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Fast Nonparametric Quantile Regression With
Arbitrary Smoothing Methods

Hee-Seok OH, Thomas C. M. LEE, and Douglas W. NYCHKA

The calculation of nonparametric quantile regression curve estimates is often com-
putationally intensive, as typically an expensive nonlinear optimization problem is
involved. This article proposes a fast and easy-to-implement method for computing
such estimates. The main idea is to approximate the costly nonlinear optimization by
a sequence of well-studied penalized least squares-type nonparametric mean regres-
sion estimation problems. The new method can be paired with different nonparametric
smoothing methods and can also be applied to higher dimensional settings. Therefore,
it provides a unified framework for computing different types of nonparametric quan-
tile regression estimates, and it also greatly broadens the scope of the applicability of
quantile regression methodology. This wide applicability and the practical performance
of the proposed method are illustrated with smoothing spline and wavelet curve estima-
tors, for both uni- and bivariate settings. Results from numerical experiments suggest
that estimates obtained from the proposed method are superior to many competitors.
This article has supplementary material online.

Key Words: Bivariate quantile regression; Nonparametric regression; Pseudo data;
Regression quantile; Wavelets.

1. INTRODUCTION

Suppose that we have a set of independent measurements of random variables (X,Y ).
The goal of quantile regression analysis is to estimate the conditional τ th quantile of the
response Y given the (possibly vector-valued) covariate X, where 0 < τ < 1. When com-
pared to the traditional conditional mean regression analysis, quantile regression is capable
of providing more information about the conditional distribution fY |X of Y given X. It is
because the primary target of conditional mean regression is the conditional expectation
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E(Y |X) (i.e., the “center” of fY |X), while by changing the values of τ , quantile regression
analysis can be applied to explore the different behaviors of fY |X at its center, lower, and
upper tails. Therefore, many useful methods for conducting quantile regression analysis
have been proposed. For example, Chaudhuri (1991a, 1991b) and Yu and Jones (1998)
studied quantile estimates obtained from local polynomial regression, Lejeune and Sarda
(1988) proposed the use of moving parabolic fitting, and Bhattacharya and Gangopad-
hyay (1990), Truong (1989), and Yu (1999) investigated kernel-type methods. In addition,
univariate spline methods were considered by Koenker and Bassett (1978), Hendricks and
Koenker (1992), and Koenker, Ng, and Portnoy (1994), bivariate spline methods were stud-
ied by He, Ng, and Portnoy (1998), while regression trees were used by Chaudhuri and Loh
(2002). More recently, Li, Liu, and Zhu (2007) studied the problem using the reproducing
kernel Hilbert space methodology. Excellent comprehensive reviews of quantile regression
were given by, for example, Koenker (2005) and Yu, Lu, and Stander (2003).

However, most of the above methods are computationally expensive, as quite often such
methods involve a costly minimization of some nonlinear objective function. Also, most of
these methods are tailored to a single nonparametric smoothing technique (e.g., smoothing
splines or kernel methods) and are generally not straightforward to implement. The goal
of this article is to propose a general methodology for computing nonparametric quantile
regression that does not suffer from these restrictions. As will be demonstrated below, this
goal is achieved via the introduction of two new theoretical constructs, pseudo quantile
and pseudo data.

A major contribution of this article is a fast and easy-to-implement algorithm for com-
puting quantile regression curve estimates. This algorithm can be coupled with different
nonparametric smoothing methods to compute the estimates, and it can also be applied
to higher dimensional problems. Thus, the proposed algorithm permits the nonparametric
quantile regression methodology to be extended to many different settings, including those
for which no previous nonparametric quantile regression estimators have been developed
before. The main idea behind this work is to approximate the costly nonlinear optimization
problem by a sequence of fast and well-studied penalized least squares-type conditional
mean estimation problems.

The empirical properties of the proposed algorithm have been tested extensively through
simulations. In the following it is paired with smoothing spline and nonlinear wavelet curve
estimators to obtain nonparametric quantile curve estimates for both uni- and bivariate
problems. In addition, theoretical properties of the proposed methodology are also inves-
tigated. Lastly we note that the proposed algorithm was inspired by the robust smoothing
method of Oh, Nychka, and Lee (2007).

