STATISTICS IN MEDICINE
Statist. Med. (in press)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2991

COMMENTARY

Comments on ‘Evaluating the added predictive ability of a new
marker: From area under the ROC curve to reclassification
and beyond’ by M. J. Pencina et al.,

Statistics in Medicine (this i1ssue)

M. S. Pepe* T, Z. Feng and J. W. Gu

Fred Hutchinson Cancer Research Center, Biostatistics and Biomathematics, 1100 Fairview Ave. N., M2-B500,
Seattle, WA 98109, U.S.A.

1. INTRODUCTION

The evaluation of risk prediction markers has received much attention recently [1-3], and the paper
by Pencina et al. [4] is an important contribution to this literature. There is a growing recognition
that the receiver operating characteristic (ROC) curve, that has played a central role in evaluating
diagnostic markers [5], has some serious limitations while evaluating risk prediction markers. In
particular, a key attribute of the ROC curve is that it does not involve the original measurement
scale for the marker. Rather, it provides a common scale on which the classification performances
of different markers can be compared. This is incredibly valuable when the original measurement
units are irrelevant as they typically are for diagnostic tests. However, for comparing risk models,
with individuals’ risks represented as ppew Vversus pold, the scales for ppey and pgq are the same
and are very relevant to clinical application. Recent attempts to go beyond the ROC curve for
evaluating risk prediction markers are concerned with taking the risk scale into account.

Pencina et al. [4] propose some new statistics to quantify the increment in performance when a
new marker, Y, is added to an existing set of predictors X for predicting an outcome D. In their ap-
plication, Y is HDL cholesterol and D is occurrence of a coronary heart disease (CHD) event within
10 years. It is assumed that both models, ppew and poiq, are well calibrated so that, to a good approx-
imation, ppew = P(D =1]Y, X) and pog = P(D =1|X). We use the subscript k below to denote
old or new.

2. BEYOND SUMMARY INDICES TO PLOTS AND CURVES

Although their paper and most of my commentary discuss summary statistics, study results
can rarely be reduced to a single number. What data display can be used to provide a fuller
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description of the clinically pertinent information derived from the study? A scatterplot of ppew
versus polg seems like a natural complement to the summary statistics based on them, perhaps
with different symbols or separate plots for cases (events) and controls (non-events). A line at
Pnew = Pold, in addition to horizontal and vertical lines at key risk thresholds, would allow one to
see the extent and direction of change in risk induced by adding Y to the set of risk predictors.
A summary index such as integrated discrimination improvement (IDI) or its components, inte-
grated sensitivity (IS) and integrated 1—specificity (IP), cannot distinguish between a few large
upward movements, a medium number of small upward movements, or a large number of move-
ments in both upward and downward directions. Such important distinctions may be evident from
a scatterplot. Granted, the two-way tabulations provided in Table II are essentially discretized
versions of scatter plots. However, they rely heavily on choices of risk categories.

The marginal distributions of ppew and pog have previously been proposed to compare the
performances of two models (or markers). These can be plotted either for the population as a
whole using predictiveness curves [2] or separately for cases and controls in an integrated plot [6].
The IDI summary statistic compares the means of these marginal distributions, E(ppew|D =1)
versus E(poig|D =1) in the IS component and E(ppew|D =0) versus E(pold|D =0) in the 1P
component. Therefore, it can be regarded as a summary index for predictiveness and integrated
plots. Plotting the entire distribution provides additional information. One can see, for example, the
proportions of cases (or controls) whose risks lie above (or below) various thresholds for models
with and without the new marker. This is similar to comparing the margins of Table II, but using
a continuous rather than a discretized scale.

The two-way scatterplot or tabulation also allows one to view the distribution of ppey stratified
on poeld, i.e. for the population whose risks calculated from baseline covariates, X, are within an
interval. Cook [3] summarizes incremental performance by tabulating the conditional distribution
of ppew conditional on pgq being in the medium-risk category. By considering po)q as a covariate,
the methods of Huang er al. [2] for estimating covariate-specific predictiveness curves could be
employed to arrive at continuous versions of these conditional distributions.

