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Evaluation of clinical prediction models (part 2): how to  
undertake an external validation study
Richard D Riley,1,2 Lucinda Archer,1,2 Kym I E Snell,1,2 Joie Ensor,1,2 Paula Dhiman,3  
Glen P Martin,4 Laura J Bonnett,5 Gary S Collins3

External validation studies are an 
important but often neglected part of 
prediction model research. In this 
article, the second in a series on model 
evaluation, Riley and colleagues 
explain what an external validation 
study entails and describe the key 
steps involved, from establishing a 
high quality dataset to evaluating a 
model’s predictive performance and 
clinical usefulness.

A clinical prediction model is used to calculate 
predictions for an individual conditional on their 
characteristics. Such predictions might be of a 
continuous value (eg, blood pressure, fat mass) or the 
probability of a particular event occurring (eg, disease 
recurrence), and are often in the context of a particular 
time point (eg, probability of disease recurrence within 
the next 12 months). Clinical prediction models are 
traditionally based on a regression equation but are 

increasingly derived using artificial intelligence or 
machine learning methods (eg, random forests, neural 
networks). Regardless of the modelling approach, part 
1 in this series emphasises the importance of model 
evaluation, and the role of external validation studies 
to quantify a model’s predictive performance in one 
or more target population(s) for model deployment.1 
Here, in part 2, we describe how to undertake such 
an external validation study and guide researchers 
through the steps involved, with a particular focus 
on the statistical methods and measures required, 
complementing other existing work.2-13 These steps 
form the minimum requirement for external validation 
of any clinical prediction models, including those 
based on artificial intelligence, machine learning or 
regression.

What do we mean by external validation?
External validation is the evaluation of a model’s 
predictive performance in a different (but relevant) 
dataset, which was not used in the development 
process.1 5 7 14-18 It does not involve refitting the model 
to compare how the refitted model equation (or its 
performance) changes compared to the original model. 
Rather, it involves applying a model as originally 
specified and then quantifying the accuracy of the 
predictions made. Five key steps are involved: obtaining 
a suitable dataset, making outcome predictions, 
evaluating predictive performance, assessing clinical 
usefulness, and clearly reporting findings. In this 
article, we outline these steps, using real examples for 
illustration.

Step 1: Obtaining a suitable dataset for external 
validation
The first step of an external validation study is 
obtaining a suitable, high quality dataset.

What quality issues should be considered in an 
external validation dataset?
A high quality dataset is more easily attained when 
initiating a prospective study to collect data for 
external validation, but this approach is potentially 
time consuming and expensive. The use of existing 
datasets (eg, from electronic health records) is 
convenient and often cheaper but is of limited value if 
the quality is low (eg, predictors are missing, outcome 
or predictor measurement methods do not reflect 
actual practice, or time of event is not recorded). Also, 
some existing datasets have a narrower case mix than 
the wider target population owing to specific entry 
criteria; for instance, UK Biobank is a highly selective 
cohort, restricted to individuals aged between 40 and 
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Summary pOintS
External validation is the evaluation of a model’s predictive performance in a 
different (but relevant) dataset, which was not used in the development process
An external validation study involves five key steps: obtaining a suitable dataset, 
making outcome predictions, evaluating predictive performance, assessing 
clinical usefulness, and clearly reporting findings
The validation dataset should represent the target population and setting in 
which the model is planned to be implemented
At a minimum, the validation dataset must contain the information needed to 
apply the model (ie, to make predictions) and make comparisons to observed 
outcomes
A model’s predictive performance should be examined in terms of overall fit, 
calibration, and discrimination, in the overall population and ideally in key 
subgroups (eg, defined by ethnic group), as part of fairness checks
Calibration should be examined across the entire range of predicted values, 
and at each relevant time point for which predictions are being made, using a 
calibration plot including a smoothed flexible calibration curve
Where the goal is for predictions to direct decision making, a prediction model 
should also be evaluated for its clinical usefulness, for example, using net 
benefit and decision curves
Although a well calibrated model is ideal, a miscalibrated model might still have 
clinical usefulness
The TRIPOD (Transparent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis) statement provides guidance on how to report 
external validation studies
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69—therefore, its use for external validation would 
leave uncertainty about a model’s validity for the wider 
population (including those aged <40 or >69).

To help judge whether an existing dataset is suitable 
for use in an external validation study, we recommend 
using the signalling questions within the Prediction 
model Risk Of Bias ASsessment Tool (PROBAST) 
domains for Participant Selection, Predictors and 
Outcome (box 1).19 20 Fundamentally, the dataset 
should be fit for purpose, such that it represents the 
target population, setting, and implementation of 
the model in clinical practice. For instance, it should 
have patient inclusion and exclusion criteria that 
match those in the target population and setting for 
use (eg, in the UK, prediction models intended for 
use in primary care might consider databases such as 
QResearch, Clinical Practice Research Datalink, Secure 
Anonymised Information Linkage, and The Health 
Improvement Network); measure predictors at or 
before the start point intended for making predictions; 
ensure measurement methods (for predictors and 
outcomes) reflect those to be used in practice; and have 
suitable follow-up information to cover the time points 
of interest for outcome prediction. It should also have 
a suitable sample size to ensure precise estimates of 
predictive performance (see part 3 of our series),21 and 
ideally the amount of missing data should be small 
(see section on dealing with missing data, below).