The rest of this article is organized as follows. Section 2 provides some background
material and introduces the concept of pseudo quantile. Section 3 contains the main re-
sults of this article, namely, the proposed algorithm for computing nonparametric quantile
estimates together with some theoretical development. In Sections 4 and 5, this algorithm
is paired with, respectively, univariate and bivariate quantile smoothing splines to obtain
quantile estimates. The wide applicability of the algorithm is further illustrated in Sec-
tion 6, in which it is coupled with nonlinear wavelet shrinkage methods. Finally, conclud-
ing remarks are given in Section 7 while technical details are provided in the Appendix.
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2. PSEUDO QUANTILE ESTIMATION

2.1 QUANTILE AND PSEUDO QUANTILE

Suppose that y ∈ R is a random variable which is characterized by its distribution func-
tion F(y) = P(Y ≤ y). For any τ ∈ (0,1), the τ th quantile of y is defined as

F−1(τ ) = inf{y :F(y) ≥ τ }.

Similarly, the conditional quantile F−1(τ |x) for a pair of random variables (x, y) is defined
as

F−1(τ |x) = inf{y :F(y|x) ≥ τ }.

It is known that the τ th quantile can be also defined as the minimizer of an expected loss:

F−1(τ ) = arg min
α

Eρτ (y − α), (2.1)

where the so-called check function ρτ is

ρτ (u) =
{

(τ − 1)u, if u < 0
τu, if u ≥ 0.

Notice that the function ρτ is not differentiable at zero. This poses some technical issues
in the study of quantile estimation. For example, the optimization of (2.1) is not trivial
nor it is easy to study the theoretical properties of the corresponding minimizer. Moreover,
extensions to higher dimensional settings are not straightforward.

To overcome these issues, we slightly modify ρτ so that it is differentiable at zero. The
idea is to round its corner with a quadratic function, and we define pseudo quantile as

arg min
α

Eρτ,c(y − α), (2.2)

where the modified check function is

ρτ,c(u) =

⎧⎪⎪⎨
⎪⎪⎩

(τ − 1)(u + 0.5c), for u < −c

0.5(1 − τ)u2/c, for −c ≤ u < 0
0.5τu2/c, for 0 ≤ u < c

τ(u − 0.5c), for c ≤ u.

Observe that ρτ,c converges to ρτ as c → 0. In our calculations, c is chosen to be effectively
zero when compared to the magnitude of the data values.

The following proposition states that the pseudo quantile induced by a small c is almost
identical to the true quantile. Its proof is given in the online Appendix.

Proposition 1. Let α0 be the τ th quantile defined by (2.1) and α∗ be the τ th pseudo

quantile defined by (2.2). Denote respectively the density and distribution function of the

random variable Y as f and F . Then, we have |F(α∗)−F(α0)| = |F(α∗)−τ | ≤ c
2 sup |f |.
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2.2 PSEUDO SAMPLE QUANTILE

Given sample observations {y1, y2, . . . , yn}, the τ th sample quantile estimate can be
obtained by sorting and ordering the sample observations. Alternatively, the τ th sample
quantile can be also obtained as

arg min
α

∫
ρτ (y − α)dFn(y) = arg min

α

1

n

n∑
i=1

ρτ (yi − α),

where Fn is the empirical distribution function of {y1, . . . , yn}. Therefore, the problem of
finding the τ th sample quantile can be expressed as

min
α

n∑
i=1

ρτ (yi − α). (2.3)

As a typical example, minimizing the l1-loss function for a location estimator gives the
median. That is, minimizing

∑n
i=1 |yi − α| with respect to α is equivalent to that an equal

number of terms yi − α lie on either side of zero in order for the derivative with respect to
α to vanish.

Due to the nondifferentiability of ρτ at zero, optimization of (2.3) is not always trivial.
Therefore, as in the previous subsection, we replace ρτ with the modified check function
ρτ,c . That is, we approximate the solution to (2.3) with the solution of

min
α

n∑
i=1

ρτ,c(yi − α), (2.4)

which we shall call the τ th pseudo sample quantile.

