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Clinical prediction models estimate an 
individual’s risk (probability) of a health 
related outcome to help guide patient 
counselling and clinical decision 
making. Most models provide a single 
point estimate of risk but without the 
associated uncertainty. Riley and 
colleagues argue that this needs to 
change, as understanding uncertainty 
of risk estimates helps to inform critical 
evaluation of a model and may impact 
shared decision making. Examples are 
provided to illustrate uncertainty in risk 
estimates, and key methods to quantify 
and present uncertainty are discussed.

Introduction
Each year, thousands of clinical prediction models 
are published in the medical literature aiming to 
inform diagnosis or prognosis in a particular target 

population.1 They are used to estimate an individual’s 
risk (probability) of having (diagnosis) or developing 
(prognosis) a health related outcome conditional 
on their values of multiple predictors, to help guide 
patient counselling and clinical decision making. 
Examples include QRISK3,2 which is widely used in 
the UK during primary care consultations to estimate a 
person’s 10 year cardiovascular disease risk, to inform 
lifestyle changes or statin prescribing in people deemed 
to be at high risk; and the IMPACT and CRASH tools 
that estimate a patient’s risk of mortality and other 
adverse outcomes following hospital admission for a 
traumatic brain injury.3 4 For example, figure 1 shows 
an application of the CRASH tool to a hypothetical 
54-year-old. Based on the individual’s particular 
characteristics (predictor values), the model’s point 
estimate (best guess) of their risk of an unfavourable 
outcome by six months is 0.59. This value is presented 
as 59% because some researchers convert risks 
(probabilities) on the 0 to 1 scale to percentages on 
the 0 to 100 scale for dissemination purposes; in this 
article, we prefer to use the 0 to 1 scale. We also use the 
terms risk and probability interchangeably.

Clinical prediction models are developed using 
regression approaches (eg, logistic regression) or 
methods attributed to artificial intelligence (AI) and 
machine learning (eg, tree-based methods and deep 
learning), all of which map predictor values to clinical 
outcomes at the individual level. A model should be 
critically appraised and rigorously evaluated before 
being considered appropriate for use in clinical 
practice.5-7 Unfortunately, the vast majority of 
published models are not suitable for clinical use due 
to poor methodological standards such as small sample 
sizes,8 9 inappropriate model development techniques, 
and little (external) evaluation in new data.10 For 
example, a review of 606 Covid-19 prognostic models 
identified that 545 were at high risk of bias,11 such that 
their reported predictive accuracy is likely optimistic, 
and estimated outcome risks poorly calibrated with 
observed outcome risks.

A key aspect of reliability is model stability12: if 
a different sample of the same size was used from 
the same overarching population, how different 
would the developed model and its predictions be? 
This issue motivates our article, and is sometimes 
referred to as epistemic (reducible) uncertainty 
and is caused by sampling variability during model 
development.13 To expose any instability, an indication 
of the uncertainty of model predictions is helpful; for 

SUMMARY POINTS
Clinical prediction models estimate an individual’s risk (probability) of a health 
related outcome to help inform patient counselling, and to support both patients 
and health professionals in making clinical decisions
Most models only allow a single point estimate of risk to be calculated; however, 
also providing the associated uncertainty (eg, via uncertainty distributions and 
intervals) gives a more complete picture
Quantifying the uncertainty of an individual’s risk provides an important model 
performance metric, which helps inform how that model should be used; shows 
the strength of evidence behind a model’s predictions; informs those critically 
appraising a model; contributes toward assessments of model fairness; and may 
enhance the doctor-patient conversation
In the model development dataset, uncertainty distributions and intervals can 
be derived for an individual’s risk using, for example, Bayesian or bootstrap 
approaches
At model evaluation, the confidence intervals of calibration curves can be used 
to express uncertainty of risk for a group of people with a particular estimated 
risk from the model
Effectively communicating uncertainty of outcome risks with patients is 
challenging and should not always be done; the best approach will often need 
tailoring to the clinical setting and individual at hand
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example, by presenting an individual’s point estimate 
of risk alongside a 95% uncertainty interval (eg, 
corresponding to a confidence interval, following a 
frequentist analysis; or a credible interval or highest 
posterior density interval, following a Bayesian 
analysis) or an uncertainty distribution (eg, derived 
using bootstrapping in a frequentist analysis12; or 
the posterior distribution from a Bayesian analysis). 
For example, based on the CRASH model application 
in figure 1, a 95% uncertainty interval for this 
individual’s risk of an unfavourable six month outcome 
is 0.477 to 0.693 (presented as 47.7% to 69.3%). The 
range of values in the interval are all consistent with 
the individual having a high risk of an unfavourable 
outcome by six months. However, if the interval covers 
a wide range of risks (eg, 0.081 to 0.891), whether 
the model provides sufficiently precise information to 
inform clinical decisions for that individual might be 
in doubt.