3. MANY INTERPRETATIONS FOR THE IDI STATISTIC

The IDI index proposed by Pencina et al. is motivated by considering improvement in mean risk
for case and control populations:

IDI= E{(pnew — Pold)|D =1} — E{(pnew — Poid)|D =0} (1

Equivalently, the authors express it as the change in the mean risk difference, MRDy =
E{pr|D =1} — E{pr| D =0}, also called the discrimination slope:

IDI = MRDjeyy — MRD,yiq )

Since the mean of a non-negative random variable, W, can be expressed in terms of its survivor
function [7, Section 21], E(W) = f P(W=>w)dw, expressions in terms of integrated sensitivity
and specificity follow from (1):

IDI= [Isnew - ISold] + [Pold — IPpew] (3)

where IS, = f P (px>c|D = 1) dc is integrated true-positive fraction (TPF = sensitivity) and IP; =
f P(pr>c|D =0)dc is integrated false-positive fraction (FPF =1 — specificity). The authors note
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that this is the change in Youden’s index, TPF — FPF, integrated uniformly over (0, 1):

IDI = / Yo () de — / Yloia(e) de )

where Yl (c) = P(px>c|D=1) — P(pr>c|D =0) is Youden’s index for the binary rule, py>c.

We now provide some additional interpretations for IDI that are not in Pencina et al’’s paper.
Let PEV be the proportion of the explained variation, a generalization of R? from linear to binary
regression [8]:

var(D) — E{var(D|X)}

PEV g = v (D)

= var(pola)/p(1 — p)

where p= P(D =1) and the equality follows because E(D|X)= P(D =1|X) = polg. Similarly,
we write
var(D) — E{var(D|X, Y)}

PEV ey = var(D)

= var(pnew)/p(1 — p)

Hu et al. [8] note another representation as PEVy = corr(D, py).
The following, rather unintuitive, result is proven in the Appendix:

IDI=PEV,ew — PEVyyq 5)

The above states that IDI is the change in R? achieved by adding the new marker to the binary
regression risk model. This puts IDI in a very traditional and familiar framework.

Yet another interpretation for IDI is in terms of classification error or absolute residuals. The
absolute residuals |D — pi| are (1 — py) for cases and py for controls. Let us take a weighted
average with weights for cases, w; = p~! and weights for controls, wo= (1 — p)~'. Then

E{residval}y = w1 E(1 — pr|D=1)p + woE(px|D =0)(1 — p)
=E(l — pr|D=1) + E(pr|D =0)

It follows that
IDI = E{residual}qg — E {residual}new (6)

We conclude that the IDI statistic is a general and natural measure of the improvement in
prediction afforded by adding Y to the risk model. It can be motivated in at least six different
ways including from the point of view of traditional regression methods: as changes in mean
absolute residuals, equation (6), and as changes in R?, equation (5). The interpretations provided
by Pencina et al., as average improvements in risk values for cases and controls ((1) and (2)) as
well as changes in integrated sensitivity and specificity ((3) and (4)) are compelling and easy to
understand. Having multiple interpretations for IDI is not just academically interesting. It implies
that approaches to analyses that are apparently different are in fact the same. This is reassuring.
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4. INFERENCE FOR IDI AND ITS COMPONENTS

In classic ROC analysis, the sensitivity of a marker is a property entirely of the cases and specificity
is a property of controls. However, with risk prediction markers, cases and controls both enter
into the risk model. This induces some interesting relationships between sensitivity and specificity
calculated on the basis of risk. In this article, the two components of IDI are

ISnew — ISold = E[pnew|D =11 — E[poia| D =1]
and
IPold — IPhew = E[pota| D =0] — E[ppew| D =0]
Since
p=P[D=1]1=Elpi]=pE[p|D=1]+ (1 — p)E[pr| D =0]
— pISk + (1 — p)IPy

subtracting equations for E[ppew] and E[poq] implies that
0= pSpew — ISo1a) + (1 — p)(IPpew — IPo1a)

That is, there is a fundamental relationship between the two components of IDI

(1—p)
ISnew - ISold = P

(IPOId - IPnew) (7)

at least in large samples and assuming well-calibrated models. There are two important implications.
First, an improvement in sensitivity must be accompanied by an improvement in specificity. One
cannot technically fix the specificity improvement at 0 and investigate improvements in sensitivity,
as implied in the paper. Indeed, a test for improvement in IS is equivalent to a test for improvement
in IP, since one is a scaled version of the other. Second, in settings where p = P[D = 1] is small,
equation (7) implies that the improvement in sensitivity will be much larger than the improvement in
specificity. For example, in the CHD application, p = % = 5.6 per cent, so that the improvement
in specificity is 0.059 times the improvement in sensitivity. This relative improvement is borne out
in the example.