Proposition 2. Let y1, y2, . . . , yn be n random observations and τ ∈ (0,1). The solu-
tion of (2.4), denoted as ατ , satisfies:

1. the number of terms, n−, with yi < ατ is bounded from above by τn + δ,

2. the number of terms, n+, with yi > ατ is bounded from above by (1 − τ)n + δ′, and

3. as n → ∞, n−/n → τ + δ′′ provided that P(y) does not contain discrete compo-
nents,

where δ, δ′, and δ′′ are negligible when c is chosen to be effectively zero relative to the
magnitude of the data values.

Proposition 2 states that the minimizer of (2.4) with a small c adequately approximates
the classical τ th sample quantile defined by (2.3). The proof is given in the online Appen-
dix.

2.3 NONPARAMETRIC QUANTILE REGRESSION

We now extend our discussion from quantile estimation to nonparametric quantile re-
gression. Suppose n pairs of independent measurements {(xi, yi)}ni=1 are observed. For any
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τ ∈ (0,1), the conditional τ th quantile of yi given xi is defined as

qτ (yi |xi) = inf{yi :P(Y ≤ yi |xi) ≥ τ }.
To simplify notation, we shall write fτ (xi) = qτ (yi |xi). The goal is to, given the measure-
ments {(xi, yi)}ni=1 and a specific value of τ , estimate fτ (x).

Given a nonnegative penalty function p(·) and a smoothing parameter λ, one possi-
ble method for estimating fτ is to define the estimate as the minimizer of the following
criterion (e.g., see Koenker, Ng, and Portnoy 1994 and He, Ng, and Portnoy 1998):

n∑
i=1

ρτ {yi − f (xi)} + λp(f ). (2.5)

A typical example for p(·) is p(f ) = ∫
(f ′′)2 dx, which can be considered as an quantile

extension of the classical smoothing splines (Nychka et al. 1995).
Similarly to earlier, we shall consider approximating the above minimizer with the

pseudo quantile regression estimate f̂τ , defined as

arg min
f

[
n∑

i=1

ρτ,c{yi − f (xi)} + λp(f )

]
. (2.6)

3. PSEUDO NONPARAMETRIC QUANTILE REGRESSION

This section presents the main results of this article: it examines the theoretical proper-
ties of f̂τ defined by (2.6), and develops a fast algorithm for computing it.

3.1 PSEUDO QUANTILE REGRESSION AND PSEUDO DATA

Let fi = f (xi) and f = (f1, . . . , fn). A discretized version of (2.6) is

f̂τ = arg min
f

n∑
i=1

ρτ,c(yi − fi) + λp(f), (3.1)

where f̂τ is the discretized estimate of fτ . A necessary condition for f̂τ is that it solves

−ψτ,c(yi − fi) + λ
∂p(f)
∂fi

= 0, i = 1, . . . , n, (3.2)

where ψτ,c = ρ′
τ,c . However, due to the nonlinear nature of ρτ,c , it is not trivial to find the

solution.
Now we define the theoretical construct pseudo data ỹi that facilitates the theoretical

and algorithmic development of our work:

ỹi = fi + ψτ,c{yi − fi}
2

, i = 1, . . . , n.

Of course in practice these pseudo data ỹi ’s are unknown, but for the moment let us suppose
that they are available, and define f̃τ as

f̃τ = arg min
f

n∑
i=1

(ỹi − fi)
2 + λp(f). (3.3)
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Similarly to above, it is necessary for f̃τ to solve, for all i,

−2(ỹi − fi) + λ
∂p(f)
∂fi

= −2

[
fi + ψτ,c{yi − fi}

2
− fi

]
+ λ

∂p(f)
∂fi

,

which is identical to (3.2). This means that both f̂τ and f̃τ solve the same equation, namely,
(3.2). It raises two important questions: are f̂τ and f̃τ the same? And if yes, what do we
gain if we had ỹi?

The next subsection shows f̂τ and f̃τ are asymptotically the same. Given this and if
the ỹi ’s were known, we could compute f̂τ , which is the same as f̃τ , by minimizing the
penalized least squares criterion in (3.3) instead of the nonlinear functional in (3.1). In
other words, the nonlinear optimization problem posed by (3.1) can now be solved much
more quickly as a least squares-type linear optimization problem. Although in practice
the pseudo data ỹi ’s are unknown, this suggests a fast algorithm for approximating f̂τ , to
be described in Section 3.3. We note that this concept of pseudo data has been adopted
by previous authors to derive asymptotic properties of robust smoothing splines, and to
develop automatic regularization parameter selection methods (Cox 1983; Cantoni and
Ronchetti 2001; and Oh, Nychka, and Lee 2007).

