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Diagnostic and prognostic risk scores from predictive models are often used to help decide whether
further procedures or special attention should be given to a patient. It seems natural to evaluate their
performance in screening terms such as sensitivity (correct classification probability among cases or
events), specificity (correct classification probability among noncases or nonevents), and predictive
values (correct classification probabilities among test positives and test negatives). However, these
simple intuitive performance criteria are highly correlated, and vary with the choice of score
cutpoint.

A popular summary over criteria and cutpoint choices is the AUC, the area under the receiver-
operating characteristic (ROC) curve, which plots sensitivity against the false-positive rate
(1−specificity). As Pencina et al. note [1], AUC equals the probability that the underlying risk
score will assign higher probability of being a case to a case than to a noncase. Thus, the change
in this probability on changing the score (e.g. by adding a predictor) is DUC=AUCnew −AUCold,
where the subscripts ‘new’ and ‘old’ denote quantities after and before the score change. Since the
DUC is a univariate summary of two ROC curves, it must sacrifice information. This information
can be recaptured with other summaries, such as the net reclassification improvement (NRI) and
integrated discrimination improvement (IDI) proposed by Pencina et al. [1].

I will concentrate on the DUC and IDI, although most of my remarks also apply to NRI and
similar measures. Letting IS and IP be the sensitivity and false-positive rate averaged over all
possible cutpoints, we have

IDI= (ISnew − ISold) − (IPnew − IPold) = (ISnew − IPnew) − (ISold − IPold)
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which is the change in the average difference of the ordinate and abscissa of points on the ROC
curve. Thus, while IDI does provide interesting information beyond DUC, it does not satisfy
requests to ‘take us beyond the ROC curve’ [2]. More generally, a hallmark of DUC, NRI, IDI,
and many other measures is that they involve only probabilities conditional on the outcome variable
(i.e. the event being predicted). I believe such measures are clinically far less relevant than often
thought, because predictive values, costs, and cutpoints must be considered together to make
well-informed decisions.

Pencina et al. note the importance of improvement in predictive values, and recommend ex-
amining ‘meaningful’ cutoffs. I will argue that cost considerations provide the meaning. The
limitations of outcome-conditional, cost-free, cutpoint-free measures like DUC and IDI can then
be summarized as follows:

1. If accurate prediction or classification is our goal, then predictive values are the key functions
through which sensitivity and specificity become relevant. Functions of the ROC alone lack a
key parameter that determines the relative importance of sensitivity and specificity in practice:
The background probability (prevalence or incidence) B of the outcome event. This lack is
a weakness, not a strength.

2. Costs are crucial. At the very least, we have the cost of measuring the new variable, plus
two free parameters representing the net misclassification costs. Hypotheses of whether a
variable improves prediction are of minor importance. Clinically relevant null hypotheses are
concerned with whether the decline (if any) in expected classification cost offsets the cost
of adding the variable to our model.

3. Once we consider the classification costs, most cutpoints would be out of the running
immediately. DUC, IDI, or other measures that are cutpoint free are in effect incorporating
irrelevant information, which degrades performance in the cost-laden reality of practice.

4. The decision will not always be about whether to add a predictor or not; it may sometimes
be best to have new predictors displace old ones. Furthermore, a costly measurement may
be ordered or not in response to a previous prediction. Thus, to better simulate and stimulate
intelligent clinical practice, the notion of a single model can be replaced by that of a sequential
decision algorithm: High-cost variables can be added conditional on the predictions obtained
from low-cost variables. Again, DUC and IDI are not good measures for this purpose.

5. Decisions to add or displace variables will depend on the model and fitting strategy deployed.
This means that we should expand our risk-prediction strategies beyond maximum-likelihood
fitting of logistic and Cox models to strategies that provide more flexibility and better out-
of-sample performance.

I will address each of these problems in turn.

