables, in a statistical model (Budescu, 1993; Grömping, 2007).
By comparison to linear regression, which has a natural prediction error metric (i.e., proportion of explained to total variance or R2), many questions in behavioral science are multicategorical with an ordered (e.g., “less,” vs. “the same,” vs. “more”) or an unordered (e.g., “buy,” vs. “sell,” vs. “do nothing”) structure. Although the question of how to determine relative importance with linear regression has produced much research, the question of how to discern independent variable importance for categorical (for extensions with binary dependent variables, see Azen & Traxel, 2009; Tonidandel & LeBreton, 2010) or multicategory dependent variables (MCDVs) has produced comparatively little inquiry.
MCDVs are not uncommon among top journals in organizational science as Google Scholar produces a number of hits using keywords referencing MCDVs within Strategic Management Journal, Journal of Applied Psychology, and Organizational Behavior and Human Decision Processes. Some example studies include Wang, Zhan, Liu, and Schultz (2008), who evaluate different bridge employment decision processes as an unordered MCDV, and de Wit, Jehn, and Scheepers (2013), who evaluate decisions made on a team task as an unordered MCDV. In addition, Mislin, Campagna, and Bottom (2011) evaluate spending decisions during negotiations using an ordered MCDV, and Perretti and Negro (2006) evaluate decision making by Hollywood directors based on the “newness” of personnel employed to conduct a film as an ordered MCDV. Because many MCDVs cannot, or perhaps should not, be analyzed using linear or binary logistic regression, understanding how to determine the relative importance of independent variables in MCDV models is an increasingly useful area for researchers to understand. Moreover, just as in linear and logistic regression, relative importance analysis for MCDV models serves a highly useful and complementary role that aids in results interpretation for the intrinsically nonlinear models to which MCDVs are fit (for a similar set of perspectives focusing on linear regression, see Nimon & Oswald, 2013; Tonidandel & LeBreton, 2011)—examples using relative importance statistics for interpreting MCDV model results are covered in the present work.
The purpose of the present work is to extend existing research on relative importance determination using dominance analysis (DA; Budescu, 1993) focusing on logit-based (i.e., not probit-based) regression models for ordered and unordered MCDVs. The current study contributes to the literature by reviewing DA, briefly outlining its conceptual background and interpretation, reviewing several important considerations for MCDV relative importance determination, outlining how and when to use MCDV models to determine relative importance, demonstrating the effect of model choice on importance inferences, and demonstrating how general dominance statistics can contribute to results interpretation of MCDV models. Additionally, the present work provides detailed analysis examples on the publicly available General Social Survey (GSS; Davis, Smith, & Marsden, 2010) data, intended to illustrate MCDV relative importance analysis that any researcher can replicate. Taken together, the present work represents an important review and extension of previous research on relative importance statistics and provides best practices for researchers determining relative importance of MCDVs.
Relative Importance Analysis
Relative importance is defined as “the proportionate contribution each [independent variable] makes to R2, considering both its direct effect (i.e., its correlation with the [dependent variable]) and its effect when combined with the other [independent] variables in the regression equation” (Johnson & LeBreton, 2004, p. 240; brackets used to adapt terminology). There are several points to note about relative importance that can and have been derived from the foregoing definition: (a) Relative importance can be determined through marginal or incremental contributions to an index of model fit like the R2 (e.g., Grömping, 2007); (b) relative importance can be used to determine the relative quantity of a model fit index that is, on average, attributable to an independent variable; and (c) relative importance analysis can be used to rank order the predictive usefulness of independent variables (see Budescu & Azen, 2004). DA is used to conduct relative importance analysis and is based on a procedure first proposed by Lindeman, Merenda, and Gold (1980) in which all marginal contributions to the R2 are averaged within- and between-orders—where orders refers to the number of independent variables in the statistical model. DA conducts an all subsets regression in which all possible combinations of the independent variables in the statistical model are included in separate regressions and the R2 for each regression is recorded. Specifically, for p independent variables, the number of required regressions is 2p – 1. For example, a model with four independent variables (e.g., X1, X2, X3, X4) will require 15 different regressions (i.e., [a] X1; [b] X2; [c] X3; [d] X4; [e] X1, X2; [f] X1, X3; [g] X1, X4; [h] X2, X3; [i] X2, X4; [j] X3, X4; [k] X1, X2, X3; [l] X1, X2, X4; [m] X1, X3, X4; [n] X2, X3, X4; and [o] X1, X2, X3, X4) to obtain each possible subset’s R2.
Following the all subsets regression, DA proceeds by averaging the marginal contributions to the R2 (i.e., incremental predictive validity) attributable to an independent variable within each order. In the four independent variable example, there will be four within-order averages. The four averages correspond to the average marginal contribution to the R2 by an independent variable when there are one, two, three, and four different independent variables included in the statistical model. Thus, for models with i of the p possible independent variables, the within-order average for independent variable Xv will be:CXvi=∑j=1p−1i−1Ry.XvSj2−Ry.Sj2p−1i−1

(1)


where Sj is a distinct subset of the p independent variables excluding Xv (i.e., the focal independent variable) and p−1i−1 is the number of distinct combinations of the size of the bottom number (i.e., i – 1) out of number of elements of the size of the top number (i.e., p – 1). Thus, Ry.XvSj2 is the R2 for the distinct subset of variables Sj, which also includes Xv, and Ry.Sj2 is the R2 for the same distinct subset of variables Sj, which excludes Xv. To illustrate, consider independent variable X1. The four within-order averages related to X1 are computed as:Within−orderAverage1:CX11=Ry⋅X124−11−1Within−orderAverage2:CX12=(Ry⋅X1X22−Ry⋅X22)+(Ry⋅X1X32−Ry⋅X32)+(Ry⋅X1X42−Ry⋅X42)4−12−1Within−orderAverage3:CX13=(Ry⋅X1X2X32−Ry⋅X2X32)+(Ry⋅X1X2X42−Ry⋅X2X42)+(Ry⋅X1X3X42−Ry⋅X3X42)4−13−1Within−orderAverage4:CX14=(Ry⋅X1X2X3X42−Ry⋅X2X3X42)4−14−1



