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I. Introduction 
Until a few years ago I used to feel guilty about how I taught statistical planning, 

specifically, power analysis and sample-size choice. Of course I did give the typical 

introductory lectures and hand-workable problems on this topic: We computed the power 

and determined prudent sample sizes for the binomial test of Ho: n = no versus HA: n > no 
when n = n~ > KO is true. And we devoted similar efforts to normal theory means 

testing in the one-sample and two-sample situations, pretending that the variance is known. 

But as an applied statistics sequence progresses to computer-based data analyses involving 

realistic applications of general linear models and log-linear models, the methods covered 

are determined in large part by the capabilities of the software being used. The major 

statistical packages have no general tools for statistical planning, so for years I 

avoided teaching "realistic" power analysis. 

Not any more. This paper presents a simple, unifying approach for teaching and 

computing power analysis for research designs involving linear and log-linear modeling. 

The principal advantage of this approach is that it borrows concepts, terminology, and 

software commonly used for data analysis within these systems. The scheme allows one to 

easily study the power of any test that can be performed with one's favorite linear or 

log-linear models routine, thereby making the method more flexible, precise, and "friendly" 
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than table-based methods, such as those by Cohen (1977) and others. 

2. The General Linear Model 
One common formulation of the normal-theory general linear hypothesis test is as 

follows. All design matrices, X, are full column rank. Denote the true (in practice, 

unknown) model for N observations as y = X T h  + e. Consider a "reduced (null) 

design, XR, and a "fuller" (alternative) design, XF. Without loss of generality, we take 

XR nested within XF, which, in turn, is either nested within XT or identical to it. The 

ranks of XT r, XF 3 XR are rT 2 rF > r ~ .  The ordinary least squares estimates are 

bF = ( x ~ ' x ~ ) - ~ x ~ ' ~ ,  and bR = Q ~ ' x ~ ) - ~ x ~ ' ~ .  Testing the null model versus the 

alternative model uses 

where the sum of squares hypothesis is 

SSH(Y, XF, XR) SSE(J', XR) - SSE(Y, XF) 

= (Y - XR~R)'(Y - X R ~ R )  - (Y - XF~F)'(Y - X F ~ F )  
= y1XFbF - y1XRbR. (2.1) 

XT is either assumed to be XF or is taken to be the most complete model possible, such as 

when we use the within-cells error term in analysis of variance (ANOVA) testing. Under 

the usual assumption that the true residuals are independent N(0, 02) variates, F is 

distributed as an F random variable with (rF - rR) and (N - rT) degrees of freedom and 

noncentrality 

h = SSH(XTp~, XF, XR )lo2 = (PT'X~IX~PF - P ~ ' x ~ ' x ~ P ~ ) / ~ ~ ,  (2.2) 
where PF = ( x ' ~ x ~ ) - ~ x ' ~ x ~ P ~  and PR = ( x ' ~ x ~ ) - ' x ' ~ x ~ P ~  are the expected 

values of bF and bR under the true model. 

Equations (2.1) and (2.2) may be technically explicit, but they hide the simple 

relationship between the familiar F statistic and the unfamiliar noncentrality parameter. It is 

much easier to comprehend and remember 
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where DFH is the degrees of freedom for the hypothesis. Any specialized F statistic already 
familiar to students (e.g. Fs for testing one or more regression predictors, the overall test in 

a one-way design, preplanned contrasts, main effects, etc.) can be expressed in this way. 

The main point to teach is that h is simply DFH times the population analog of the F 

statistic. If there is no difference between the ways that the null and alternative models fit 

the expected value of y, then h = 0, and F has a central F distribution, which is tabled and 

programmed everywhere so that we can get "p values." If the alternative model is a better 

representation of the population, then h > 0, and F is said to have a noncentral F 

distribution. Tables and charts for noncentral F distributions are also available, but using 

them is tedious and prone to hman  error. Give this work to computers! 