I am not convinced that statistical tests of the null hypothesis, Hy : IDI=0, are particularly
useful. In fact, one can show that testing the null hypothesis, Hy : IDI =0, is equivalent to testing
the null hypothesis, Hy : § =0, where [ is the regression coefficient for Y in a risk model that
includes (X, Y) as predictors (see Appendix). This follows intuitively from the representation of
IDI in terms of the change in R?, equation (5). Pencina et al. argue that tests of Hy : f=0 are
often significant even when improvements in model performance are minimal. In a similar vein, we
conjecture that tests of the null hypothesis, Hy : IDI =0, are likely to be statistically significant even
when IDI is extremely small. Such is the case in their application. Instead of testing hypotheses,
perhaps the focus should be on providing a confidence interval for the summary measure of
improvement. The variance expression provided as the denominator of equation (15) in Pencina
et al’s paper, however, may be an under estimate. It does not appear to account for variability
in py due to sampling variability in the regression coefficient estimates. This additional source of
variability could be incorporated with bootstrap resampling.
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5. INSIGHTS REGARDING AUC AND RELATIONSHIPS WITH (TPF, FPF)

Although the area under the ROC curve is often reported, it has been widely criticized [3, 5].
Pencina et al. provide its common interpretation as ‘the probability that given two subjects, one
who will develop an event and one who will not, the model will assign a higher probability of
an event to the former.” However, subjects are never presented in pairs in clinical practice. This
interpretation does not appear to be clinically relevant.

Their insightful discussion of the relationship between IS and the AUC suggests a broader class
of performance measures within which these and other performance measures fall. In practice,
different risk thresholds CH may be used to designate a subject as ‘high risk’, i.e. to choose the
corresponding intervention. Individual patients and their caregivers have different tolerances for
risk. Variability in personal and financial resources affects risk tolerance. Moreover, perceived costs
and benefits can affect a person’s choice of risk threshold. Let FH(c¢) be the cumulative probability
distribution of high-risk thresholds, CH, used in practice. Define TPF! as the probability that a
subject destined to have an event has a high-risk designation:

1
TPFkHzP(pk>CH|D=1)=f P(pr>c|D=1)dF"(c) (8)
0

and similarly define FPF!! as the probability that a control, destined not to have an event, is
classified as high risk:

1
FPF,?:P(pk>C“|D=0)=/ P(pi>c|D=0)dF(c) ©)
0

As noted by Pencina et al., if the probability distribution of CH is uniform on (0, 1), then
TPF; =1S; and FPF; =1P;. However, in practice, the thresholds used for high-risk designation
are unlikely to be uniformly distributed over the entire (0,1) domain. In fact, in the cardiovascular
disease applications presented here and elsewhere, it appears that F might have a point mass
at CH'=0.20. If that were really so, then the values TPFLL =0.191 versus TPFEld =0.131 and
FPF?ld =0.032 versus FPFIL =0.033 reported in their application would be sufficient.

Pencina et al. also note that with the high-risk threshold distribution chosen to equal the risk
distribution in controls, i.e. FH(c) = P(px<c|D =0) = specificity(c), we have TPFH = AUCy and
FPF}? =0.5. That is, if the distribution of high-risk thresholds used in practice were such that
associated false-positive rates were uniformly distributed in (0, 1), then the proportion of cases
classified as high risk, i.e. the marginal or net sensitivity, would be given by AUC and half of the
controls would be classified as high risk. Again this is not a realistic scenario, leaving in doubt
the value of the AUC for practical evaluation of a marker.