In DA, averaging within order and comparing the resulting statistics is the process of determining conditional dominance (Budescu, 1993). Thus, CXvi is the conditional dominance statistic for variable Xv at models sized i. Conditional dominance is inferred for independent variable Xv over independent variable Xz when conditional dominance statistics for independent variable Xv are bigger than those of independent variable Xz across all p orders. Note that the various combinations of X2, X3, and X4 as described previously correspond to the Sj in Equation 1.
Following averaging within order, the resultant averages (i.e., conditional dominance, CXvi statistics) are averaged between orders. Hence, for the p within-order averages/conditional dominance statistics, the between-order average is:CXv=∑i=1pCXvi/p

(2)


In DA, averaging the within-order averages between orders and comparing the resulting statistics across independent variables is the process of determining general dominance (Budescu, 1993). Thus, CXv is the general dominance statistic for variable Xv. General dominance is inferred for independent variable Xv over independent variable Xz when the general dominance statistic for an independent variable Xv is bigger than that of independent variable Xz. Equation 2 also produces an additive decomposition (i.e., that adds/sums to the total) of the R2 fit index into independent components attributable to each independent variable. An important point to note about Equation 2 is that in almost every situation, general dominance can be determined among the independent variables—which is not true of conditional dominance statistics—and serves as the basis for the definition of relative importance (Grömping, 2007; Johnson & LeBreton, 2004), but is a weaker importance criterion than conditional dominance (Budescu & Azen, 2004).
The most important distinction between DA and other relative importance analysis statistics is the importance criterion known as complete dominance (Budescu & Azen, 2004). Complete dominance is the strongest criterion for the determination of relative importance as it requires that for every possible comparison between 2 independent variables Xv and Xz, the marginal contribution to the R2 for independent variable Xv is always larger than Xz. Complete dominance is determined through:XvDXzif2p−2=∑j=12p−2if Ry⋅XvSj2−Ry⋅Sj2>Ry⋅XzSj2−Ry⋅Sj2then1if Ry⋅XvSj2−Ry⋅Sj2≤Ry⋅XzSj2−Ry⋅Sj2then0

(3)


Equation 3 shows that complete dominance is determined if across all 2p–2 subsets Sj in which independent variable Xv and Xz are absent, adding independent variable Xv results in a larger increment to R2 than adding Xz. More precisely, if a value of 1 is assigned for all comparisons in which adding independent variable Xv produces a larger marginal increase than independent variable Xz from subset Sj, and a value of 0 is assigned in all other cases, when the sum across all 2p–2 comparisons results in the value 2p–2, then independent variable Xv completely dominates Xz—which is indicated in notational form by XvDXz. When the sum of all the comparisons does not result in 2p–2, then independent variable Xv does not completely dominate Xz. To illustrate, consider the complete dominance comparisons between X1 and X2:Ry⋅X12versusRy⋅X22Ry⋅X1X32−Ry⋅X32versusRy⋅X2X32−Ry⋅X32Ry⋅X1X42−Ry⋅X42versusRy⋅X2X42−Ry⋅X42Ry⋅X1X3X42−Ry⋅X3X42versusRy⋅X2X3X42−Ry⋅X3X42



Because there are only four independent variables, there are only four marginal contributions or incremental validity comparisons possible—how much better does X1 do compared to X2? How much better does X1 do compared to X2 above and beyond X3? How much better does X1 do compared to X2 above and beyond X4? Finally, how much better does X1 do compared to X2 above and beyond X3 and X4? Note that the aforementioned various combinations of X3 and X4 correspond to the Sj in Equation 3. In the section to come, I review models researchers can use to fit MCDVs—primarily in terms of their log likelihoods as log likelihood functions tend to be used to develop fit index alternatives to the R2.
Which Model to Use? Modeling Considerations for Multicategory Relative Importance
MCDVs present a researcher with several choices as to how to model the data and thus how to characterize relative importance of independent variables. Traditionally, dependent variables with a natural ordering, or ordinal MCDVs, have been analyzed using the proportional odds logistic or ordered logit model (see Cameron & Trivedi, 2005) or more generally the generalized ordered logit model (e.g., Peterson & Harrell, 1990), which does not require the proportional odds assumption. The generalized ordered logistic model is an extension of the binary logistic model in that the model estimates h – 1 thresholds/intercepts to account for the h categories of the dependent variable. The log likelihood function used to estimate the generalized ordered logit model is as follows:lnLgeneralizedordered=∑j=1h∑i=1Njlneiyˆj+τj1+eiyˆj+τj−eiyˆj−1+τj−11+eiyˆj−1+τj−1

(4)


Where ln L is the log likelihood, yˆj is the linear predicted value (i.e., sum of each independent variable value times its regression coefficient) for category j, τj is the threshold value for the distinction between category j and all categories higher than j, and Nj is the number of individuals responding in response category j. The threshold value corresponding to τ0 is –∞ (resulting in eiyˆj−1+τj−11+eiyˆj−1+τj−1=0), whereas τh is ∞ (resulting in eiyˆj+τj1+eiyˆj+τj=1). The more popular proportional odds ordered logit differs only from Equation 4 in that it constrains the predicted value yˆj to be equal across all h categories (i.e., yˆj=yˆ).
Notice that in Equation 4 the log likelihood takes advantage of the ordered nature of the MCDV by estimating a model in which the probability of category j is subtracted from that of category j – 1. In essence, the generalized ordered logit model estimates a number of cumulative category probabilities for category 1, category 2 or less, category 3 or less, through category h, represented as the maximum cumulative probability of 1. Obtaining the probability for any single category j then involves subtracting the probability of being in category j from category j – 1. The cumulative nature of the probabilities in the generalized ordered logit model is a key aspect its estimation and, when predicted values are constrained to be equal, is the conceptual underpinning of the commonly imposed proportional odds assumption. More specifically, the proportional odds assumption imposes the restriction that all the category probabilities share a common odds ratio (i.e., regression coefficient/linear predicted value), yet have different thresholds, and can be characterized in terms of their probabilities by the subtractive relationship in Equation 4. The generalized ordered logit model can also apply a partial proportional odds model in which only some of the independent variables are allowed to have different coefficients across the h categories and constrains the rest of the coefficients to be the same across all h categories of the MCDV.
By contrast, dependent variables without a natural ordering, or unordered MCDVs, have been traditionally analyzed using the multinomial logistic model (see Cameron & Trivedi, 2005). The log likelihood function to estimate the multinomial logistic model is as follows:lnLmultinomial=∑j=2h∑i=1Njlneiyjˆ1+∑k=2heiykˆ+∑i=1N1ln11+∑k=2heiykˆ