What population and setting should be used for 
external validation of a prediction model?
Researchers should focus on evaluating a model’s target 
validity,13 such that the validation study represents the 
target population and setting in which the model is 
planned to be implemented (otherwise it will have little 
value). The validation study might include the same 
populations and settings that were used to develop the 
model. However, it could be a deliberate intention to 

evaluate a model’s performance in a different target 
population (eg, country) or setting (eg, secondary care) 
than that used in model development. For this reason, 
multiple external validation studies are conducted 
for the same model, to evaluate performance across 
different populations and settings. For example, the 
predictive performance of the Nottingham Prognostic 
Index has been evaluated in many external validation 
studies.22 The more external validations that confirm 
good performance of a model in different populations 
and settings, the more likely it will be useful in untested 
populations and settings.

Most external validation studies are based on 
data that are convenient (eg, already available from 
a previous study) or easy to collect locally. As such, 
they often only evaluate a model’s performance in 
a specific target setting or (sub)population. To help 
clarify the scope of the external validation, Debray et 
al5 recommend that researchers should quantify the 
relatedness between the development and validation 
datasets, and to make it clear whether the focus 
of the external validation is on reproducibility or 
transportability. Reproducibility relates to when the 
external validation dataset is from a population and 
setting similar to that used for model development. 
Reproducibility is also examined when applying 
internal validation methods (eg, cross validation, 
bootstrapping) to the original development data during 
the model development, as discussed in our first 
paper.1 Conversely, transportability relates to external 
validation in an intended different population or 
setting, for which model performance is often expected 
to change owing to possible differences in predictor 
effects and the participant case mix compared with the 
original development dataset (eg, when moving from a 
primary care to a secondary care setting).

What information needs to be recorded in the 
external validation dataset?
At a minimum, the external validation dataset must 
contain the information needed to apply the model 
(ie, to make predictions) and make comparisons 
to observed outcomes. This required information 
means that, for each participant, the dataset should 
contain the outcome of interest and the values of any 
predictors included in the model. For time-to-event 
outcomes, any censoring times (ie, end of follow-up) 
and the time of any outcome occurrence should also 
be recorded. Fundamentally, the outcome should 
be reliably measured, and the recorded predictor 
information must reflect how, and the moment when, 
the model will be deployed in practice. For example, 
for a model to be used before surgery to predict 28 day 
mortality after surgery, it should use predictors that are 
available before surgery, and not any perioperative or 
postoperative predictors.

Step 2: making predictions from the model
Once the external validation dataset is finalised (ready 
for analysis), the next step is to apply the existing 
prediction model to derive predicted values for each 

Box 1: Signalling questions within the first three domains of PROBAST (Prediction 
model Risk Of Bias ASsessment Tool)19 20 that are important to consider when 
ensuring a dataset for external validation is fit for purpose

Domain 1: participant selection
•	Were appropriate data sources used—for example, cohort or randomised trial 

for prognostic prediction model research, or cross sectional study for diagnostic 
prediction model research?

•	Were all inclusions and exclusions of participants appropriate?
Domain 2: predictors
•	Were predictors defined and assessed in a similar way for all participants?
•	Were predictor assessments made without knowledge of outcome data?
•	Are all predictors available at the time the model is intended to be used?
Domain 3: outcome
•	Was the outcome determined appropriately?
•	Was a prespecified or standard outcome definition used?
•	Were predictors excluded from the outcome definition?
•	Was the outcome defined and determined in a similar way for all participants?
•	Was the outcome determined without knowledge of predictor information?
•	Was the time interval between predictor assessment and outcome determination 

appropriate?
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participant in the external validation dataset. This step 
should not be done manually, but rather done by using 
appropriate (statistical) code that can be programmed 
to apply the model to each participant in the external 
validation dataset and compute predicted outcome 
values based on their multiple predictor values. For 
some models, typically those based on black box 
artificial intelligence or machine learning methods, 
by design they can only be made directly available 
(by the model developers) as a software object, or 
accessible via a specific system or server. Figure 1 
illustrates the general format of using regression based 
prediction models to estimate outcome values or event 
probabilities (risks), and figure 2 and figure 3 provide 
two case studies.

Figure 2 shows a prediction model developed 
using the US West subset of the GUSTO-I data (2188 
individuals, 135 events), which estimates the 
probability of 30 day mortality after an acute myocardial 
infarction.23 The logistic regression model includes 
eight predictors (with 10 predictor parameters, since 
an additional two parameters are required to capture 
the categorical Killip classification). For illustration of 
externally validating this model, we use the remaining 
data from the GUSTO-I dataset (with thanks to Duke 
Clinical Research Institute),23 which contains all 
eight predictor variables and outcome information for 
38 642 individuals.