3.2 EQUIVALENCE RESULT

Here we establish the asymptotic equivalence of f̂τ and f̃τ . Our results are similar to
those provided by theorem 1 of Oh, Nychka, and Lee (2007). We first highlight some
important assumptions.

The modified check function ρτ,c needs to be altered to satisfy several assumptions,
including that the function ψτ,c = ρ′

τ has a continuous second derivative and satis-
fies sup |ψ ′′

τ,c(x)| < ∞, and var(ψτ,c(x)) < ∞ and var(ψ ′
τ,c(x)) < ∞. It should also be

strictly convex and be qualitatively similar to ρτ,c . One possible choice is ρ̃τ,c(x) =
log[2c2{eτx/c + e−(1−τ)x/c}. Note that c is the parameter to control the amount of (contin-
uous) cutoff. As long as c → 0, this function is almost identical to the check function.

It is required to assume the existence of a smoothing matrix Gλ which, when applied to
the pseudo data, produces the penalized least squares estimates in (3.3). It is also assumed
that there exists a small c < δ such that the condition number of the operator Gλ is bounded
for all λ ∈ [λn,	n] and all τ . This assumption is related to the following. If c is very small
but not exactly zero, the design points xi are distinct under ρ̃τ,c. Then G−1

λ can be well
defined.

Theorem 1. Let fτ = (fτ (x1), . . . , fτ (xn))
T . Under the assumptions of theorem 1 of

Oh, Nychka, and Lee (2007), for any δ > 0, there is an n0 such that for all n ≥ n0 and

λ ∈ [λn,	n],

P
[‖f̂τ − f̃τ‖n ≤ δ

√
E‖f̃τ − fτ‖2

n

]
> 1 − δ,

where ‖x‖2
n = ∑n

i=1 x2
i /n.
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Theorem 1 states that with high probability, f̂τ and f̃τ are much closer than f̃τ and fτ . In
other words, ‖f̃τ − f̂τ‖2

n/E‖f̃τ − fτ‖2
n converges to zero in probability as n → ∞.

The proof of Theorem 1 follows the main steps of the proof of Oh, Nychka, and Lee
(2007), and can be obtained from the authors.

3.3 THE ES-ALGORITHM

We have established the closeness between f̂τ and f̃τ , but in practice the pseudo data
ỹi ’s are not available. Therefore, f̂τ cannot be computed quickly as the minimizer of (3.3).
However, the above discussion suggests the following heuristics for computing f̂τ : given a
current estimate of fτ , first calculate the corresponding ỹi ’s, then plug in these newly cal-
culated ỹi ’s in (3.3) to obtain the next iterative estimate for fτ . This motivates the following
algorithm, termed the ES-algorithm, for computing f̂τ :

1. Obtain an initial τ th quantile estimate f̂(0)
τ = (f̂

(0)
τ (x1), . . . , f̂

(0)
τ (xn))

T .

2. Iterate, until convergence, the following two steps for l = 0,1, . . . :
E-Step (Evaluation of empirical pseudo data): for i = 1, . . . , n, compute the follow-

ing empirical pseudo data:

s
(l)
i = f̂ (l)

τ (xi) + ψτ,c{yi − f̂
(l)
τ (xi)}

2
.

S-Step (Smoothing of empirical pseudo data): obtain the next iterative estimate

f̂(l+1)
τ by minimizing the penalized least squares criterion (3.3) with ỹi = s

(l)
i for

all i.

3. Take the converged estimate as the final τ th quantile estimate for fτ .

We have the following remarks.

1. The ES-algorithm essentially performs a sequence of penalized least squares min-
imization (S-Step). Many fast, stable, and well-studied methods are available for
executing this task. Therefore, it is relatively fast and can be easily implemented.

2. The S-Step states the ES-algorithm can be coupled with any nonparametric smooth-
ing methods, as long as they can be formulated as a penalized least squares problem.
In fact, in practice one could apply other nonparametric methods to smooth the em-
pirical pseudo data s

(l)
i , for example, nonlinear wavelet shrinkage as demonstrated

in Section 6 below. However, we note that these other methods may not be covered
by Theorem 1.