(5)


Notice that the multinomial logistic log likelihood is similar to the generalized ordered logit model in that it is a function of multiple predicted values. By contrast, the multinomial model represents the likelihoods of each category independently and sums across them; relaxing the proportional odds assumption in a different way, and resulting in a very different log likelihood than, the generalized ordered logit. In particular, the multinomial logit is focused on comparisons with the base category (i.e., category 1 in Equation 5) much like dummy-coded independent variables.
Relative Importance for Multicategory Dependent Variables
A persistent problem for MCDV models is that unlike normally distributed dependent variables that can be characterized naturally by explained variance, there exists no natural model fit metric by which to characterize prediction quality or accuracy for MCDVs (e.g., DeMaris, 2002). Despite the lack of a natural model fit metric, Azen and Traxel (2009) have recently proposed the use of two pseudo-R2 fit indexes: the McFadden (1973) and the Estrella (1998) pseudo-R2s. Both indexes behave like the explained variance R2 and are useful for the DA of binary dependent variable models. The McFadden pseudo-R2 is conceptually similar to the explained variance R2 in that it is one minus the ratio of the log likelihood interpretation of the proportion of error variance. Specifically, the log likelihood interpretation of proportion of error variance has as its numerator the log likelihood of the full model. The log likelihood of the full model is conceptually similar to the notion of the error variance in linear regression as useful independent variables will reduce the log likelihood of the full model just as they would reduce error variance. The denominator of the log likelihood interpretation of proportion of error variance is the log likelihood for an intercept-only model. The log likelihood for the intercept-only model provides a lower bound for model performance. An independent variable in a linear regression must explain more variance than the intercept/mean of the dependent variable. Similarly, an independent variable in a logit-based regression must improve the log likelihood more than the model intercept(s). Computationally, the McFadden R2 is obtained as follows:RMcFadden2=1−lnLmodellnLintercept=1−lnLmodel∑j=1hlnprjNj

(6)


Where prj is the proportion of observations in category j. The Estrella pseudo-R2 is a rescaling of the McFadden R2 to force the index to take on more properties of the explained variance R2:REstrella2=RMcFadden2−2lnLinterceptN

(7)