Figure 3 shows a prediction model for calculating the 
five year probability of a recurrence in patients with a 
diagnosis of primary breast cancer. This survival model 
was developed for illustrative purposes in 1546 (node 
positive) participants (974 events) from the Rotterdam 
breast cancer study,18 24 including eight predictors with 
10 predictor parameters. External validation is carried 
out using data from the German Breast Cancer Study 
Group, which contains all eight predictor variables 

and outcome information for 686 patients (with 299 
events).18 25-27

Once the predictions have been calculated for each 
participant, it is good practice to summarise their 
observed distribution, for example, as a histogram, 
with summary statistics such as the mean and standard 
deviation. This presentation is illustrated for the two 
examples in figure 2 and figure 3, separately for those 
individuals with and without the outcome event.

Step 3: Quantifying a model’s predictive performance
The third step is to quantify a model’s predictive 
performance in terms of overall fit, calibration, and 
discrimination. This step requires suitable statistical 
software, which is discussed in supplementary 
material S1,28-32 and example code is provided at www.
prognosisresearch.com/software. 

Overall fit
Overall performance of a prediction model for a 
continuous outcome is quantified by R2, the proportion 
of the total variance of outcome values that is explained 
by the model, with values closer to 1 preferred. Often 
this value is multiplied by 100, to give the percentage of 
variation explained. Generalisations of R2 for binary or 
time-to-event outcomes have also been proposed, such 
as the Cox-Snell R2 (this has a maximum value below 
1),33 Nagelkerke’s R2 (a scaled version of the Cox-Snell 
R2, which has a maximum value of 1),34 O’Quigley’s 
R2,35 Royston’s R2,36 and Royston and Sauerbrei’s R2

D.37 
We particularly recommend reporting the Cox-Snell R2 
value, as it is needed in sample size calculations for 
future model development studies.38

Another overall measure of fit is the mean squared 
error of predictions, which for continuous outcomes 
can be obtained on external validation by calculating 
the mean of the squared difference between 

Continuous outcome example: If the existing model is provided in the format of a linear regression equation (to 
predict a continuous outcome value) containing an intercept (β

0
) and three predictor effects (β

1
,β

2
,β

3
)

corresponding to three predictors (X
1
,X

2
,X

3
), then predictions for each individual participant (i) of the continuous 

outcome (Y
i
) would be calculated using equation 1.

Y
i
 = β

0
 + β

1
X

1i
 + β

2
X

2i
 + β

3
X

3i
                  Equation 1

Binary outcome example: For binary outcomes (event: yes or no), the model is used to estimate the probability 
(p

i
) of the outcome event for each individual (i). For example, if the existing model is provided as a logistic 

regression model containing an intercept and three predictors, then the estimated probability (risk) of the 
outcome event can be calculated for each individual by equation 2.

p
i
 =                                                                                      Equation 2

Time-to-event outcome example: For a time-to-event outcome, the model is also used to estimate the 
probability (p

i
) of the outcome event for each individual (i). Many time-to-event prediction models are presented in 

the format of a proportional hazards (Cox) regression model, together with the baseline survival (event-free) 
probability (S

0
(t)) by time t (where “baseline” usually refers to individuals whose predictor values are all zero). This 

process allows an individual’s outcome event probability (F
i
(t)) by a chosen time t to be estimated. For example, 

assuming three predictors (X
1
,X

2
,X

3
) were included in the Cox model, an individual’s estimated probability of the 

outcome event occurring by time t can be calculated using equation 3.
 
F

i
(t) = 1 – S

i
(t) = 1 – S

0
(t)                           Equation 3

where S
i
(t) is the individual’s estimated survival (event-free) probability by time t. Note that if S

0
(t) cannot be 

obtained from the original development paper, it is not possible to calculate the event probability and so the 
existing model cannot be used to estimate risks directly. 
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Fig 1 | Application of an existing prediction model to derive predicted values for each participant in the external validation dataset
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participants’ observed outcomes and their estimated 
(from the model) outcomes. An extension of the mean 
square error for binary or time-to-event outcomes is the 
Brier score,39 40 which compares observed outcomes 
and estimated probabilities. Overall fit performance 
estimates are shown for the two examples in table 1.

Calibration plots
Calibration refers to the assessment of whether 
observed and predicted values agree.41 For example, 
whether observed event probabilities agree with a 
model’s estimated event probabilities (risks). Although 
an individual’s event probability cannot be observed 
(we only know if they had the outcome event or not), we 
can still examine calibration of predicted and observed 
probabilities by deriving smoothed calibration curves 
fitted using all the individuals’ observed outcomes 
and the model’s estimated event probabilities (fig 4 
and fig 5). At external validation, some miscalibration 
between the predicted and observed values should be 
anticipated. The more different the validation dataset is 
compared with the development dataset (eg, in terms of 

population case mix, outcome event proportion, timing 
and measurement of predictors, outcome definition), 
the greater the potential for miscalibration. Similarly, 
models developed using low quality approaches (eg, 
small datasets, unrepresentative samples, unpenalised 
rather than penalised regression) have greater potential 
for miscalibration on external validation.