OUTCOME-CONDITIONAL MEASURES

Pencina et al. state that ‘a key measure of clinical utility of a survival model is its ability to
discriminate or separate those who will develop the event of interest from those who will not.’
Letting Y be the indicator of the event of interest, this statement recognizes that the clinical goal
is to separate Y = 1 from Y = 0, in advance of knowing Y. Measures of clinical utility should thus
capture the ability to predict Y conditional on available predictors, and not the ability to predict
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classification given the as-yet unknown Y . For example, if Y ∗ is a model-based classification
indicator (the output of a classification rule), high utility corresponds to having positive and
negative predictive values, PPV=Pr(Y = 1|Y ∗ = 1) and NPV=Pr(Y = 0|Y ∗ = 0), that are close
to one. For risk scores based on a covariate vector Z , high utility corresponds to accurately
estimating the regression E(Y |Z = z) =Pr(Y = 1|Z = z).

DUC and IDI are based only on the probabilities of being classified correctly among those
who did and those who did not develop the event, the sensitivity Se=Pr(Y ∗ = 1|Y = 1) and
specificity Sp= Pr(Y ∗ = 0|Y = 0). Use of performance measures based on Pr(Y ∗ = y|Y = y) to
evaluate clinical utility could be seen as a variant of the prosecutor’s fallacy [3], which decides
guilt based on sensitivity rather than on PPV. With background risk B = Pr(Y = 1), recall that the
probabilities are related via Bayes theorem:

PPV=Se · B/[Se · B + (1 − Sp)(1 − B)] and NPV=Sp(1 − B)/[(1 − Se)B + Sp(1 − B)]
Elementary relations like these show that with low B, DUC and IDI can be higher for variables that
provide large but clinically unimportant sensitivity improvements for a given specificity, relative to
variables that provide small but clinically important specificity improvements for a given sensitivity.
These defects and others stem from the absence of B in DUC and IDI.

Statistically, focusing on predictive values is simpler than focusing on ROC parameters, since
those values are nothing more than classification probabilities derived from dichotomized risk scores
(risk-model predictions). Even if one has information only on score sensitivity and specificity, there
is usually extensive information on background risks, allowing predictive values to be estimated
from Bayes theorem. Below, I will argue further that all that matters for clinical decisions are the
risk scores and predictive values from a relatively narrow range of cutpoints. These conclusions
follow immediately from cost (loss-function) considerations.

COSTS

Loss functions are an integral part of the foundation of frequentist as well as Bayesian decision
theory, yet it seems accepted statistical practice to neglect them in formal methodology (notable
exceptions occur in the data mining and statistical learning literature, e.g. Hastie et al. [4]). That is
understandable, given the difficult nonstatistical issues in estimating costs. This difficulty should
not, however, make one neglect a sound heuristic.

Any decision rule entails an implicit loss function, and the loss functions implicit in rules that
appear to neglect loss functions are usually clinically absurd. One property of the loss function
implicit in IDI is that it treats equal improvements in average sensitivity and average specificity as
equally beneficial. This is apparent by rewriting the defining formula as IDI= (ISnew − ISold) +
(ITnew−ITold), where IT= 1−IP is the integrated specificity. Given a nonzero cost of false positives,
this equal weighting becomes even more absurd as the background rate becomes smaller. That can
be seen by noting that as B approaches zero with fixed costs, false positives become the dominant
cost factor, NPV approaches 1, and any change in sensitivity approaches worthlessness; in this limit,
all that matters is specificity. (Such extreme situations happen, as in the extensive screening that
was conducted for certain possibly nonexistent syndromes putatively caused by silicone implants.)
The IDI loss function also becomes even more absurd as the ratio of false-positive to false-negative
costs moves toward extremes.
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Even in nonextreme situations, however, it would only be a numerical accident if equal changes
in sensitivity and specificity represented equal cost changes. Suppose then that we would like to
make good decisions about the clinical value of a new predictor X more often than accidentally.
Pencina et al. suggested weighting the IDI and NRI to accommodate differences in the importance
of sensitivity and specificity. However, such weighting would make sense only if it were based on
costs and baseline risks. If we are going through the trouble of weighting, we may as well use the
components directly in a loss function.