3. The above description of the ES-algorithm does not depend on the dimension of the
covariates xi ’s. Thus, it can also be applied to higher dimensional quantile smoothing
problems. Examples of bivariate quantile smoothing are given in Sections 5 and 6.

4. An initial estimate f̂
(0)
τ is required to start the algorithm. Our numerical experi-

ence suggests that, as long as f̂
(0)
τ is of reasonable quality, it does not have a

huge effect on the final estimate. In our numerical work, we use the standard k-NN
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(nearest-neighbor) technique to obtain a quick f̂
(0)
τ (e.g., Bhattacharya and Gan-

gopadhyay 1990 and Yu 1999). The idea of k-NN is to treat the k observations
(x′

1, y
′
1), . . . , (x

′
k, y

′
k) that are closest to x0 as independent replicates and estimate

fτ (x0) by the τ th quantile of the empirical distribution of y′
1, . . . , y

′
k . For the univari-

ate setting, the simple method of Healy, Rasbash, and Yang (1988) can be adopted
to obtain improved k-NN estimates.

5. In all our numerical work we have never encountered a case that the ES-algorithm did
not converge. In fact, for most cases the algorithm converged within 5 iterations. In
particular, for the setting described in Section 4.1 below, for a dataset with n = 2000,
the ES-algorithm on average took less than 0.3 sec to finish one fitting on a MacBook
Pro machine with a 2.53 GHz Intel Core 2 Duo processor.

3.4 SMOOTHING PARAMETER SELECTION

In the computation of f̂τ , an important issue that needs to be addressed is the choice of
the smoothing parameter λ. Although this is not a major focus of the present article, this
subsection provides a brief discussion about this issue.

3.4.1 Quantile Cross-Validation

In the context of nonparametric regression mean estimation, a common smoothing para-
meter selection method is cross-validation (CV). If f̂ −i

λ (xi) denotes the usual leave-one-out
estimate for f (xi) computed with λ, then CV chooses λ as the minimizer of

CV(λ) = 1

n

n∑
i=1

{yi − f̂ −i
λ (xi)}2.

This CV criterion can be generalized to nonparametric quantile regression. A natural can-
didate is the following quantile cross-validation (QCV) criterion:

QCV(λ) = 1

n

n∑
i=1

ρτ {yi − f̂ −i
τ,λ(xi)}, (3.4)

where f̂ −i
τ,λ(xi) is the estimate of fτ (xi) computed with smoothing parameter λ using all

but the ith observation (xi, yi). This QCV criterion has been considered by previous au-
thors (e.g., Nychka et al. 1995 and Yuan 2006), but due to the heavy computations in-
volved, these previous authors only provided approximated calculations of QCV(λ). Now
with the above ES-algorithm, the term f̂ −i

τ,λ(xi) can be computed relatively quickly and
hence QCV(λ) can be calculated directly from its definition, as least when the number of
data points n is not too large. To see this, let NI be the number of iterations needed for
the ES-algorithm to converge, and Nλ be the number of λ values to which the search of
the minimum of QCV(λ) is limited. Then, the minimization of QCV(λ) requires nNINλ

calculations of the term f̂ −i
τ,λ(xi), which is roughly equal to executing nNINλ times the L2

minimization inside the S-Step. In Section 4, this QCV method is used for choosing λ for
univariate quantile smoothing splines.
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3.4.2 A Faster Alternative

If the number of data points n is large, then the above direct calculation of QCV(λ) may
not be practically feasible. To overcome this issue, we suggest a simple and yet effective
alternative for choosing the amount of smoothing. This alternative was motivated by the
observation that every S-Step can be seen as a penalized least squares-type nonparametric
mean regression problem. Thus, at each execution of the S-Step, one can apply a reliable
and well-studied smoothing parameter selection method designed for nonparametric mean
regression estimation to choose λ. Similar ideas have been adopted, for example, by Gu
(1992). Our extensive experience suggests that this alternative works really well in prac-
tice, and it can be shown that for many cases, this alternative is roughly n times faster than
the QCV approach discussed before. We use this method to choose the amount of smooth-
ing for bivariate quantile smoothing splines (Section 5) and wavelet quantile regression
(Section 6).