In cancer-screening research, we often choose a single-marker threshold corresponding to a very
low FPF, fy, since maintaining a very low FPF is necessary in order to avoid large numbers of
healthy people undergoing unnecessary work-up procedures [9]. That scenario corresponds to a
point mass for FH(c) at the 1 — fy quantile of the control distribution and TPFH and FPF! are
recognized as ROC( fp) and fy, respectively. Choosing a high-risk threshold distribution to yield a
uniform distribution of false-positive rates over (0, fp) yields TPFH equal to the partial AUC [10].

Low-risk designation counterparts of TPF and FPF can be defined. Let C be an individual’s
low-risk threshold. The proportion of cases that receive a low-risk designation, with model %,
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k =new, old, is

1 — TPFy = P(pp<CH|D=1)= /01 P(pr<c|D=1)dF"(c) (10)
and the corresponding proportion of controls is

1 — FPFY = P(pr<CY D =0) = /01 P(pr<c|D=0)dF(c) (11)

where F' is an assumed population distribution of thresholds for designating subjects as low risk.
Again it seems sensible to consider the population distribution of low-risk thresholds likely to be
used in practice in evaluating risk prediction markers.

Comparisons of TPFiL, with TPFY,, 1 — TPFL,, with 1 — TPFY,, FPFLL, with FPF, . and
1-— FPF%eW with 1 — FPFI(;ld provide a simple and meaningful basis for evaluation. Indeed, putting
these together with incidence, p, and costs (or more generally losses or utilities) associated with
incorrect risk designations would allow a comprehensive approach to evaluate risk prediction
markers [1].

6. RISK CATEGORIES AND RECLASSIFICATION

The net reclassification improvement (NRI) summary index is introduced for settings where risk
categories are defined. In cardiovascular disease research, there is some consensus on what con-
stitutes meaningful risk categories. The current paper uses the categories 0-6, 6-20 and 20-100
per cent 10-year risk of a CHD events. Presumably, the category thresholds are based on weighing
the net cost versus net benefit of incorrect versus correct designation. In particular, suppose that
treating a subject as high-risk has a net benefit B if he is destined to have an event in the absence
of the treatment and a net cost B~ if he is not destined to have an event. A subject whose risk of
an event is p has an expected benefit

E{B(p)}=pB" —(1—p)B~ 12)

A natural choice for the high-risk threshold is p : p/(1 — p) =B~ /B™, where the expected
benefit crosses 0. It would be interesting to know whether and how such considerations were
formally involved in choosing the 20 and 6 per cent risk thresholds in CHD research. Researchers
in other medical fields such as cancer need to develop consensus about meaningful risk categories
and could perhaps learn from our colleagues in cardiovascular disease research.

Note that an individual considering having a risk prediction marker measured will ultimately
be required to make two decisions. After his marker value is available, his risk can be calculated
and he will formally or informally assess the expected benefit of treatment for him in his decision
to the avail of treatment. However, the preliminary decision is whether or not to have his marker
measured in the first place. This decision is also based on an assessment of the expected benefit,
given information available to him, which at this point is not based on his risk but upon knowledge
about disease incidence and the probabilities of his receiving a high-risk designation if he is
destined to have an event or not. His expected benefit of testing is

E{B(test)} = p(TPF) Bt — (1 — p)(FPF)B~ (13)

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. (in press)
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Table II'. Overall risk reclassification.

Risk with HDL

Risk without HDL <6 per cent 6-20 per cent >20 per cent Total Per cent reclassified

<6 per cent 1998 157 0 2155 7.2
6-20 per cent 152 790 45 987 20.0
>20 per cent 1 28 93 122 23.8
Total 2151 975 138

The point is that, although the high-risk threshold might be chosen based on (12), evaluation
of the testing strategy depends on (TPEH, FPFM), as defined in (8) and (9). The risk threshold
distribution FH may be an individual-specific point mass when an individual makes the decision to
be tested or not. On the other hand, the risk distribution would pertain to practice in the population
when evaluating the impact of testing on the population.

Consider again Table II of Pencina et al.’s paper that displays a cross-tabulation of risk categories
with and without the HDL marker. Cook [3] considers such a tabulation but ignores the true outcome
shown as Table II' here. Cook quantifies the impact of the marker with the proportion of subjects
in the middle-risk category without HDL who are reclassified into low- or high-risk categories by
the model that includes the new marker. From Table II' this is 20.0 per cent, a seemingly large
effect. However, this analysis ignores the first and third rows of Table II' that show substantial
numbers of subjects reclassified from high- and low-risk categories info the middle-risk category.
The net movement out of the middle-risk category, seen from the margins of the table, is only
987 — 975 =12 subjects. In contrast to Cook [3], Pencina et al. took the approach of evaluating
net improvement with the NRI index.