As an example, suppose CX is the cost of measuring X , Ctp the cost of true positive, Cfp the cost
of false positive, Cfn the cost of false negative, and Ctn the cost of true negative. Then, the expected
loss from using the existing set of variables (without X ) is

Eold = B[PPVoldCtp + (1 − PPVold)Cfn] + (1 − B)[(1 − NPVold)Cfp + NPVoldCtn]
Similarly, the expected loss on adding X to the available variables is

Enew = B[PPVnewCtp + (1 − PPVnew)Cfn] + (1 − B)[(1 − NPVnew)Cfp + NPVnewCtn]
The expected cost of adding X is then

� =CX + Enew − Eold

=CX + B(PPVnew − PPVold)(Ctp − Cfn) + (1 − B)(NPVnew − NPVold)(Ctn − Cfp)

This is a function of the two predictive values and three cost parameters (CX ,Ctp−Cfn,Ctn−Cfp).
The ideal selection criterion is now easy to state: We should want to obtain X if adding X entails
�<0 (i.e. benefit). The relevant null hypothesis and test is thus one-sided: ��0, i.e. X is not worth
its measurement cost.

The test criterion � involves cost parameters that can be far beyond the scope of statistical
expertise, involving matters of valuation and quality of life. It is then natural and may often
suffice to focus statistical efforts on maximizing the accuracy of the risk score with and without
X , to provide an accurate basis for further evaluations. Nonetheless, by including costs as free
parameters in a loss function, a statistician can (with the aid of contextual experts) perform
a sensitivity analysis over a range of reasonable values, rather than rely on potentially absurd
implicit defaults. Occasionally, it may even be deemed worthwhile to statistically estimate costs
as well as risks from available data, to provide a complete health-service evaluation.

Preliminary testing as a heuristic to avoid cost estimation

Testing whether X improves score performance is a good example of testing a null that is probably
false, even if nonsignificant: Mostly any measure seriously proposed for routine use will likely
have some incremental predictive ability. The only question is whether X is worth the trouble and
expense to collect and use. Nonetheless, tests of whether X improves relevant predictive measures
(predictive values or predictive accuracy) can serve as a heuristic first screen before evaluation of
�: If the improvement offered by X cannot be shown to be nonzero, it cannot be shown to reduce
expected loss, and so we need not go on to consider costs.

Note that the ‘improvement’ in the preceding statistical question is in the fitted values of the
predictive probabilities Pr(Y = 1|Z = z), not in the ROC summaries. Thus, a test for improvement
would be given by a test of the X coefficients in the risk model. In accepting this or any preliminary-
testing heuristic, however, we should recognize its logical gaps. For example, as usual there is no
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justification for capping the Type-I error rate at � = 0.05. Because the actual hypothesis of interest
is whether X would pass cost evaluation, we should want the �-level to vary inversely with the
cost of measuring X .

Pencina et al. emphasize that if X does pass the initial ‘null’ screen, we must evaluate the clinical
importance of its contribution. Difficult as it may seem, clinical importance can be realistically
evaluated only with measures that (like �) show how costs change with predictive gains. DUC,
IDI, and other outcome-conditional measures are unnecessary for both the initial screening and for
evaluating the importance of adding X , because they neither measure predictive gain nor account
for costs. When attention is turned to formal cost analysis, PPV and NPV do not complement
sensitivity and specificity, but rather are the only conduit through which sensitivity and specificity
enter the evaluation. In effect, then, PPV and NPV screen off sensitivity and specificity from
further consideration.

CUTPOINTS

Pencina et al. provide sensible advice when they recommend ‘calculating PPV and NPV for a
set of meaningful cut offs.’ A sensible meaning for ‘meaningful’ will, however, necessitate cost
considerations.

Note first that predictive values (and hence Enew and Eold) depend on the cutpoints chosen, or,
more generally, on how one constructs the decision (classification) rules with and without X . To
make � meaningful, the decision rules must be constructed to minimize Enew and Eold. Using
conventional classifiers, this minimization should include cutpoint optimization as well as model
fit: We should want the cutpoint (or more generally, the clinical decision rule) that minimizes
expected loss, given the costs. This cutpoint will vary with costs, as well as with the model.
Furthermore, if the average severity of cases detected varies with cutpoint, the costs of errors will
vary with cutpoint.