Much inconsistency and debate surround whether 
uncertainty in risk estimates should be presented and 
how this can be done in practice.14 Some people argue 
in favour of presenting uncertainty,15  16 others argue 
against,17  18 but generally, uncertainty around risk 
estimates is ignored. For example, IMPACT is another 
prognostic model in traumatic brain injury but, 
unlike the CRASH tool, it does not output uncertainty 
intervals alongside point estimates of risk (www.tbi-
impact.org/?p=impact/calc).

In this article, we recommend that clinical 
prediction models should indicate the uncertainty of 
their predictions, even when single point estimates 
are intended to guide clinical decision making. Our 
focus is on models that estimate risks for individuals. 
We discuss reasons why quantifying and presenting 
uncertainty of risk estimates helps to better inform 
those critically appraising a model and those 
potentially using it, including doctors and patients. 
Furthermore, we show that accounting for uncertainty 
might even change an individual’s point estimate 
of risk itself. We draw on conversations from patient 
and public involvement and engagement (PPIE) 
groups, and emphasise the potential challenges of 
communicating and interpreting uncertainty of risk. 
To help researchers who are developing and evaluating 
prediction models, we conclude by outlining some key 
methods to quantify uncertainty of predictions using 
model development and evaluation datasets.

Reasons why presenting uncertainty of risk estimates 
is important
We outline five key reasons why presenting the 
uncertainty of risk (probability) estimates can be 
beneficial. The reasons are interrelated but mentioned 
separately to help reinforce the argument.

Firstly, and fundamentally, expressing uncertainty of 
an individual’s outcome risk provides a more complete 
picture than just a point estimate, as the sampling 
variability (or stability12  13) of a model’s prediction 
is shown. A point estimate of an individual’s risk is a 
single value (best guess); for example, an individual’s 
point estimate might be calculated as the average value 
of the model’s uncertainty distribution for their risk. 
However, providing the entire uncertainty distribution 
shows other plausible values, potentially indicating a 
wide range of possible risks for an individual. Sampling 
variability and model instability generally increase 
with smaller model development sample sizes (lower 
numbers of participants and outcome events), larger 
numbers of candidate predictors for inclusion in the 
model, and low signal to noise situations (ie, smaller 
R2).12 19 Variability is hidden when only a point estimate 
of risk is reported. Figure 2 illustrates this variability for 
models based on simulated data,12 with the uncertainty 
of individual risk often spanning the entire range of 0 
to 1 in smaller sample sizes. Therefore, quantifying 
uncertainty in model predictions provides a useful 
model performance metric to be presented alongside 
other aspects, including whether risk estimates are 
well calibrated in the overall population and key 
subgroups.20 Expressing uncertainty is consistent 
with other areas of medical research, for example, in 
randomised trials, where uncertainty of estimates are 
expected to be presented (eg, 95% confidence intervals 
around treatment effect estimates).