But even today's computer-using students should still master major concepts such as 

power. Point out to them that whereas the Type I error rate is the probability that a random 

F variate will exceed the critical value, Fcfit, given h = 0, power is also the probability that 

F exceeds Fcrit, albeit given some particular h > 0. A central and a noncentral F 

distribution are illustrated in Figure 1. Note that when the plots are separated and aligned in 

this way, rather than overlapping them as is commonly done in statistics texts, they more 

clearly show the parallelism between Type I error rate and power. W e n  students are given 

the fact that 

E[Q = (XPFH + 1)(N - rT) 1 (N - rT - 2) - XIDFH + 1, 

they see that increasing h shifts the distribution upward, resulting in increased power. 

Value of F(1.410) Test Statistic 

'~igure 1: A Central and a 

Noncentral F Distribution 
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Noncentrality is directly affected by the sample size. Let h(N) be the noncentrality 

based on a sample size of N, e.g. equation (2.2). It is easy to show that if the sample size 

is uniformly changed by a multiplicative factor, m, then the new noncentrality is 

h(m.N) = m.h(N) . (2.3) 

Applied to ANOVA for example, (2.3) implies that if all of the cells' sample sizes are 

doubled, then the noncentrality is doubled. 

To get one's regular linear models software to compute h, first construct an artificial 

dependent variable, y* = XT&r, and use it just as if it were a regular dependent variable. 

All computed SSH(samp1e) "statistics" will be SSH(popu1ation) values computed for a base 

total sample size, N. Noncentrality values for various total sample sizes and standard 

deviations can be formed using h(m.N, 02) = m * ~ ~ ~ ( ~ o ~ u l a t i o n ) / o ~ .  

For one-tailed tests with DFH = 1, we use the noncentral t distribution to compute 

power. The t statistic and its noncentrality parameter are 

t = F ~ / ~  = S ~ ~ ( s a m ~ l e ) ~ / ~ / s  ; 6 = h1l2 = ~ ~ ~ ( ~ o ~ u l a t i o n )  1/2/c7 . 

3. Example 
Examples always teach best. This one is hypothetical and uses SPSSX; O'Brien 

(1986a) applies SAS to the same problem. My purpose here is to illustrate the three phases 

of a power analysis: 1) defining the research design, specifying scenarios for the population 

parameter values (here, for the means and the within-cell standard deviation), and 

developing a set of statistical hypotheses that conform to the research questions; 2) 

computing and tabling the power probabilities; and 3) evaluating those power probabilities. 

3.1 Design, Scenarios, and Hypotheses 
Dr. Cathy Ten, a cardiologist, is planning to study treatments designed to help men 

who need to lower their blood LDL cholesterol levels. Each man is to be randomly 

assigned to one cell of the 2 x 3 design fonned by crossing the two-level diet and exercise 

(DIEX) factor (whether or not the man is "required to participate in the "Healthy Heart 

Support Group") with the three-level DRUG factor (placebo, drug A, and drug B). Drugs 

A and B are competing versions of the same basic preparation. The dependent measure is 

the percentage change in LDL from pretest to four months after onset of treatment. 

When Dr. Terr consults her statistician for guidance on appropriate sample sizes, the 

statistician patiently engages her in a dialog to obtain reasonable conjectures about the 
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unknown population values. Two scenarios for the set of population means are specified, 
which are listed within the SPSSX statements below. Two conjectures for the common 
within-cell standard deviation are also specified: o = 0.1 and o = 0.2. mote. Many 
students find making such conjectures a bit ridiculous: "If a researcher knew such things, 
why run the study?" Try to convince them that some statistical planning is usually much 
better than none at all.] In addition, practical matters dictate that at most only 400-425 men 
can be studied. It is agreed that for the DRUG factor, half of the men will get the placebo, 
one quarter will get drug A, and one quarter will get drug B. Half of the men will be 
"required" by their physician to participate in the diet and exercise program. 

Last, the tests that Dr. Ten and the statistician agree to focus on are both main effects, 
the interaction, and three contrasts. One contrast compares the controls against the average 
of the two drug groups, but only for the men in the diet and exercise program. 
3.2 Computing and Tabling the Power Probabilities 

This step involves 1) computing a small set of SSH(population) values using one's 
regular linear models software and 2) using those values to produce power analysis tables. 