4. UNIVARIATE QUANTILE SMOOTHING SPLINES

This section presents our first application of the ES-algorithm: univariate quantile
smoothing spline fitting with penalty term p(f ) = ∫ {f ′′(x)}2 dx (e.g., see Nychka et
al. 1995 and references given therein). That is, f̂τ is defined as

f̂τ = arg min
f

[
n∑

i=1

ρτ {yi − f (xi)} + λ

∫
{f ′′(x)}2 dx

]
. (4.1)

The above criterion can be minimized by applying the ES-algorithm in the following man-
ner. In the S-Step of the algorithm, apply least squares smoothing spline to smooth the
empirical pseudo data s

(l)
i ’s to obtain the next iterative estimate f̂(l+1)

τ (e.g., see Green and
Silverman 1994). For the choice of λ, we use QCV(λ) as defined in (3.4).

4.1 SIMULATION RESULTS

A simulation study was conducted to evaluate the practical performance of the ES-
algorithm with univariate smoothing splines. Two different noise types were consid-
ered: increasing-variance and asymmetric. For xi = (i − 1)/2000, i = 1, . . . ,2000, the
increasing-variance and the asymmetric noisy datasets were generated, respectively, from

yi = sin(10xi) + (xi + 0.25)

0.1
εi, εi ∼ iid N(0,0.072)

and

yi = sin(10xi) + εi, εi ∼ iid gamma random variables with E(εi) = var(εi) = 3.

For each noise type, 100 datasets were generated, and for each generated dataset, the fol-
lowing three nonparametric quantile regression estimators were applied to estimate fτ for
τ = (0.1,0.5,0.9):
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• ES-SS: the quantile smoothing spline (4.1) approximated by the ES-algorithm. The
initial fit was obtained by the k-NN technique with the modification of Healy, Ras-
bash, and Yang (1988). The value of k was 100.

• Two-Step: the two-step method proposed by Yu (1999). This method combines the
use of k-NN and local linear smoothing.

• QSS: the quantile smoothing spline method by Koenker, Ng, and Portnoy (1994). In
this method, instead of L2, a L1 penalty

∫ |f ′′(x)|dx is imposed on f̂τ , and the final
estimate is computed by linear programming.

For each estimate f̂τ , the following mean squared error (MSE) was calculated:

MSE(f̂τ ) = 1

n

n∑
i=1

{fτ (xi) − f̂τ (xi)}2.

Boxplots of the log of these calculated MSEs are given in Figure 1. These plots seem to
suggest that ES-SS is the preferred method. It is because it never performed worse than the
remaining two methods, while in some situations it performed better. Results from pairwise
t -tests also support this claim. To visually evaluate the quality of various curve estimates,
we randomly selected one generated dataset from each noise type and plotted the true and

Figure 1. Boxplots of the log of the MSE values for the simulations in Section 4.1. The top row is for increas-
ing-variance noise while the bottom row is for asymmetric noise. In each panel the boxplots, from left to right,
correspond respectively to ES-SS, Two-Step, and QSS.
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Figure 2. Quantile curve estimates obtained by the methods compared in Section 4.1. The top row is for increas-
ing-variance noise while the bottom row is for asymmetric noise. In each panel the solid lines, from bottom to top,
correspond to the quantile curve estimates computed for τ = 0.1,0.5, and 0.9, while the broken lines correspond
to the true quantile functions for the same τ .

estimated quantile curves in Figure 2. Qualitatively the estimated curves produced from
ES-SS and Two-Step are similar and better than those from QSS.

5. BIVARIATE QUANTILE SMOOTHING SPLINES

Next we consider bivariate nonparametric quantile regression. Given response variables
zi observed at (xi, yi), i = 1, . . . , n, our bivariate smoothing spline estimate f̂τ (x, y) of
the quantile regression function fτ (x, y) is defined as

f̂τ (x, y) = arg min
f

[
n∑

i=1

ρτ {zi − f (xi, yi)} + λp(f )

]
,

where the penalty is defined as

p(f ) =
∫ ∫

R2

(
∂2f

∂x2
+ 2

∂2f

∂x ∂y
+ ∂2f

∂y2

)
dx dy.