Secondly, understanding uncertainty of a 
model’s predictions may help health professionals, 
organisations, and policy makers to decide whether to 
use or endorse that model, and identify when further 
information or research is needed.21 That is, although a 

Fig 1 | A screenshot of the output from the webtool of the CRASH prediction model when 
applied to a hypothetical individual. The CRASH models are logistic regression models 
that estimate the risks of 14 day mortality and six month unfavourable outcome (death 
or severe disability) in patients with traumatic brain injury. The output includes a point 
estimate of risk (expressed as a %) and the corresponding 95% uncertainty interval 
(labelled as confidence interval (CI)) (see www.crash.lshtm.ac.uk/Risk%20calculator/
index.html)

2 doi: 10.1136/bmj-2024-080749 | BMJ 2025;388:e080749 | the bmj
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model’s point estimate of risk provides the model’s best 
guess to inform individual level decisions (eg, within 
a decision analysis framework, see supplementary 
material S1), the corresponding uncertainty gives 
insight about the strength of evidence behind the 
model informing that decision. Vickers and colleagues 
support this argument,22 noting that “decision analysis 
tells us which decision to make for now, but we may also 
want to know how much confidence we should have in 
that decision. If we are insufficiently confident that we 
are right, further research is warranted.” For example, 
if risk thresholds are used to guide a particular clinical 
action (eg, initiate treatment if an individual’s point 
risk estimate is ≥0.05), the proportion of an individual’s 
uncertainty distribution that falls on either side of the 
risk threshold could be calculated. If this is deemed 
inconclusive in the clinical context at hand (eg, the 
percentage below (above) is 60% (40%)), this might 
motivate obtaining further information to better inform 
the clinical action.23

Thirdly, expressing the uncertainty of risk estimates 
from a model will inform those performing critical 
appraisal and quality assessment of the model. For 
example, peer reviewers, journal editors, systematic 
reviewers, regulators, and those working for bodies such 
as the National Institute for Health and Care Excellence 
(NICE) or the World Health Organization (WHO) often 
review the evidence about a model’s performance to 
judge whether they should be recommending it for 
publication or endorse it in clinical guidelines. If it 
were known that a model gives estimated probabilities 
with large uncertainty (eg, due to a small sample size at 
model development19), this model should be flagged as 
high risk of bias, especially if no high quality external 
validation studies are available. Thereby, expression 
of uncertainty informs completion of the Prediction 
model Risk Of Bias Assessment Tool (PROBAST) 
and helps apply the Grading of Recommendations 
Assessment, Development, and Evaluation (GRADE) 
system to prediction models.24 25
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Fig 2 | 1000 risk estimates (“predictions”, y axis) sampled from the uncertainty distribution for nine individuals (with true risks (P), x axis, between 
0.1 and 0.9), across six different models developed in sample sizes (nD) of 50, 100, 385, 500, 1000, and 5000 participants. Each model was 
produced by fitting a lasso logistic regression to a different random sample of individuals simulated from the same population with a true overall 
risk of 0.5, considering one genuine predictor (X∼N(0,4)) and 10 noise variables (Z1,…, Z10∼N(0,1)). Figure adapted from Riley and Collins with 
permission.12 The smaller the sample size, the wider the uncertainty distribution, even spanning the entire range of 0 to 1 in small samples.
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Fourthly, understanding uncertainty of a model’s 
predictions helps contribute towards assessments of 
whether the model may be unfair or inequitable in 
some subgroups.26 This assessment is important as 
part of a model’s fairness checks27 to assess whether 
the reliability (accuracy) of predictions is acceptable 
for all patient groups, including minoritised and 
underserved groups, not just in the population as 
a whole.28 If a model has large uncertainty of risk 
estimates for a particular group, then the data might 
not useful for that group. This issue is hidden if 
only point estimates of risk are provided and may 
lead to very uncertain (potentially misleading) risk 
estimates being used in some individuals. Net harm 
might be possible if, for example, individuals are not 
flagged for appropriate treatment or monitoring. Risk 
estimates from a model will be more uncertain for 
individuals who were inadequately represented in the 
development dataset,29 specifically individuals with 
less common combinations of predictor values (ie, rare 
characteristics).