As Azen and Traxel (2009) note, both indexes have properties that lend them to use in DA. In particular, both pseudo-R2 s (a) range between 0 and 1, (b) can only increase as independent variables are added, (c) are invariant to linear transformations of the variables, and (d) are intuitively interpretable. The McFadden pseudo-R2 is particularly useful in terms of interpretation as it is the proportional increase in “recoverable information” provided by the model about the dependent variable. In other words, the McFadden pseudo-R2 represents how much closer to perfect prediction the model achieves given the comparison point of just estimating an intercept (or set of intercepts for MCDV models) in proportion or percentage form. More technically, the distance between the model and a perfect model can be represented as a Kullback-Liebler divergence or a difference between two probability distributions. In the present case, because the log of the perfectly fitting/saturated model for MCDV models is 0, the ratio of log likelihoods (i.e., McFadden pseudo-R2) becomes equivalent to the ratio of Kullback-Liebler divergences or a deviance pseudo-R2 (see Cameron & Windmeijer, 1997; Equation 5).
Establishing the usefulness of both pseudo-R2s for MCDV models, the DA of MCDV models then follows directly from Azen and Traxel (2009). Specifically, to conduct a DA for an MCDV a researcher conducts an all subsets MCDV regression, records incremental contributions to either the McFadden or Estrella pseudo-R2 from each regression, then averages and compares statistics as in Equations 1, 2, and 3. In the section to come, I demonstrate how a researcher would conduct a relative importance analysis using a DA approach with an ordered as well as an unordered MCDV. Importantly, I demonstrate the implications of evaluating the assumptions underlying ordered logistic regression analysis and the impact of such assumptions on the determination of relative importance. Additionally, I compare ordered and multinomial logistic regression-based DA to other, already available procedures to demonstrate both when such methods are superior methodologies for determining relative importance compared to alternatives. Because Azen and Traxel also show, in their Appendix 1, that the dominance relationships for both the McFadden and Estrella R2 are equivalent, I follow them in illustrating MCDV DA using only the McFadden pseudo-R2 in the coming sections.
Data Analytic Examples
In the present section, I outline in detail the variables involved in as well as the process undertaken to determine relative importance with both ordered and unordered MCDVs using DA. Outlining the DA process in its entirety using reproducible examples allows for a fuller exposition of how relative importance can be inferred and should be instructive for researchers desiring to apply the methods outlined in the present work to their research.
Database and Preparation
Data used in the present study were obtained from the GSS 1978-2010 cumulative file (for documentation, see Davis et al., 2010). Two different MCDVs were chosen to illustrate the DA process. One ordered MCDV was chosen, an earnings fairness question (variable FAIREARN from the GSS data set). The earnings fairness question was asked on the “quality of working life” module included in the 2002 and 2006 survey waves. The earnings fairness question asked respondents: “How fair is what you earn on your job in comparison to others doing the same type of work you do?” Respondents then indicated their judgment of the earnings fairness statement on the following scale: much less than you deserve (coded 1), somewhat less than you deserve, about as much as you deserve, somewhat more than you deserve, much more than you deserve (coded 5). All don’t know, not applicable, or no answer responses were coded as missing. A total of 3,351 respondents provided usable responses to the earnings fairness question.
One unordered MCDV was also chosen: a question about the reason a respondent works at home (variable WHYWKHME in the GSS data set). The reason for working at home question was also asked on the “quality of working life” module and as a follow-up for respondents who indicated a valid response other than never to the question: “How often do you work at home as part of your job?” The reason for working at home question was worded: “Is it usually because you want to, you have to in order to keep up with your job, or for some other reason?” Respondents then indicated their reason for working at home on the following scale: worker wants to work at home (hereafter referred to as: wants to), worker has to work at home to keep up with job (hereafter referred to as: has to), or other combinations and other reasons (hereafter referred to as: other). All not applicable or no answer responses were coded as missing. A total of 1,353 respondents provided usable responses to the reason for working at home question.
Ordered Dependent Variable: Relative Importance Predicting Earnings Fairness
Four independent variables were chosen from the GSS data to predict earnings fairness: respondent age in years (variable AGE in the GSS data set); highest degree obtained by the respondent, classified as less than high school (coded 0), high school, associate/junior college, bachelor’s, graduate (coded 4; variable DEGREE in the GSS data set); private industry (coded 2) versus government (coded 1) as employer of the respondent (variable WRKGOVT in the GSS dataset); and the biological sex of the respondent (male coded as 1; female coded as 2; variable SEX in the GSS data set). All no answer, don’t know, and not applicable responses in each independent variable were coded as missing. All missing data were listwise deleted.
To begin, I assumed that the earnings fairness MCDV should be modeled applying the proportional odds assumption or the ordered logit regression model. The results from the initial ordered logit regression are presented in the second column of Table 1. Table 1 shows that all four independent variables were statistically significant at the p < .05 level—hence, the data show evidence that all four independent variables had nontrivial/non–0 effects in terms of predicting judgments of earnings fairness. More specifically, respondents who were older, held a more advanced degree, and were employed by a privately held firm tended to believe their wages were fairer than those who were younger, held a less advanced degree, and were employed by a governmental agency. Additionally, females believed their wages were less fair than did males. The coefficients presented in Table 1 can also be put into the exponential function to obtain their odds ratio interpretation where positive coefficients produce values greater than and negative coefficients produce values less than 1. The odds ratio for age was 1.01, for highest degree obtained was 1.08, for private versus government employment was 1.4, and for biological sex was .81. Whereas the odds ratio of, for instance, biological sex as .81 may seem straightforward to interpret, such odds ratios for ordered logit models are notoriously complicated. More precisely, the .81 value suggests that the odds of males being in, for example, the much less than you deserve category versus all other categories was approximately four-fifths (i.e., .81) of the odds of females being in the much less than you deserve category versus all other categories. As an example, males’ average predicted odds of being in the much less than you deserve category versus all others was about .134, whereas females’ average predicted odds of being in the much less than you deserve category versus all others was .166, producing a ratio of these odds of .81. Similarly, males’ average predicted odds of being in the somewhat less than you deserve or lower category versus all higher categories was .631 whereas females’ average predicted odds of being in the somewhat less than you deserve or lower category versus all higher categories was .779, also producing a ratio of these odds of .81. Thus the odds ratio describes the change in relative odds of being in lower versus higher categories as the independent variable changes.
Typically, odds ratios are used as an index of effect size for ordered logit models as they translate the model coefficients from their natural log-odds metric to one expressed in the metric of the dependent variable. Unfortunately, in addition to having a complicated interpretation, the scaling of the odds ratio (i.e., negative coefficient values are between 0 and 1, positive values are between 1 and infinity) makes importance comparisons difficult. By contrast, researchers could examine the pattern of the regression coefficients as is sometimes done with linear regression. Judging from Table 1, the magnitudes of the regression coefficients suggest that private versus government employment was the most important independent variable (as it obtained the largest regression coefficient) and that biological sex was second most important, followed by highest degree obtained, and lastly, age.
Unfortunately, ordered logistic regression coefficients suffer from the same shortcomings as linear regression coefficients for determining relative importance (e.g., Johnson & LeBreton, 2004). Consequently, the four independent variables were also evaluated using DA in which all 15 combinations of independent variables were used in separate ordered logistic regressions and the McFadden pseudo-R2 was recorded from each; the R2 values from all 15 ordered logistic regressions are presented in Table 2. Using Equations 1 and 2, the general and conditional dominance statistics were computed using the McFadden pseudo-R2 s in Table 2 and are reported in the third through seventh columns in Table 1.
The general dominance statistics did agree, in general, with the rank ordering of the regression coefficients, save that age’s general dominance statistic makes it more important than highest degree obtained. In addition, the general dominance statistics can be used as an index of effect size that is more interpretable than the odds ratio. For instance, Table 1 suggests that on average, biological sex explained .13% of the recoverable information about the model—a much simpler and clear statement regarding the effect size of biological sex than the .81 odds ratio associated with biological sex as was outlined previously.
An important point to note is that the largest general dominance statistic, private versus government employment, and the smallest, highest degree obtained, differed by a factor of 2. Thus, on average private versus government employment explained twice the amount of recoverable information as did highest degree obtained. More broadly however, the general dominance statistics were not exceedingly different from one another. Consequently, the rank ordering obtained by the general dominance statistics could have been fragile, not holding in all cases or across all models. Thus, it was useful to also determine the independent variables’ conditional dominance. When considering conditional dominance, it becomes clear that private versus government employment was not better on average than biological sex in explaining earnings fairness as both C1 statistics, or the average contributions with one independent variable, were equivalent. Consequently, private versus government employment did not recover more information than, and did not conditionally dominate, biological sex.
It was also important to determine complete dominance between the independent variables. Applying Equation 3 shows that private versus government employment and biological sex both completely dominated highest degree obtained and age, and age completely dominated highest degree obtained. To show how complete dominance was derived, consider the private versus government employment compared to biological sex complete dominance computation. Private versus government employment and biological sex’s complete dominance designation was formed out of four comparisons of the McFadden pseudo-R2s in Table 2:a]Ry⋅X32vs.Ry⋅X42or.0014vs. .0014b]Ry⋅X1X32−Ry⋅X12vs.Ry⋅X1X42−Ry⋅X12or.0025−.0009vs..0024−.0009c]Ry⋅X2X32−Ry⋅X22vs.Ry⋅X2X42−Ry⋅X22or.0024−.0006vs..0020−.0006d]Ry⋅X1X2X32−Ry⋅X1X22vs.Ry⋅X1X2X42−Ry⋅X1X22or.0035−.0014vs..0029−.0014