Calibration should be examined across the entire 
range of predicted values (eg, probabilities between 
0 to 1), and at each relevant time point for which 
predictions are being made. Van Calster et al outline 
a hierarchy of calibration checks,42 ranging from the 
overall mean to subgroups defined by patterns of 
predictor values. Fundamentally, calibration should 
be visualised graphically using a calibration plot 
that compares observed and predicted values in 
the external validation dataset, and the plot must 
include a smoothed flexible calibration curve (with 
a confidence interval) as fitted in the individual data 
using a smoother or splines.42 43

Many researchers, however, do not report a 
calibration plot,44 and those that do tend to only report 

Binary outcome example: probability of mortality at 30 days aer acute myocardial infarction
For illustrative purposes, we consider validation of the following model that calculates the probability of 30 day 
mortality in patients with an acute myocardial infarction:
 
                                                    Probability (p) of 30 day mortality = exp(LP)/(1+exp(LP))
where
 
LP = - 4.365084 - 0.3280145 (HTN) + 0.5443634 (SEX) + 0.007297 ((AGE/10)3 - 221.10694) + 0.692547
(if KILLIP=2) + 2.746477 (if KILLIP=3) + 2.808144 (if KILLIP=4) + 1.386137 (HYP) + 0.6522851 (HRT) + 0.6847723 
(PMI) + 0.215318 (STE - 3.99954)

Predictors are defined as:

HTN = hypertension (0=no, 1=yes); SEX = sex (0=male, 1=female); AGE = age (years); KILLIP 2/3/4 = Killip class (1-4, 
measure for le ventricular function); HYP = hypotension (0=no, 1=yes); HRT = tachycardia (0=no, 1=yes); PMI = 
previous myocardial infarction (0=no, 1=yes); STE = ST elevation on electrocardiogram (number of leads). The 
terms for age and ST elevation on ECG were mean centred based on the means in the development data.

We will externally validate this model using 38 642 individuals from the GUSTO-I dataset, which is a subsample of 
the original GUSTO randomised controlled trial comparing 30 day mortality of two treatment groups in individuals 
who had had an acute myocardial infarction. The dataset is freely available, for which we kindly acknowledge Duke 
Clinical Research Institute. It can be installed in R by typing: load(url('https://hbiostat.org/data/gusto.rda')). In the 
dataset, 2716 participants (7.0%) died by 30 days.

Distributions of the linear predictor (LP) values in the external validation sample are shown below, for all patients 
combined (le panel), and separately for patients who died and those who did not (right panel) within 30 days of 
acute myocardial infarction.

Linear predictor value
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Linear predictor value

-10 -5 0 5 10

No death within 30 days

Mean = -3.52
Median = -3.73
SD = 1.48
IQR = -4.59 to -2.67

No death:
Mean = -3.65
Median = -3.83
SD = 1.36
IQR = -4.65 to -2.84

Death:
Mean = -1.74
Median = -1.94
SD = 1.79
IQR = -2.96 to -0.69

Death within 30 days

Fig 2 | Example of a binary outcome prediction model to be externally validated in new data. SD=standard deviation; IQR=interquartile range
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grouped points rather than a calibration curve across 
the entire range. Grouping can be gamed (eg, by altering 
the number of groups), only reveals calibration in the 
ill defined groups themselves, and caps the calibration 
assessment at the average predicted value in the 
lowest and highest group. Hence, grouping enables 
researchers to (deliberately) obfuscate any meaningful 
assessment of miscalibration in particular ranges 
of predicted values (an example is shown below). A 
calibration curve provides a more complete picture. 
For continuous outcomes, the calibration plot and 
smoothed curve can be supplemented by presenting 
the pair of observed (y axis) against predicted (x axis) 
values for all participants. For binary or time-to-event 
outcomes, observed (y axis) event probabilities against 
the model’s estimated event probabilities (x axis) can 
be added for groups defined by, for example, 10ths or 
20ths of the model’s predictions—again, to supplement 
(not replace) a smoothed calibration curve.43

The calibration plot should be presented in a square 
format, and the axes should not be distorted (eg, by 
changing the scale of one of the axes, or having uneven 
spacing across the range of values) as this could hide 
miscalibration in particular regions. Researchers 

should also add the distribution of the predicted values 
underneath the calibration plot, to show the spread of 
predictions in the validation dataset, perhaps even for 
each of the event and non-event groups separately.