They also argue convincingly that risk reclassifications must be guaged relative to the true
outcome. Therefore, their tabulation in Table II separates subjects accordingly. We have argued
similarly [11]. Risk reclassifications are improvements only if they are in the upward direction for
cases and in the downward direction for controls.

However, I suspect that not all upward reclassifications are equivalent for cases, and that not
all downward reclassifications are equivalent for controls. For example, for cases, movement
from the low-risk category to the medium-risk category may not be so important as move-
ment from the medium- to the high-risk category. A concern we have about the NRI measure
is that it treats all reclassifications that are in the correct direction as equivalent. An alternative
is to report the components of NRI, namely changes in TPF = P[high-risk designation|D = 1],
FPFH = Prlhigh-risk designation|D = 0], 1—TPF- = P[low-risk designation|D = 1] and 1—FPF- =
P[low-risk designation| D = 0]. The components are reported in their example in Table II.

7. CONCLUSIONS

Risk modeling is a ubiquitous exercise in clinical and epidemiological research. Risk models are
sufficient for a subject who wishes to calculate his risk given his predictors. Relative risk associated
with risk factors are key in etiological research. However, to evaluate the population impact of
a marker as a risk predictor, the population distribution of the marker and other predictors must
be considered in addition to the risk model itself. The population distribution of risks depends on
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both the risk model and on the predictor distributions. Pencina et al. are to be congratulated for
suggesting a sensible approach to evaluating the impact of a new marker by comparing population
risk distributions with and without the marker, separately for cases and controls. They propose
summary statistics, although modification might be considered in the context of specific applications
to incorporate probability densities for risk thresholds that are likely to be used in practice. It is also
important to develop data displays that provide more complete information than can be contained
in summary statistics.

We are still at the point of developing conceptual approaches for proper analysis of risk prediction
markers. Most of our comments here ignore sampling variability and assume that estimated risks
are good approximations to true risks. Development of techniques for estimation and inference
will keep methodological statisticians busy in the future, but first we must come to a consensus
about the appropriate conceptual approaches. The Pencina et al. paper is an important step towards
achieving that goal.

APPENDIX
Proof of (5)
Let W denote the predictors in the model. With subscript k = old the predictors are X and when
k =new we have W = (X, Y). We write p(W) for the risk based on W. Consider

E(p(W)ID=1)= / p(W)dF(WID=1)

dF (W)

_/ p(W)P(D=1|W)
o P(D=1)

=p / PHW)dF (W)

2(W)dF (W) — p?
ot (—p) S PP(W)dF(W) —p
p(1 —p)
=p+ (1 —p)var(p(W))/p(l — p)
=p+ (1 —pPEV

Since p=P(D=1)=E(p(W))=pE(p(W)|D=1)+ (1 — p)E(p(W)|D =0), we have
E(p(W)ID=0)=p{l — E(p(W)|D=1)}/(1 — p)
=p{l — PEV}
Therefore,
MRD = E(p(W)|D=1) — E(p(W)|D=0)
=p+ (1 — p)PEV — p + pPEV
=PEV

The result then follows from equation (2).
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Equivalence of two null hypotheses
Write Ho : IDI=0 and Hj : ppew = P(D=1|X,Y)= P(D =1|X) = pow. Clearly, if Hj holds
then Hp holds. If Hy holds then var(ppew) = var(polg) according to equation (5). But

var(pnew) = var(P(D =1]X, Y))
= Evar{P(D =1|X, Y)|X} + var E{P(D = 1|X, V)| X}
— Evar{P(D =1|X, Y)|X} + var{P(D = 1|X)}
= Evar{P(D=1|X, Y)|X} + var(pol)

Therefore, under Hy, E var{P(D =1|X, Y)|X} =0, which implies that

P(D=1|X,Y)=E{P(D=1|X,Y)|X}=P(D=1|X)

with probability 1.
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