In the classical bivariate penalized least squares regression setting for iid Gaussian noise,
the use of the above penalty is known as thin-plate spline smoothing (e.g., see Green and
Silverman 1994). Thus, the ES-algorithm can be applied to obtain f̂τ (x, y) by applying a
thin-plate spline smoothing operation in the S-Step. Below, the k-NN technique was used
to obtain the initial fit with k = 32. For selecting the amount of smoothing, we adopted the
approach described in Section 3.4.2 and used generalized cross-validation to choose λ in
each S-Step. We call the resulting bivariate quantile regression estimate ES-TPS.
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5.1 SIMULATION RESULTS

Numerical experiments were conducted for assessing the performance of ES-TPS. The
setup is the same as in the article of He, Ng, and Portnoy (1998). The data were generated
from the following model:

zi = sin(3πxi) cos(πyi) + εi/3, i = 1, . . . ,100,

where the (xi, yi)’s form a regularly spaced grid of size 10 × 10 in the squares [0.1,1] ×
[0.1,1]. The following four types of iid noise εi ’s are considered:

• Normal: standard normal distribution 
(x),

• CN(0.05): a 5% contaminated normal mixture distribution 0.95
(x) + 0.05
(x/5),

• CN(0.10): a 10% contaminated normal mixture distribution 0.9
(x) + 0.1
(x/5),
and

• T(3): t -distribution with three degrees of freedom.

Altogether 1000 data samples for each type of noise were generated. For each generated
sample, the ES-TPS procedure was applied to compute f̂τ (x, y) with τ = 0.5, and the
corresponding MSE was also computed:

MSE = 1

100

100∑
i=1

{f (xi, yi) − f̂0.5(xi, yi)}2.

The average and the standard error of the computed MSE values are listed in Table 1. Also
listed in Table 1 are the corresponding MSE averages and standard errors obtained from
the following four bivariate smoothing methods:

• BMSS: the bivariate median smoothing spline of He, Ng, and Portnoy (1998),

• LOESS: the least squares-based LOESS,

• TPS: least squares thin-plate spline fitting, and

Table 1. Averages and standard errors (in parentheses) of MSE values computed from estimates of methods
compared in Section 5.1.

Noise

Method Normal CN(0.05) CN(0.10) T(3)

ES-TPS 0.0522 0.0568 0.0616 0.0665
(0.00038) (0.00039) (0.00043) (0.00051)

BMSS 0.0529 0.0577 0.0637 0.0690
(0.00038) (0.00054) (0.00066) (0.00070)

LOESS 0.0424 0.0634 0.0915 0.0800
(0.00028) (0.00086) (0.00129) (0.00176)

TPS 0.0381 0.0647 0.0922 0.0827
(0.00042) (0.00101) (0.00158) (0.00206)

MARS 0.0447 0.0918 0.1400 0.1150
(0.00044) (0.00154) (0.00221) (0.00289)
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• MARS: MARS of Friedman (1991).

The MSE values for these four methods are copied from table 1 of the article by He, Ng,
and Portnoy (1998). Note that the last three methods are targeting the conditional mean of
the regression function, not the median.

The following empirical conclusions can be made from Table 1: (i) the mean smooth-
ing estimators (LOESS, TPS, and MARS) are more efficient for normal errors; (ii) both
quantile smoothing procedures (ES-TPS and BMSS) outperform the mean smoothing pro-
cedures when the errors are T(3), CN(0.05), and CN(0.10); and (iii) ES-TPS seems to
dominate BMSS.

5.2 PRECIPITATION DATA

We apply the proposed method to the precipitation on the Front Range of Colorado
previously analyzed by Cooley, Nychka, and Naveau (2005). The original data contain
daily precipitation from a network of 56 stations of the Front Range that lies between 104.0
and 105.9 W longitude and 37.08 and 41.70 N latitude (Figure 3). Some of the stations
have 50-year records and others have shorter ones. For our analysis, we take the annual
daily maximum precipitation from each station which is shown in Figure 3(a). Figure 3(b)
displays the locations of 56 stations. The goal of analyzing the precipitation data is to
estimate fields of precipitation return levels. In hydrology, the return level is a common
measure of extreme events. The a-year return level is the quantile that has probability 1/a

of being exceeded in a particular year.
The ES-algorithm coupled with thin-plate splines is applied to the annual daily maxi-

mum precipitation in Figure 3. Then we obtain maps of 2-year and 10-year return levels,
that is, 50% and 90% quantiles of the precipitation of the Front Range, which has the inter-
pretation that on the average 1 out of 2 and 1 out of 10 years will exceed these values. The
results are displayed in Figure 4. These estimated surfaces can be used to aid designing
new drainage systems in the area.