Consider the SPSS statements below, where the cell codes are DEN: 1 = "not 
required," 2 = "required;" DRUG: 1 = placebo, 2 = drug A, 3 = drug B. In ANOVA 
applications, one easily produces "data" defined by y* = XTPT by making entering values 
equal to the scenarios' population cell means: the variables SCNARIOl and SCNARI02. 
BASEN is the base sample size for each cell. The WEIGHT BY BASEN statement causes each 
case to be treated as BASEN cases. In SAS, one uses the F'REQ command. 

TITLE OBTAIN SSH(P0P) VALUES FOR HYPOTHETICAL LDL STUDY 
DATA LIST LIST/ DIEX DRUG SCNARIOl SCNARIO2 BASEN 
BEGIN DATA 

1 1 -. 05 -.05 2 
1 2 -.lo -.I2 1 
1 3 -.I3 -.I8 1 
2 1 -.lo -. 12 2 
2 2 -. 12 -.I5 1 
2 3 -. 16 -.20 1 

END DATA 
WEIGHT BY BASEN 
MANOVA SCNARIOl SCNARIO~ BY DIEX ( 1,2 ) DRUG ( 1,3 ) / 
CONTRAST(DRUG)= SPECIAL (1 1 1, 2 -1 -1, 0 1 -1) / 

PARTITION(DRUG)=(~ 1) / 
DESIGN = DIEX, DRUG, DIEX BY DRUG/ 
DESIGN = DIEX = 0, DRUG(l), DRUG(2), DIEX BY DRUG = 0/ 
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DESIGN = DIEX = 0, DRUG WITHIN DIEX(1) = 0, DRUG(1) WITHIN 
DIEX (2), DRUG (2) WITHIN DIEX (2) = 0/ 

Note that getting the base SSH(popu1ation) values for the two scenarios requires the 

same statements that one would use for regular data analysis. Because this is an unbalanced 

design, attention must be paid to what fuller and reduced models are used in defining SSH. 

Here I chose to always let XF be the saturated model (rank of XF equals number of 

nonempty cells of design), which is called the "UNIQUE" SSH by SPSSX MANOVA and 

the "Type III" SSH in SAS PROC GLM. Other SSH types can be employed, depending on 

the nature of the design, the research questions, and the philosophy of the data analyst. 

The SSH(samp1e) values obtained from the above input statements are the 

SSH(popu1ation) values based on N-= 8. For example, the SSH(popu1ation) values for 

DRUG (I.) WITHIN DIEX (2) [better labeled "DRUG(:! -1 -1) WITHIN DIEX(2)"I turn out 

to be .00160 and .00303 for the two scenarios. 

Transforming the base SSH(popu1ation) values into tables of power probabilities 

involves the use of a free program, FPOWTAB (F POWer TABles), which has versions 

written for both the base SAS System (Vers. 5) or for an ANSI-standard FORTE2AN 77 
compiler. FPOWAB produces tables showing how the power varies as a function of the 

"power factors:" 1) scenario for the means, 2) Type I error rate, 3) standard deviation, 4) 

total sample size, 5) hypothesis tested, and 6) for DFH = 1, two-tailed versus one-tailed 

alternatives. Total sample size is manipulated by first specifying the basis sample size used 

to compute the SSH(popu1ation) values and then giving a set of multipicative factors ["m" in 

Equation (2.3)]. Annotated input is given below. [To get these programs send me a PC 

disk, Macintosh disk, or a B I m T  message (PA87458 at node UTKVMl).] 

'EFFECT OF DIET/EXERCISE AND DRUG THERAPY ON LDL' 
8 6 
2 'LOW EFFECT ' 'BIG EFFECT' 
2 .01 .05 
2 .1 .2 
3 13 26 52 
'DIET/EXERCISE MAIN EFFECT' I. .002 .00288 
'DRUG MAIN EFFECT' 2 .00674 .01504 
'DI/EX BY DRUG INTERACTION' 2 .00034 .00104 
'DRUG(2 -1 -1) ' 1 .00551 .01201 
'DRUG(0 1 -1) ' 1 .00123 .00303 
'DRUG(2 -1 -1) WITHIN DIEX(2) ' 1 -0016 .00303 

main title (up to 78 chars) 
base N, number of cells 
scenarios (up to 5) 
alpha rates (up to 3) 
std devs (up to 3) 
base N multipliers (up to 5) 

Effects records: 
title, DFH, SSH(pop) values 
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3.3 Evaluating the Power Results 
Some FPOWTAB output is given in Table 1. Students find such results easy to 

understand. Studying the pattern of results also provides concrete ("Numbers!") examples 

on how changes in the power factors affect power. Some rewarding in-class discussions 

have been generated by asking students to select the "best" sample size for the study. I 

impress upon them that this should be Dr. Terr's (now informed) decision. 