If censoring occurs before the time point of interest 
in the validation dataset, then the true outcome event 
status is unknown for the censored individuals, which 
makes it difficult to directly plot the calibration of model 
predictions at the time point of interest. A common 
approach is to create groups (eg, 10 groups defined by 
tenths of the model’s estimated event probabilities), 
and to plot the model’s average estimated probability 
against the observed (1–Kaplan-Meier) event 
probability for each group. However, this approach 
is unsatisfactory, because the number of groups and 
the thresholds used to define them are arbitrary; 
hence, it only provides information on subjectively 
chosen groups of participants and does not provide 
granular information on calibration or miscalibration 
at specified values or ranges of predicted values. To 
manage this problem, a smoothed calibration curve 
can be plotted that examines calibration across the 
entire range of predicted values (analogous to the 
calibration plot for binary outcomes) at a particular 

Time-to-event outcome: probability of recurrence by five years aer a diagnosis of primary breast cancer 
For illustrative purposes, we consider validation of the following model to calculate a patient’s probability of breast 
cancer recurrence within five years aer diagnosis of a primary breast cancer:

Probability (p) of recurrence by 5 years = 1 – (0.507exp(LP))

where LP = - 0.02385232 ((age/10)3 - 175.38) + 0.01084208 (((age/10)3 x ln(age/10)) – 302.07) + 0.26165013 
(meno) + 0.19223593 (if size=2) + 0.42103043 (if size=3) + 0.25388468 (if grade=3) + 0.40846418 (ln(nodes/10) + 
0.648) - 0.00032374 (er – 165.08) - 0.41367145 (hormone) - 0.48596475 (chemo)

Predictors are defined as:

Age = age at surgery (years); meno = menopausal status (0=pre-menopausal, 1=post-menopausal); size 2 = tumour 
size >20-50 mm; size 3 = tumour size >50 mm; grade 3 = differentiation grade 3 (0=no, 1=yes); nodes = number of 
positive nodes; er = ER (fmol/L); hormone = hormonal therapy (0=no, 1=yes); chemo = chemotherapy (0=no, 
1=yes)
 
We will externally validate this model using a trial of primary breast cancer from the German Breast Cancer Study 
Group, including 686 patients (with 299 events) with primary node positive and a maximum follow-up time of five 
years. The dataset is freely available in Stata (type: webuse brcancer) and R (https://hbiostat.org/data/), and has 
been used in previous books and articles. At five years, the cumulative incidence of recurrence is 51%.

Distributions of the linear predictor (LP) values in the external validation data are shown below, for all patients 
combined (le panel), and separately for patients with and without a recurrence (right panel) by five years.

Linear predictor value
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Median = -0.38
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Median = -0.50
SD = 0.48
IQR = -0.82 to -0.16

Recurrence:
Mean = -0.17
Median = -0.15
SD = 0.52
IQR = -0.57 to 0.22

Recurrence
within 5 years

Fig 3 | Example of a time-to-event outcome prediction model to be externally validated in new data. SD=standard deviation; IQR=interquartile range
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time point. This approach can be achieved using 
pseudo-observations (or pseudo-values),45-48 or 
flexible adaptive hazard regression or a Cox model 
using restricted cubic splines.49 More details are 
provided in supplementary material S2.

Calibration plots and curves for the two examples 
are shown in figure 4 and figure 5. The calibration 
plot for the binary outcome example (fig 4) shows 

good calibration for event probabilities between 0 and 
0.15. For calculated event probabilities beyond 0.2, 
the model overestimates the probability of mortality, 
as revealed by the smoothed calibration curve lying 
below the diagonal line. Had only grouped points 
been included (and not a smoothed curve across 
individuals), the extent of the miscalibration in the 
range of model predictions above 0.2 would be hidden. 

Table 1 | Predictive performance of example models when examined in the external validation population. Data are 
estimates (95% confidence intervals). AUROC=area under the receiver operating characteristic curve

Performance measure
Binary outcome model: probability of 30 day 
mortality after an acute myocardial infarction

Time-to-event outcome model: probability of five 
year recurrence after a diagnosis of primary breast 
cancer

Overall fit 
R2 Nagelkerke 0.077 (0.070 to 0.085) —
R2 Cox-Snell 0.19 (0.18 to 0.21) —
Royston R2D — 0.17 (0.12 to 0.23)
Brier score 0.059 (0.057 to 0.061) 0.22 (0.19 to 0.24)
Calibration
Calibration-in-the-large 0.019 (−0.026 to 0.064) —
Observed/expected 1.01 (1.01 to 1.02) 1.27 (1.22 to 1.32)
Calibration slope 0.72 (0.70 to 0.75) 1.10 (0.88 to 1.33)
Integrated calibration index 0.017 (0.017 to 0.018) 0.109 (0.107 to 0.112)
Discrimination 
C statistic (AUROC) 0.81 (0.80 to 0.82) —
Harrell’s C index — 0.67 (0.64 to 0.70)
Time dependent AUROC at 
five years