Measures that average over all possible cutpoints (like DUC and IDI) will incorporate extensive
information that would be seen as irrelevant if the expected loss were considered. Measures that
further ignore background prevalence are most sensitive to the irrelevancies, especially when the
costs of errors vary with cutpoint. These facts can be seen in screening for a rare condition when
the costs of false positives are not negligible (either individually or in aggregate) relative to the
cost of false negatives.

Consider screening for prostate cancer via the prostate-specific antigen (PSA) test. One ques-
tion might be whether it is worth ordering the test (adding the variable to a null set) after a
negative routine clinical examination. The PSA test supplies a continuous measure; hence, a
model that makes maximal use of the information will supply a predictive probability that can
range over the whole unit (0, 1) interval. The individual cost of a false negative ranges widely,
from nothing for those men with indolent tumors (for whom death will come from something
else before they would develop symptoms) to several years of life lost. The proportion of false
negatives with these outcomes may further depend on the cutpoint chosen. These possibilities must
be weighed against the cost of a false positive, such as an unpleasant, expensive, and invasive
biopsy.

As in other screening controversies (e.g. mammography for young women), informed observers
do not care about performance at clinically ridiculous cutpoints, e.g. one that would achieve a
sensitivity of 0.999 at the cost of a specificity of 0.100. With such a cutpoint, the vast majority
of test positives could be false, incurring enormous unnecessary pain, complication, and expense.
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Conversely, a cutpoint achieving a false-positive rate of 0.001 at the cost of a sensitivity of 0.100
would miss the vast majority of cases, including the worst ones.

When a score is to be used as a screening tool, there is no reason to consider cutpoints that
will grossly inflate the loss, which is what the use of AUC or IDI entails. To be sure, there will be
great uncertainty about the best cutpoint, but this uncertainty does not extend to the entire range
of the score, and can be incorporated into the evaluation process. By including cutpoints as free
parameters in the decision rule, one can at least perform a sensitivity analysis over a reasonable
range, rather than giving absurd cutpoints the same weight as reasonable ones.

PURE PREDICTIVE SCORES

There are many situations in which a risk score will be supplied directly to the clinician as an aid
to informal clinical judgment. Such use is common with the Framingham score. For such purposes
no cutpoint is required, so a rationale for cutpoint-based performance measures (whether outcome
conditioned or predictive) is needed.

Under the usual idealization of rational decisions, the clinician and patient would weigh the
expected loss from various decisions, given that the patient’s score (estimated risk) is R∗. In practice,
however, R∗ may simply lead to classification of the patient into risk categories, essentially locating
R∗ between cutpoints. Available variables not in the score would informally enter the decision in
ways unforeseen by the score developer. Evaluating performance over a broad range of cutpoints
may then seem relevant. Nonetheless, as mentioned above, the category cutpoints at issue are for
a predictive score, performance should be measured by predictive values, not outcome-conditional
parameters, and performance at absurd extremes would not be relevant.

Examining measures as simple as the change in difference between observed and predicted cases
within categories of predicted risk can be illuminating as long as care is taken to adjust for the
optimistic bias of nave estimates prediction error (e.g. via cross validation or bootstrapping). Many
other measures of predictive improvement can be constructed by taking differences of familiar
error measures or more general expected loss functions for models [4, 5]. These measures deserve
exploration in the risk-scoring arena, with special attention given to estimating out-of-sample
performance.

MODELING ISSUES

As does much of the literature, I have thus far assumed a very narrow context in which the only
choice is to include or exclude a measurement X as a discriminator or predictor in a given form,
such as a logistic or Cox model. However, that is not how we should build predictive models
in general. Typically, there may be many options for the set of predictors. Furthermore, many
models and fitting methods are available, the choice of which can strongly influence prediction
performance.

Subset selection and sequential scoring

Even if adding X confers no benefit, by entering X we may be able to eliminate other predictors
with little or no degradation in predictive values. If some of these old predictors are costly and need
not be routinely collected, the best strategy may be to add X and drop other costly predictors. The
statistical question then becomes: What is the optimal subset to use from a now-expanded set of
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variables comprising X and the old predictors? Some theoretical solutions to this problem follow
from comparing the expected costs of using different variable subsets. Many clinical predictors
like age, sex, blood pressures, and BMI are omnipresent and hence should appear in every subset,
leaving only a few costly variables to consider for entry or removal.