All comparisons except (a) favored X3, private versus government employment, over X4, biological sex. Note that the (a) comparison results matched the C1 statistic comparison results, both determining that the recovered information related to the direct effects of private versus government employment and biological sex were identical and precluded any dominance designation other than general dominance.
At this point, some researchers might wonder why it is necessary to estimate an ordered logit model for the earnings fairness MCDV, assuming the proportional odds assumption holds, when a simpler linear regression model might suffice for relative importance analysis. The primary reason is because ordered logit-based and linear regression–based relative importance analyses do not always agree on independent variable importance—most especially as it applies to the strongest, complete dominance, criterion. When the MCDV is very close to following a normal distribution, the application of linear regression is appropriate and is actually recommended. In many cases however, ordered MCDVs are non-normal, a situation that has an important effect on regression coefficients as well as relative importance inferences. The appropriateness of an ordered logit versus a linear regression can be determined using information criteria such as the Akaike (AIC) and Bayesian (BIC; Burnham & Anderson, 2004). In fact, the ordered logit and linear regression models can be compared directly on both the AIC and BIC indexes where smaller values indicate better fit. In instances where the AIC and BIC agree that a linear regression provides a better fit, I recommend using the linear regression–based relative importance analysis. In the converse, when the ordered logit model produces better fit, I recommend using the procedures outlined in the present work to determine independent variable relative importance.
To illustrate the implications of inappropriately modeling an ordered MCDV with linear regression on relative importance determination, I repeated the aforementioned steps in computing all 15 McFadden R2 values (not the traditional explained variance R2, to maintain comparability across ordered logit and linear regressions) and dominance statistics using linear regression. The results from the linear regression–based DA are reported alongside the ordered logistic regression in Tables 1 and 2. As can be seen in Table 1, the AIC and BIC values favored the ordered logit over the linear regression. Therefore, the earnings fairness MCDV fit more closely to ordered categories than a normal distribution. In addition, the ordered logit and linear regressions disagreed on several relative importance determinations. In particular, the linear regression DA differs in terms of the complete dominance of biological sex over highest degree obtained (biological sex only generally dominated highest degree obtained) and reversed the complete dominance roles for highest degree obtained and age (highest degree obtained completely dominated age). The linear regression–based DA then produced nontrivial differences in importance inferences that are not warranted given the information criteria.
To this point I have assumed that the proportional odds assumption (i.e., that all categories have the same regression coefficient for each independent variable) holds for all the independent variables in the prediction of earnings fairness. Best practices for the modeling of ordered MCDVs recommends that researchers evaluate this assumption, however, using a test such as the one offered by Brant (1990; see also Fullerton, 2009). The Brant test breaks the dependent variable into h – 1 binary logistic regressions corresponding to each category j and below versus all categories above j. The results of all h – 1 binary logistic regressions are combined, and an omnibus test determining whether all the coefficients are equal is conducted. If the omnibus test rejects the null hypothesis that the regression coefficients are the same, the proportional odds assumption is violated and an alternative model that relaxes the proportional odds assumption should be estimated for that independent variable. As applied to the earnings fairness MCDV, the Brant test obtained values of χ2(3) = 11.62, p = .009 for age; χ2(3) = 15.95, p = .001 for highest degree obtained; χ2(3) = 2.09, p = .554 for private versus government employment; and χ2(3) = 5.95, p = .114 for biological sex. Given the results of the Brant test, age and highest degree obtained violate the proportional odds assumption. Consequently, a generalized ordered logit model was fit to the data allowing age and highest degree obtained to have different regression coefficients across the categories of earnings fairness. The results of the generalized ordered logit are presented in Table 1. The generalized ordered logit regression shows that the effects of age and highest degree obtained on earnings fairness only held for the “unfair pay” categories. Hence, age and highest degree obtained only distinguished between those who responded that their earnings are unfair versus those who do not but did not appear to predict feelings of being “equally paid” and “overpaid.”
Although it produced an interesting pattern of results and was called for by the Brant test, the results of the generalized ordered logit model were even more complex than those of the proportional odds logit in that there was a coefficient, and thus an odds ratio, for all h – 1 categories for age and highest degree obtained. As with the proportional odds logit, general dominance statistics can be useful in presenting the data from a generalized ordered logit model by distilling the contribution an independent variable makes toward predicting the MCDV into a single value, which retains the same interpretation as the general dominance statistic obtained by the proportional odds model. As such, general dominance statistics for generalized ordered logit models are akin to the “total” or “overall” effect in a mediation model as they account for several different regression coefficients associated with a single relationship simultaneously; in this case, the independent variable–MCDV relationship (e.g., MacKinnon, Fairchild, & Fritz, 2007). For example, highest degree obtained resulted in a general dominance statistic of .003. Thus, on average, highest degree explained .3% of the recoverable information about the MCDV—a straightforward statement about the effect of highest degree obtained that does not require the presentation of four odds ratios.
The generalized ordered logit-based DA showed that fitting a partial proportional odds model was consequential for independent variable importance as the rank ordering of independent variables changed rather dramatically. To be specific, the most important independent variable changed from being private versus government employment to highest degree obtained, which completely dominated all three other independent variables. In addition, age became much more important, completely dominating biological sex and private versus government employment. Lastly, private versus government employment and biological sex had no clear dominance designation. Therefore, modeling the between-category differences/nonproportional odds in earnings fairness was an informative change and had a non-negligible impact on relative importance inference.
A final point to note before moving on is that the information criteria did not uniformly prefer the generalized ordered logit model over the ordered logit. Consequently, the choice of generalized or proportional odds ordered logit modeling will, in some circumstances (as with this one), come down to which model is more theoretically grounded or practically useful. Taken together, the foregoing example related to ordered MCDV modeling and relative importance determination provides both a procedural overview and considers the implications of some important issues facing analysts using ordered MCDVs for accurately determining the relative importance of independent variables.
Unordered Dependent Variable: Relative Importance Predicting Reasons for Working at Home
Four independent variables were also chosen from the GSS data to predict responses to the reason for working at home question: One variable remained the same as in the ordered MCDV model, age, and three variables differed: a variable reflecting being married versus not/all other marital statuses (generated from the MARITAL variable in the GSS data set indicating the respondent was married [coded 1] vs. all other non-missing responses [i.e., widowed, divorced, separated, and never married; coded 0]), the respondent’s current occupational prestige score (variable PRESTG80 from the GSS data set), and whether the respondent is self-employed (self-employed coded 1, not self-employed coded 2, variable WRKSLF from the GSS data set). All no answer, don’t know, and not applicable categories were coded as missing data and listwise deleted from the analysis.