— 0.71 (0.65 to 0.76)
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Fig 4 | Calibration plots for binary outcome prediction model on external validation. Example shows probability of 30 day mortality after an acute 
myocardial infarction. Area below the dashed line=where the model’s risk estimates are too high; area above the dashed line=where the model’s 
risk estimates are too low; 10 circles=10 groups defined by tenths of the distribution of estimated risks; histograms at the bottom of graphs show 
the distribution of risk estimates for each outcome group
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For example, consider if the calibration had been 
checked for 10 groups based on tenths of predicted 
values (see 10 circles in fig 4). Because most of the 
data involve patients with model predictions less than 
0.2, nine of the 10 groups fall below predictions of 
0.2. Further, the model’s estimated probabilities in the 
upper group have a mean of about 0.4, and information 
above this value is completely lost, incidentally where 
the miscalibration is most pronounced based on the 
smoothed curve across all individuals. Therefore, figure 
4 demonstrates our earlier point that categorising 
into groups loses and hides information, and that 
the calibration curve is essential to show information 
across the whole range of predictions, including values 
close to 1.

Although a well calibrated model is ideal, a 
miscalibrated model might still have clinical 
usefulness. For example, in figure 4, miscalibration 
is most pronounced in regions where the model’s 
estimated mortality risks are very high (eg, >0.3), 
with actual observed risks about 0.05 to 0.3 lower. 
However, in this setting, whether a patient is deemed 
to have high or very high mortality risks is unlikely to 
change clinical decisions for that patient. By contrast, 
in regions where clinical risk thresholds are more 
relevant (eg, predictions ranging from 0.05 to 0.1), 
calibration is very good and so the model might still be 

useful in clinical practice despite the miscalibration at 
higher risks (see step 4).

The calibration plot for the time-to-event outcome 
example shows that the predictions are systematically 
lower than the observed event risk at five years (fig 
5), with most of the calibration curve lying above 
the diagonal. In particular, for predictions between 
0.1 and 0.8, the model appears to systematically 
underestimate the probability of recurrence within five 
years of a breast cancer diagnosis.

The calibration curve’s confidence interval is 
important to reveal the precision of the calibration 
assessment. It also quantifies the uncertainty of the 
actual risk in a group of individuals defined by a 
particular predicted value. For example, for the group 
of individuals with an estimated risk of 0.8 in figure 5, 
the 95% confidence interval around the curve suggests 
that this group’s actual risk is likely between 0.78 to 1.

Quantifying calibration performance
Calibration plots with calibration curves should 
also be supplemented with statistical measures that 
summarise the calibration performance observed in 
the plot.50 Calibration should not be assessed using the 
Hosmer-Lemeshow test, or related ones like the Nam-
D’Agostino test or Gronnesby-Borgan test, because 
these require arbitrary grouping of participants that, 
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Fig 5 | Calibration plots for time-to-event prediction model on external validation. Example shows time-to-event outcome: probability of five year 
recurrence after a diagnosis of primary breast cancer. Area below the dashed line=where the model’s risk estimates are too high; area above the 
dashed line=where the model’s risk estimates are too low; 10 circles=10 groups defined by tenths of the distribution of estimated risks; histograms 
at the bottom of graphs show the distribution of risk estimates for each outcome group
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along with sample size, can influence the calculated 
P value, and does not quantify the actual magnitude 
or direction of any miscalibration. Rather, calibration 
should be quantified by the calibration slope (ideal 
value of 1), calibration-in-the-large (ideal value of 
0) and—for binary or time-to-event outcomes—the 
observed/expected (O/E) ratio (ideal value of 1) or 
conversely the E/O ratio. A detailed explanation for each 
of these measures is given in supplementary material 
S3. Estimates of these measures should be reported 
alongside confidence intervals, and derived for the 
dataset as a whole and, ideally, also for key subgroups 
(eg, different ethnic groups, regions). To quantify 
overall miscalibration based on the calibration curve, 
the estimated or integrated calibration index can be 
used, which respectively measure an average of the 
squared or absolute differences between the estimated 
calibration curve and the 45 degree (diagonal) line of 
ideal calibration.51 52

Calibration measures are summarised in table 
1 for the two examples, which confirm the visual 
findings in the calibration plots. For example, the 
binary outcome prediction model has a calibration 
slope of 0.72 (95% confidence interval 0.70 to 0.75), 
suggesting that predictions are too extreme; this is 
driven by the overprediction in those with estimated 
event probabilities above 0.2 (fig 4). The time-to-event 
prediction model has an O/E ratio of 1.27, suggesting 
that the observed event probabilities are systematically 
higher than the model’s estimated values, which is 
seen by the smoothed calibration curve lying mainly 
above the diagonal line (fig 5). Such situations could 
motivate model updating to improve calibration 
performance.53

The results also emphasise how one calibration 
measure alone does not provide a full picture. For 
example, the calibration slope is close to 1 for 
the time-to-event prediction model (1.10, 95% 
confidence interval 0.88 to 1.33), but there is clear 
miscalibration owing to the O/E ratio of 1.27 (1.22 to 

1.32). Conversely, O/E ratio is 1.01 (1.01 to 1.02) in 
the binary outcome example, suggesting good overall 
agreement, but the calibration slope is 0.72 (0.70 to 
0.75) owing to the overestimation of high risks (fig 4). 
Hence, all measures of calibration should be reported 
together and—fundamentally—alongside a calibration 
plot with a smoothed calibration curve.