We can come closer to simulating and aiding intelligent clinical practice via sequential scoring.
An initial risk score can be computed from the ‘free’ (routinely collected) variables. That score
can then be used to decide whether a costly nonroutine measurement X is warranted. All the above
considerations apply, in that we would not consider X for such a sequential rule unless we can
demonstrate that this use would reduce the loss. Now, however, the threshold for the use of X
is lowered, in that it would be measured (and hence incur a cost) only in a subset of patients,
presumably those who would most benefit from the information it adds. When X is measured, an
updated score is computed, which may be used for further decisions.

Fitting and model form

The decision to reject X may be strongly influenced by the way current and new markers are used
to make predictions. Recognizing this possibility dictates use of the best available risk-prediction
methods. As has been said, ‘new risk predictors should routinely be assessed against the best
available multivariable models because these are regarded as the standard of care’ [2]. Simple
conventional models and fitting methods, such as linear logistic and Cox models with maximum
likelihood (whether partial or conditional), are no longer the best available modeling methods
for all settings. Staying with them exclusively is akin to staying exclusively with medications
introduced over 30 years ago, ignoring all subsequent research and development.

For example, maximum-likelihood regression has long been known to provide out-of-sample
predictions much less accurate than those obtainable from more modern methods, such as shrinkage
estimation (ridge, penalized-likelihood, empirical-Bayes, and related methods) [4–6]. Furthermore,
a decision to reject X based on logistic or Cox modeling may be seriously in error if X is highly
informative in a way not adequately captured by the model. This type of error may be avoided by
exploiting flexible predictive forms [4].

Use of modern risk models need not create difficulty for the end user of the score. Indeed, in
many applications the user enters variables in a computer interface that supplies the risk prediction,
rather than hand-calculating the score from a formula. This type of interface eliminates the need
to restrict models to a simple form.

PORTABILITY ARGUMENTS

A common reason given for focusing on ROC parameters such as AUC is that they are somehow an
intrinsic property of the measurement technique, whereas the predictive values involve background
risks that will inevitably vary across populations. Thus, it makes sense to focus on ROC parameters
to ensure portability or generalizability of scores. One might argue that portability concerns are
moot if the focus is on a single population of interest. However, each population is a mix of
heterogeneous subpopulations, and will vary over time. So the portability argument would be
important even when considering one population, if it were correct.

It has long been known, however, that ROC parameters can depend on characteristics of
the patient mix, clinicians, and laboratory, which vary across populations and time [7]. In real
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applications, ROC parameters will vary over time as the patient mix and laboratory and clinician
errors change, just as background risks and costs will vary. Thus, ROC portability (constancy) is
unlikely to hold over time, let alone across populations. Furthermore, successful models or scores
will endure with time and spread to populations beyond the one in which they were developed.
Even if ROC parameters are more stable than other parameters, this stability cannot compensate
for their logical defects in performance evaluation. At the very least, changes in background risks
and costs will necessitate reconsideration of the model and cutpoints to suit each new time period
and population of application.

CONCLUSIONS

Evaluation of prediction models (risk scores) is complex. Measures of ROC change such as DUC
and IDI provide simple and interesting performance indices. Nonetheless, because they ignore
crucial free parameters, such measures are not suitable as the primary basis for evaluation and
comparison of models.

All evaluation methods imply a loss function, which is driven by predictor-conditional (as
opposed to outcome-conditional) performance, cutpoint choices, and error costs. Well-informed
decisions (e.g. about whether a predictor is worth adding) will consider the form of this function
and its inputs. The one input that is clearly within the statistician’s scope is the prediction model.
For costly but effective predictors, decisions (such as whether to add a variable) may be best left
to the end user, in which case the statistician can help by offering a sequential scoring system.
Regardless, it is the statistician’s responsibility to deploy the best available methods to develop the
model, just as it is the clinician’s responsibility to deploy the best available modalities for patient
care.
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