An important issue for unordered MCDVs analyzed using the multinomial logit regression model is the independence of irrelevant alternatives assumption (IIA; see Cameron & Trivedi, 2005). The IIA proposes that conditional on the model, there is nothing about any of the unordered options that makes any subset of options more likely to be chosen by a respondent. That is, there is nothing about the other and want to reason for working at home that makes them more likely to be chosen by a respondent as compared to the has to option. In other words, the options for the unordered MCDV cannot be correlated, conditional on the model. The IIA assumption is testable and best practices recommend that researchers test this assumption with a test such as the Small-Hsiao (Small & Hsiao, 1985) IIA test. The Small-Hsiao test proceeds by randomly breaking the full sample into two randomly selected subsamples, estimates the full model on both, averages their coefficients, and computes the full model log likelihood based on the averaged coefficients. Second, the Small-Hsiao test takes one of the two randomly selected subsamples, eliminates all cases that responded in the base category (i.e., other), and estimates a multinomial logit model based on the remaining categories for the subsample. A chi-square likelihood ratio test is then conducted to discern whether removing the category produced a significant change in fit; as when the categories are independent, removing a category should not affect the estimated coefficients for the other categories. The Small-Hsiao is then repeated for all h – 1 categories other than the base category. As applied to the GSS data, the value obtained for the want to versus other distinction on the Small-Hsiao test was χ2(5) = .99, p = .96, and the value obtained for the has to versus other distinction on the Small-Hsiao test was χ2(5) = 1.88, p = .87—both tests showing evidence of independence from one another and supporting the IIA assumption. If the Small-Hsiao test is failed for some categories, consider collapsing across the categories indicated as failing the test, as they are not sufficiently different to justify them being treated as separate categories; other options, and limitations of the Small-Hsiao test, are discussed later.
As the Small-Hsaio IIA test was not significant, the reason for working at home MCDV was first analyzed using a multinomial logistic regression to discern whether the four independent variables were related to the reason for working at home categories. The results of the multinomial logit model are presented in Table 3. Again, the multinomial logit used other as the comparison category, thus all effects were relative to responding other. Table 3 shows that the independent variables had different effects on the reason for working at home categories. More specifically, older and married respondents tended to be more likely to respond want to than other, whereas self-employed respondents tended to be less likely to respond want to relative to other. By contrast, respondents with more prestigious occupations and who were self-employed were more likely to respond with has to than other. As with ordered logits, multinomial logit coefficients tend to be put into an exponential function and reported in terms of relative risk ratios or odds that a respondent will be in the focal category relative to the comparison category. The interpretation of relative risk ratios have complications similar to those of odds ratios, and like the generalized ordered logit, there will be multiple relative risk ratios per independent variable. General dominance statistics can then also be useful for distilling results reporting and facilitate communicating effect size from multinomial logistic regressions.
In light of the significant effects of the four independent variables in predicting reason for working at home, and the potential value to results reporting, a multinomial logit-based DA was conducted with the results of the analysis posted in Table 3. As was mentioned previously, the results for the multinomial logistic can be distilled through the use of general dominance statistics. In particular, self-employment had a relative risk ratio of .699 for predicting want to versus other—thus the relative risk or odds of non–self-employed individuals being in the want to compared to the other category is approximately 70% of the same odds of self-employed individuals being in the want to compared to the other category. By contrast, self-employment had a relative risk ratio of 1.652 for predicting has to versus other—thus the relative risk or odds of non–self-employed individuals being in the want to compared to the other category was approximately 165% of the same odds of self-employed individuals being in the has to compared to the other category. The difference in direction between the two risk ratios is difficult to integrate and communicate—but can be easily accomplished with a general dominance statistic. Self-employment obtained a general dominance statistic of .0121. Thus, on average, self-employment explained 1.21% of the recoverable information about the model—a clearer statement about the impact of self-employment that does not require integrating opposite signed relative risk ratios.
In terms of rank ordering, the DA shows that the most important variable is self-employment, completely dominating all other independent variables. Occupational prestige, completely dominated married versus not, but only conditionally dominated age. Finally, age completely dominated married versus not. Taken together, the results of the reason for working at home analysis showed a fairly clear hierarchy of independent variable importance: (1) self-employment, (2) occupational prestige, (3) age, and (4) married versus not.
Some researchers might wonder whether a multinomial logit-based DA is necessary given that a similar model could be derived from a series of two binary logit-based DAs, the first comparing want to versus the other categories and the second comparing has to versus the other categories. Whereas a series of binary logit-based DAs would provide similar information as does the multinomial logit-based DA, the binary logit option faces several difficulties in interpretation of the results. To illustrate, the two binary logit-based regressions and DAs are reported, side by side with the multinomial logit, in Table 3. As can be seen, the coefficient estimates themselves were fairly similar across the multinomial logistic and separate binary logistics. The problem inherent in the determination of relative importance is that both binary logistic DAs produced their own set of relative importance statistics. Whereas some of the statistics agreed, the binary logistic DA statistics disagreed in important ways—particularly, over the complete dominance criteria, and most especially as applied to the rank ordering of the occupational prestige and age variables. In fact, the separate binary versus multinomial logistic DA distinction mirrors that discussed by Azen and Budescu (2006) regarding separate single-dependent variable, DAs versus a single multivariate DA. As Azen and Budescu note, separate DAs on single dependent variables are not equivalent to a multivariate DA conducted on the “system” of dependent variables and can reach different conclusions regarding independent variable importance. I argue that the same issue applies when the dependent variable is categorical—multiple binary logistic DAs are not equivalent to a single multinomial logistic DA, and moreover, a multinomial logistic-based DA should be preferred to accurately characterize the “system” of responses on an unordered MCDV.
In summary, the preceding examination of unordered MCDVs has provided a procedural overview of the process of determining relative importance with unordered MCDVs and has demonstrated the implications of using an alternative procedure on unordered MCDV relative importance determination.
Discussion
The purpose of the present work was to review and provide a framework for relative importance analysis with ordered and unordered MCDVs and provide examples of how such relative importance analysis should be conducted. As such, the current work makes two major contributions to the literature. First, the present work represents the first extension of relative importance analysis to MCDVs, an area of some importance for organizational science (as well as behavioral science broadly) researchers working with survey and other discrete choice-related data. Using the methodology outlined in the present study, researchers and practitioners will be able to use all three (complete, conditional, and general) dominance criteria focusing on the McFadden and Estrella pseudo-R2 to discern both the rank ordering as well as the average marginal contributions to each pseudo-R2 for independent variables in predicting a MCDV.