Quantifying discrimination performance
Discrimination refers to how well a model’s predictions 
separate between two groups of participants: those 
who have (or develop) the outcome and those who do 
not have (or do not develop) the outcome. Therefore, 
discrimination is only relevant for prediction models 
of binary and time-to-event outcomes, and not 
continuous outcomes.

Discrimination is quantified by the concordance 
(c) statistic (index),11 54 and a value of 1 indicates the 
model has perfect discrimination, while a value of 
0.5 indicates the model discriminates no better than 
chance. For binary outcomes, it is equivalent to the 
area under the receiver operating characteristic curve 
(AUROC) curve. It gives the probability that for any 
randomly selected pair of participants, one with and 
one without the outcome, the model assigns a higher 
probability to the participant with the outcome. What 
constitutes a high c statistic is context specific; in 
some fields where strong predictors exist, a c statistic 
of 0.8 might be considered high, but in others where 
prediction is more difficult, values of 0.6 might be 
deemed high. The c statistic also depends on the case 
mix distribution. Presenting an ROC curve over and 
above the c statistic (AUROC) has very little, if any, 
benefit.55 56 Similarly, providing traditional measures 
of test accuracy such as sensitivity and specificity 
are not as relevant for prediction models, because 
the focus should be on the overall performance of 
the model’s predictions without forcing thresholds to 
define so-called high and low groups. If thresholds are 
important for clinical decision making, then clinical 
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Fig 6 | Decision curves showing net benefit for binary outcome prediction model across a range of threshold probabilities that define when 
some clinical action (eg, treatment) is warranted. Example shows probability of 30 day mortality after an acute myocardial infarction. Threshold 
probability=risk needed to initiate a particular treatment or clinical action; positive values of net benefit indicate clinical utility; treat all=strategy 
of initiating the particular treatment (or clinical action) for all patients regardless of their estimated risk; treat none=strategy of not initiating 
the treatment (or clinical action) for any patient; treat per model=strategy of initiating the treatment (or clinical action) for those patients whose 
estimated risk is at or above the threshold probability. An interactive version of this graphic is available at: https://public.flourish.studio/
visualisation/15175981/
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utility should be assessed at those thresholds, for 
example, using net benefit and decision curves (see 
step 4).

Generalisations of the c statistic have been proposed 
for time-to-event models, most notably Harrell’s 
C index, but many other variants are available, 
including Efron’s estimator, Uno’s estimator, Göner 
and Heller’s estimator, and case mix adjusted 
estimates.54 57 Royston’s D statistic is another measure 
of discrimination,37 interpreted as the log hazard 
ratio comparing two equally sized groups defined by 
dichotomising the (assumed normally distributed) 
linear predictor from the developed model at the 
median value. Higher values for the D statistic indicate 
greater discrimination.

Harrell’s C index and Royston’s D statistic measure 
discrimination over all time points up to a particular 
time point (or end of follow-up). However, usually an 
external validation study aims to examine a model’s 
predictive performance at a particular time point, 
and so time dependent discrimination measures are 
more informative, such as an inverse probability of 
censoring weighted estimate of the time dependent 
area under the ROC curve for the time point of interest 
(t).58

Discrimination performance for the two examples is 
shown in table 1, and show promising discrimination 
in both cases. For the binary outcome example, the 
model correctly identifies 80.8% concordant pairs (c 
statistic 0.81, 95% confidence interval 0.80 to 0.82). 
The time-to-event example has a Harrell’s C index of 
0.67 (0.64 to 0.70) and a time dependent AUROC curve 
of 0.71 (0.65 to 0.76), suggesting that the model’s 
discrimination at five years is slightly higher than the 
discrimination performance averaged across all time 
points.

Step 4: Quantifying clinical utility
Where the goal is for predictions to direct decision 
making, a prediction model should also be evaluated 
for its overall benefit on participant and healthcare 

outcomes; also known as its clinical utility.16 59 60 
For example, if a model estimates a patient’s event 
probability above a certain threshold value (eg, >0.1), 
then the patient and their healthcare professionals 
could decide on some clinical action (eg, above current 
clinical care), such as use of a particular treatment, 
monitoring strategy, or lifestyle change. When 
externally validating the model, the clinical utility of 
this approach can be quantified by the net benefit, 
a measure that weighs the benefits (eg, improved 
patient outcomes) against the harms (eg, worse 
patient outcomes, additional costs).61 62 It requires the 
researchers to choose a probability (risk) threshold, 
at or above which there will be a clinical action. The 
threshold should be chosen before a clinical utility 
analysis, based on discussion with clinical experts 
and patient focus groups, and indeed there might 
be a range of thresholds of interest, because a single 
threshold is unlikely to be acceptable for all clinical 
settings and individuals. Then, a decision curve can 
be used to display a model’s net benefit across the 
range of chosen threshold values, and compared with 
other decision making strategies (eg, other models, 
or options such as treat all and treat none). Further 
explanation is provided in supplementary material S4, 
and more detailed guidance is provided in previous 
tutorials.61-63