Table 1: Some Output from FPOWTAB (FORTRAN 77 Version) 

EFFECT: DRUG (2 -1 -1) WITHIN DIEX (2) 
DEGREES OF FREEDOM HYPOTHESIS: 1 

SCENARIO : BIG EFFECT 
POWERS COMPUTED FROM SSH (POPULATION) : 
USING THE BASIS TOTAL SAMPLE SIZE: 8 
AND TOTAL CELLS IN DESIGN: 6 
.......................................................... 

STD DEV: 0.1 0 . 1  0 . 1  0.2 0 .2  0.2 
TOTAL N: 104 2 0 8 416 104  208 416 

.......................................................... 
REGULAR F 

ALPHA: . 0 1  .27 .58 - 9 2  .05 .12 - 2 7  
ALPHA: - 0 5  .50 .80 .98 .17 .29 - 5 1  
ONE-TAILED T 

ALPHA: . O 1  .36 .68 .95 - 0 9  .18 .36  
ALPHA: - 0 5  .63 .88 .99 .25 .40 - 6 3  
.......................................................... .......................................................... 

4. The Monte Carlo Game 
Within either SAS or SPSSX one can easily generate normally distributed data with a 

given mean and variance. For the final part of their individual power analysis projects, 

students generate and test 10 independent data sets that conform to a situation and 

hypothesis that has power near .8. Even though they say they "know better," they express 

surprise when such a powerful case sometimes yields nonsignificant results. I get many 

"that was fun" comments about this part of the assignment. 

5. Log-Linear Models 
Given a three-way (I x J x K) table, let nijk be the population probability in cell ijk, 

and n = [ n i l 1  '1 12 ... Kijk ... I' be the vector of the M (M 5 I-JaK) probabilities 
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satisfying q j k  > 0. The M-element vector of observed fkequencies will then be y = [ y l l l  

y112 ... Yijk ... 1'. P = (1/N)y is the sample analog of x. The true log-linear model for r . 
is 

w-0 = XTPT ; x = e x p ( X ~ h )  . 
where h ( r )  = [ h(xl  11) ln(rl 12) ... ln(qjk) ... ]', XT is an M by r~ design matrix 

having rows xtj, and exp(XTPT) = [ exp(x' iPT) exp(xV2PT) .. . e x p ( ~ ' ~ P ~ ) ] ' .  All 
design matrices employed are full column rank and have a vector of ones for their first 

column. Here again we are interested in comparing the fits of a reduced (null) model, XR, 

and a "fuller" (alternative) model, XF: XT 2 XF 3 XR with ranks rT 2 r~ > r ~ .  Let bR 

andbF be the maximum likelihood (ML) estimates based on XR and XF, and y. The 

likelihood ratio (LR) statistic commonly used to compare XR and XF is 

G2(y, XF, XR) = 2(yVXFb~ - y9XRbR) = 2N(ptXFbF - p 'XRb~)  , 

which I prefer to simply call ~ ~ ( s a i b ~ l e ) .  Note the similarity of (5.1) and (2.1). 

Aickin (1983), relying on the so-called Pitman class of true alternatives, establishes that 

~ ~ ( s a r n ~ l e )  is asymptotically distributed as a chi-square random variable with rF - r~ 

degrees of freedom and noncentrality parameter, 

h = G2(,, XF, XR ) = ~ ~ ( ~ o ~ u l a t i o n ) .  

Thus any ML/LR log-linear models routine will compute h if NIT is supplied as the data. 

CPOWTAB, the chi-square based analog of FPOWTAB, will compute and table the 

powers. Monte Carlo studies unequivocally support the approximation (O'Brien, 1986b). 
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