Second, the present work provides several important considerations for researchers using MCDVs such as checking of the proportional odds assumption for ordered MCDVs as well as the checking of the IIA assumption for unordered MCDVs. Moreover, to this point, researchers may have misapplied linear regression–based DA on an ordered MCDV when a proportional odds or generalized ordered logit-based DA would be more appropriate. Furthermore, researchers may have misapplied multiple, independent binary logit-based DAs to an unordered MCDV when a multinomial logit-based DA would be more appropriate. As is demonstrated in the current study, a linear regression–based DA for unordered MCDVs is only appropriate in certain circumstances and multiple binary logit-based DAs for unordered MCDVs are not recommended. Therefore, the current work sheds light on when the use of ordered logit, generalized ordered logit, and multinomial logit-based DAs should be applied and are consequential for clearly discerning independent variable rank ordering and average pseudo-R2 contributions.
Future Research and Limitations
Although the present work provided a relatively thorough review of the process for discerning independent variable importance for ordered and unordered MCDVs, the present work did not cover the potential application of relative weights analysis (e.g., Johnson, 2000; Tonidandel & LeBreton, 2010) to MCDVs. Relative weights analysis was omitted from consideration as a potential method for MCDV relative importance analysis primarily because there is currently not a technique known to the author to produce a standardized set of ordered, generalized ordered, or multinomial logistic regression coefficients that are required by relative weights analysis. Such an extension would seem exceedingly useful for future research however given the efficiency of computing relative weights by comparison to DA and the potential advantages relative weights, which have been shown to be very similar to general dominance statistics (Lebreton, Ployhart, & Ladd, 2004), should have for the interpretation of MCDV models.
Additionally, the test used to evaluate the IIA assumption has been shown to be problematic in past research (Cheng & Long, 2007). Although problematic, alternative procedures available to analyze such data (e.g., nested logit regression, alternative specific multinomial probit regression) require within-person varying independent variables, such as judgments of each response option, to identify the model. Exploring the implications of the use of such techniques and, in addition, how to apply relative importance methodologies to the results of such analyses is an important area for future research.
The present work also does not discuss bootstrapping the MCDV dominance statistics (see Azen & Traxel, 2009, for an illustration). Although bootstrapping dominance statistics to estimate sampling variability is an important concern for relative importance, my focus was on outlining how to conduct relative importance analysis with MCDVs. Consequently the focus of the present work was on issues that might affect the proportion of the fit metric ascribed to or the rank ordering of an independent variable (e.g., violation of the proportional odds assumption) as opposed to assessing sampling variation in the statistics produced by DA on MCDV models. It is also worth mentioning that consistent with Azen and Traxel’s (2009) statement regarding the power of binary logistic DA hypothesis tests, hypothesis tests on the general dominance statistics with bootstrapped standard errors across all DAs in the present work tended to produce nonsignificant results. Whereas I cannot say definitively that DA on MCDVs also show low statistical power, the forgoing cursory investigation does suggest the trend outlined for binary logistic regression–based DA is likely to hold with DA on MCDVs and should be interpreted with caution by researchers if used. Further research attempting to discern the statistical power and sampling distribution for MCDV logistic regression–based DA is, therefore, called for to more completely understand the sampling variability underlying the DA statistics on MCDV models outlined in the present work.
Additionally, it is important to note that whereas the dominance relationships obtained by both McFadden and Estrella pseudo-R2s will be identical (i.e., general, conditional, and complete dominance is invariant to choice of pseudo-R2), the average pseudo-R2 contributions will differ between the pseudo-R2 s. To be specific, the McFadden pseudo-R2 is almost always smaller in terms of its magnitude than the Estrella pseudo-R2, which tends to make the values obtained by the general and conditional dominance statistics larger for the Estrella than the McFadden pseudo-R2. Again, the McFadden pseudo-R2 has some advantages in terms of interpretation (as proportion of recoverable information), however the Estrella pseudo-R2, being larger, is likely to look more impressive overall. Such differences also impact the “rescaled” general dominance statistics where the general dominance statistics are divided by the overall pseudo-R2 to show proportional contributions to the overall pseudo-R2 that sum to 100% (see LeBreton, Hargis, Griepentrog, Oswald, & Ployhart, 2007). However larger in value, the bootstrap standard errors referenced in the previous paragraph were also larger for the Estrella than the McFadden pseudo-R2, thus the increase in value for Estrella pseudo-R2 appears to be accompanied by an increase in sampling variability that resulted in no change to inferences related to the hypothesis tests. Researchers should then understand that choosing the Estrella pseudo-R2 appears to have the advantage of a larger value, but the disadvantage of less stability from sample to sample in the general dominance statistic values that are likely to be obtained by a DA. Again, sampling variability for DA statistics of MCDVs is still in need of further study.
Finally, an important caveat that applies to all relative importance analysis is that of appropriate model selection. The examples provided previously were quite cavalier in terms of the model selection process and chose a model based on the statistical significance of the independent variables involved. Such practice is not recommended generally and researchers should have strong theoretical arguments and/or empirical evidence to justify a specific model specification before attempting to discern independent variable importance. Model selection is not a quick or easy process and much has been written on the subject (for a review related to information criteria in model selection, see Burnham & Anderson, 2004; see also Vrieze, 2012)—yet, having a good model is imperative for accurately determining independent variable relative importance.
Conclusion
In summary, the present work provides a complete account of extending binary logistic regression–based DA to the MCDV case, a detailed illustration of alternative procedures as well as important considerations for determining relative importance. The analyses outlined previously are also reproducible by the reader by obtaining the publically available GSS data and the Stata software’s user-written domin program (Luchman, 2013), which includes examples syntax for conducting DA for MCDVs in its help file. The GSS analyses’ syntax are also available upon request from the author. In combination, the present work provides researchers the theoretical grounding and the tools to estimate relative importance with ordered and unordered MCDVs. Given the continued use of MCDVs in the organizational sciences, it is important to have tools, such as relative importance analysis, to supplement traditional regressions and methodologies to provide decision makers with important information to focus their efforts on the most important independent variable in the prediction of some dependent variable to, potentially, enhance return on investment and the impact of interventions.
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Table 1. Analysis Results of Ordered Earnings Fairness Variable From General Social Survey Data.	Earnings Fairness	β (SE)	Cx	C1x	C2x	C3x	C4x
	Ordered logit regression
	 Age	.0076* (.0025)	.0010	.0009	.0010	.0010	.0011
	 Highest degree	.0807* (.0284)	.0008	.0006	.0007	.0009	.0010
	 Private versus government employer	.3335* (.0860)	.0016	.0014	.0015	.0017	.0018
	 Biological sex	–.2076* (.0652)	.0013	.0014	.0014	.0013	.0012
	Linear regression
	 Age	.0030* (.0012)	.0007	.0007	.0007	.0007	.0008
	 Highest degree	.0411* (.0130)	.0010	.0008	.0009	.0010	.0012
	 Private versus. government employer	.1489* (.0400)	.0014	.0011	.0013	.0015	.0016
	 Biological sex	–.0908* (.0299)	.0011	.0012	.0012	.0011	.0011
	Generalized ordered logit regression
	 Age: Much less	.0090* (.0041)	.0025	.0024	.0024	.0025	.0025
	 Somewhat less	.0107* (.0028)	 	 	 	 	 
	 About as much	–.0060 (.0048)	 	 	 	 	 
	 Somewhat more	–.0017 (.0101)	 	 	 	 	 
	 Highest degree: much less	.2320* (.0467)	.0030	.0028	.0029	.0030	.0032
	 Somewhat less	.0626* (.0309)	 	 	 	 	 
	 About as much	.0111 (.0546)	 	 	 	 	 
	 Somewhat more	.0123 (.1157)	 	 	 	 	 
	 Private versus government employer	.3426* (.0868)	.0015	.0019	.0016	.0014	.0012
	 Biological sex	–.2114* (.0654)	.0015	.0020	.0016	.0013	.0010
	Ordered logit – McFadden R2	.0047	 	 	 	 	 
	BIC	8,238.105	 	 	 	 	 
	AIC	8,189.169	 	 	 	 	 
	Linear regression – McFadden R2	.0042	 	 	 	 	 
	BIC	8,557.009	 	 	 	 	 
	AIC	8,526.424	 	 	 	 	 
	Generalized ordered logit – McFadden R2 	.0085	 	 	 	 	 
	BIC	8,256.134	 	 	 	 	 
	AIC	8,170.495	 	 	 	 	 