We apply this clinical utility step to the two 
examples in figure 6 and figure 7, and show results 
across the entire 0 to 1 probability range for 
illustration, although in practice a narrower range 
would be predetermined by clinical and patient 
groups, as mentioned. Figure 6 shows that the binary 
outcome model has a positive net benefit for all 
thresholds below 0.44, where clinical thresholds are 
likely to fall in this clinical setting, with greater net 
benefit than the treat all strategy at all thresholds. 
Figure 7 time-to-event outcome model has a positive 
net benefit for thresholds up to 0.79, but does not 
provide added benefit over the treat all strategy if key 
thresholds fall below 0.38.
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Fig 7 | Decision curves showing net benefit for time-to-event prediction model across a range of threshold probabilities that define when some 
clinical action (eg, treatment) is warranted. Example shows probability of five year recurrence after a diagnosis of primary breast cancer. Threshold 
probability=risk needed to initiate a particular treatment or clinical action; positive values of net benefit indicate clinical utility; treat all=strategy 
of initiating the particular treatment (or clinical action) for all patients regardless of their estimated risk; treat none=strategy of not initiating 
the treatment (or clinical action) for any patient; treat per model=strategy of initiating the treatment (or clinical action) for those patients whose 
estimated risk is at or above the threshold probability. An interactive version of this graphic is available at: https://public.flourish.studio/
visualisation/15162451/
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Step 5: Clear and transparent reporting
The Transparent Reporting of a multivariable model 
for Individual Prognosis Or Diagnosis (TRIPOD) 
statement provides guidance on how to report studies 
validating a multivariable prediction model.50 64 For 
example, the guidance recommends specifying all 
measures calculated to evaluate model performance 
and, at a minimum, to report calibration (graphically 
and quantified) and discrimination, along with 
corresponding confidence intervals. With the 
introduction of new sample size criteria for both 
developing and validating prediction models,21  38  65-71 
we also recommend reporting either the Cox-Snell 
or Nagelkerke R2, and the distribution of the linear 
predictor (eg, histograms for those with and without 
the outcome event, as shown in fig 2 and fig 3, and 
at the base of the plots in fig 4 and fig 5). These 
additional reporting recommendations not only 
provide information on the performance of the model 
but also provide researchers with key information 
needed to estimate sample sizes for further external 
validation, model updating, or when developing new 
models.38 65 66 68

Special topics
Dealing with missing data
The external validation dataset might contain missing 
data in some of the predictor variables or the outcome. 
A variety of methods are available to deal with missing 
data, including analysis of complete cases, single 
imputation (eg, mean or regression imputation), and 
multiple imputation. Handling of missing data during 
external validation is an unresolved topic and an 
area of active research.72-74 Occasionally the model 
developers will specify how to deal with missing 
predictor values during model deployment; in that 
situation, the external validation should primarily 
assess that recommended strategy. However, most 
existing models do not specify or even consider how 
to deal with missing predictor values at deployment, 
and an external validation might then need to examine 
a range of plausible options, such as single or multiple 
imputation.

Checking subgroups and algorithmic fairness
An important part of external validation is to check 
a model’s predictive performance in key clusters (eg, 
countries, regions) and subgroups (eg, defined by 
sex, ethnic group), for example, as part of examining 
algorithm fairness. This is discussed in more detail in 
paper 1 of our series.1

Multiple external validation studies and individual 
participant data meta-analyses
Where interest lies in a model’s transportability to 
multiple populations and settings, multiple external 
validation studies are often needed.5 75-77 Then, not only 
is the overall (average) model performance of interest, 
but also the heterogeneity in performance across the 
different settings and populations.5 Heterogeneity can 
be examined through data sharing initiatives and by 

using individual participant data meta-analyses, as 
described elsewhere.4 78

Competing events
Sometimes competing events can occur that prevent 
a main event of interest from being observed, such 
as death before a second hip replacement. In this 
situation, if a model’s predictions are to be evaluated in 
the context of the real world (ie, where the competing 
event will reduce the probability of the main event from 
occurring), then the predictive performance estimates 
must account for the competing event in the statistical 
analysis (eg, when deriving calibration curves). This 
topic is covered in a related paper in The BMJ on 
validation of models in competing risks settings.9

Conclusions
External validation studies should be highly valued by 
the research community. A model is never completely 
validated,3 79 because its predictive performance 
could change across target settings, populations, and 
subgroups, and might deteriorate over time owing to 
improvements in care (leading to calibration drift). 
Thus, external validation studies should be viewed as 
a necessary and continual part of evaluating a model’s 
performance. In the next article in this series, we 
describe how to calculate the sample size required for 
such studies.21
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