(a) (b)

Figure 3. (a) Annual daily maximum precipitation according to 56 stations of Colorado’s Front Range. (b) The
locations of 56 stations.
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(a) (b)

Figure 4. (a) The estimate of the 50% quantile surface of the annual daily maximum precipitation by the pro-
posed method. (b) Similar to (a) but for the 90% quantile surface.

6. UNI- AND BIVARIATE WAVELET QUANTILE REGRESSION

It has been shown that for the standard nonparametric mean regression setting, wavelet
techniques are particularly good at capturing discontinuities and abrupt structures in the
regression functions. This section demonstrates that the ES-algorithm can be coupled with
wavelet shrinkage methods for performing nonparametric quantile regression. To the best
of our knowledge, no wavelet quantile regression methods have been proposed in the liter-
ature.

It is known that wavelet shrinkage for regression mean estimation can be posed as a pe-
nalized least squares problem (e.g., Antoniadis and Fan 2001). In other words, the wavelet
shrinkage estimator can be expressed in the form of (2.5). Thus, the ES-algorithm can
be applied straightforwardly with wavelet methods: simply perform a wavelet shrinkage
operation in the S-Step of the algorithm. The wavelet shrinkage operation can be either
univariate or bivariate. As before, we use the k-NN technique to obtain initial fits.

We illustrate the idea with two examples. In the first univariate example, the noisy data
with n = 4096 were generated by superimposing independent N(0,0.12) noise to a testing
regression function. The testing regression function can be obtained from the WaveThresh3
package of Nason (1998), and is plotted in Figure 5. The initial fit was computed using the
k-NN technique with k = 42, and the empirical Bayes thresholding method of Johnstone
and Silverman (2005) was used in the S-Step. In Figure 5, solid lines denote the estimated
wavelet quantile functions for τ = (0.1,0.5,0.9) and dashed lines are the corresponding
true quantile functions. One can see the estimated quantile curves follow quite closely to
the true quantile curves.

Bivariate wavelet image quantile estimation can also be achieved by simply replacing
the univariate wavelet shrinkage operation in the S-Step with a bivariate wavelet shrink-
age operation. The image, of size 256 × 256, displayed in Figure 6 is the data lennon
which are also available from WaveThresh3. Artificial additive independent Gaussian noise
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Figure 5. Solid lines are the estimated wavelet quantile functions for τ = (0.1,0.5,0.9) and dashed lines are the
corresponding true quantile functions.

was added with a signal-to-noise ratio 3. The bivariate wavelet shrinkage method used is
the false discovery rate rule of Abramovich and Benjamin (1995). We employed a two-
dimensional version of the k-NN method to obtain the initial fit with k = 42. The noisy
image and the τ th quantile estimates with τ = (0.1,0.5,0.9) are displayed in Figure 6.

7. CONCLUDING REMARKS

A vital component of our work is the concept of pseudo data, which links nonlinear
quantile regression calculations with simple and fast least squares-type computations. It
also naturally suggests an algorithm, the ES-algorithm, that provides a fast and unified
approach for computing nonparametric quantile regression estimates. This ES-algorithm
switches between two relatively straightforward steps: the E-Step evaluates the so-called
empirical pseudo data while the S-Step smooths them. It also allows a convenient way for
choosing the smoothing parameter. It has been applied successfully to obtain quantile re-
gression estimates with both univariate and bivariate smoothing splines and wavelet estima-
tors. Given its simplicity, speed, and promising empirical performance, the ES-algorithm
is a viable tool for many practitioners who need to perform nonparametric quantile regres-
sion.

SUPPLEMENTARY MATERIALS

Appendix: that contains technical details and proofs. (appendix.pdf)
R codes: that implement the proposed methodology. (Rcodes.zip)
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Figure 6. Wavelet quantile smoothing for noisy Lennon image.
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