Note: N = 3,351. BIC = Bayesian information criterion; AIC = Akaike information criterion; Cx = general dominance statistic; C1x = conditional dominance statistic for models with one independent variable; C2x = conditional dominance statistic for models with two independent variables; C3x = conditional dominance statistic for models with three independent variables; C4x = conditional dominance statistic for models with four independent variables.

*p < .05.


Table 2. McFadden Pseudo-R2 Metrics Across All Analysis Results.	 	Earnings Fairness	Reason for Working at Home
	 	Ordered Logit	Linear Regression	Generalized Ordered Logit	Multinomial Logit	Logit Wants to Versus Other	Logit Has to Versus Other
	Ry⋅X12	.0009	.0007	.0024	.0051	.0081	.0012
	Ry⋅X22	.0006	.0008	.0028	.0058	.0048	.0096
	Ry⋅X32	.0014	.0011	.0014	.0022	.0030	.0001
	Ry⋅X42	.0014	.0012	.0014	.0146	.0187	.0193
	Ry⋅X1X22	.0014	.0013	.0051	.0113	.0139	.0112
	Ry⋅X1X32	.0025	.0020	.0040	.0066	.0101	.0012
	Ry⋅X1X42	.0024	.0019	.0039	.0177	.0229	.0194
	Ry⋅X2X32	.0024	.0024	.0047	.0081	.0081	.0097
	Ry⋅X2X42	.0020	.0020	.0042	.0176	.0204	.0244
	Ry⋅X3X42	.0025	.0022	.0025	.0166	.0213	.0193
	Ry⋅X1X2X32	.0035	.0032	.0072	.0129	.0160	.0113
	Ry⋅X1X2X42	.0029	.0026	.0066	.0209	.0253	.0247
	Ry⋅X1X3X42	.0037	.0031	.0053	.0192	.0248	.0194
	Ry⋅X2X3X42	.0036	.0035	.0059	.0196	.0232	.0245
	Ry⋅X1X2X3X42	.0047	.0042	.0085	.0224	.0273	.0247


Note: R2 values in first column label the pseudo-R2 predicting y with the Xv variables present. The referents of the Xv variables change from the earnings fairness to the reason for working at home models and refer to the following variables: X1 = age; X2 = highest degree (earnings fairness); occupational prestige (reason for working at home); X3 = private versus government employment (earnings fairness); married versus not (reason for working at home); X4 = biological sex (earnings fairness); self-employment (reason for working at home).


Table 3. Analysis Results of Unordered Reason for Working at Home Variable From General Social Survey Data.	Reasons for Working at Home	βMN (SE)	β2L (SE)	Cx_MN	Cx_2L	C1x_MN	C1x_2L	C2x_MN	C2x_2L	C3x_MN	C3x_2L	C4x_MN	C4x_2L
	Wants to versus other
	 Age	.0159* (.0057)	.0131* (.0048)	.0040	.0061	.0051	.0081	.0044	.0068	.0036	.0054	.0028	.0041
	 Occupational prestige	–.0033 (.0051)	–.0092* (.0044)	.0046	.0037	.0058	.0048	.0050	.0042	.0042	.0034	.0032	.0025
	 Married versus not	.2839* (.1364)	.2229 (.1163)	.0018	.0025	.0022	.0030	.0019	.0026	.0017	.0023	.0015	.0021
	 Self-employment	–.3578* (.1557)	–.5992* (.1328)	.0121	.0150	.0146	.0187	.0130	.0162	.0113	.0137	.0095	.0113
	Has to versus other
	 Age	.0056 (.0059)	–.0030 (.0050)	 	.0007	 	.0012	 	.0009	 	.0006	 	.0002
	 Occupational prestige	.0117* (.0053)	.0135* (.0045)	 	.0075	 	.0096	 	.0083	 	.0069	 	.0053
	 Married versus not	.1182 (.1397)	–.0320 (.1191)	 	.0001	 	.0001	 	.0001	 	.0000	 	.0000
	 Self-employment	.5023* (.1792)	.7113* (.1532)	 	.0164	 	.0193	 	.0174	 	.0155	 	.0134
	 McFadden R2	.0224	.0273 (.0247)a	 	 	 	 	 	 	 	 	 	 


Note: N = 1,353. MN = multinomial logit; 2L = two separate logistics. Cx = general dominance statistic; C1x = conditional dominance statistic for models with one independent variable; C2x = conditional dominance statistic for models with two independent variables; C3x = conditional dominance statistic for models with three independent variables; C4x = conditional dominance statistic for models with four independent variables.

aValue outside of parentheses is pseudo-R2 for want to versus other model; value inside parentheses is pseudo-R2 for has to versus other model.

*p < .05.