Lastly, within shared decision making, patients 
may ask health professionals how sure they are about 
the evidence (including risk estimates) being used 
to inform decisions. In such situations, information 
about uncertainty (and other quality of evidence 
information) should be readily available to inform the 
doctor-patient conversation as appropriate. Being able 
to communicate that a model’s predictions are precise 
(and well calibrated) for an individual’s personal 
characteristics may improve the patient’s confidence 
and trust in using the model to inform decisions, which 
may reduce anxiety and enhance management of their 
condition, including improved treatment concordance 

and monitoring adherence. Conversely, expressing 
that a model’s estimated risk is very uncertain for a 
patient’s characteristics may justify shared decisions to 
abstain from using that model entirely,16 and motivate 
patients requesting other information that is more 
reliable alongside expert clinical opinion. We return to 
the challenge of medical communication later.

Perspective from PPIE groups
Our recommendation that clinical prediction models 
should quantify and present the uncertainty of their 
predictions also stems from conversations held with 
PPIE groups. In particular, during our STANDING 
Together initiative (aiming to establish STANdards 
for data Diversity, INclusivity and Generalisability 
in healthcare AI),28 PPIE groups expressed that 
generally they would want the uncertainty in their own 
prediction to be communicated to them, to help them 
make a personal decision in the context of available 
options. This conclusion was reinforced by a PPIE 
group for Ewing sarcoma, who told us that clinicians 
should discuss with their patients that “this is the most 
likely case for you, but the most likely case still has 
[particular uncertainty] around it.”

In addition, when we gave an example of how 
an individual’s estimated risk impacts treatment 
decisions, the Ewing sarcoma group concluded that 
uncertainty intervals should be a part of the doctor’s 
explanation for treatment choices in practice. One 
representative noted that they considered providing 
patients with all the knowledge available about a 
model and its performance “ethically mandatory”, 
including the uncertainty of predictions, if they request 
it. A transcript of this representative’s view is provided 
in Box 1.

However, this transcript also highlights that 
communicating uncertainty of risks is a complex issue 
and will not always be appropriate because the clinical 
context alongside each individual’s needs and level of 
understanding is variable. We return to this issue later 
in the article (see “challenges in communicating and 
interpreting uncertainty of risk estimates”).

Accounting for model uncertainty when deriving point 
estimates of risk
Incorporating model uncertainty is important when 
deriving an individual’s risk estimate, as the estimate 
may vary depending on its inclusion. In particular, a 
typical regression based model derives an individual’s 
point estimate from a fixed model equation (eg, based 
on the estimated parameters in a logistic regression) 
that ignores any uncertainty in the model parameters. 
However, to account for model uncertainty, deriving an 
individual’s uncertainty distribution for their risk and 
then calculating their point estimate directly from that 
distribution is preferable. For example, an individual’s 
point estimate could be taken as the mean (expected) 
value of their uncertainty distribution. This is akin 
to calculating the mean of the individual’s posterior 
distribution for their risk when the (regression) model 
is fitted in a Bayesian framework; or the mean of the 

Box 1: Transcript of thoughts from a member of a patient and public involvement 
and engagement group for people with Ewing Sarcoma 

“When I think back to the comment from our consultant that [patient] had a “70% 
chance of survival”, I now wonder how reliable that figure could possibly have been. 
Had it been possible to tell us what was the uncertainty interval around that figure, it 
might have led to changes in [their] treatment. It would certainly have left us feeling 
better informed and given us a chance to think about the trade-offs between efficacy 
of treatment and the unwanted side effects that can arise. Even now, I am not sure that 
this data exists, and how reliable that 70% figure is at the individual level…

.. Patients and their families are often significantly under-informed on the relative 
merits and downsides of treatment. Most will rely on their physician’s advice and 
guidance, so even if patients themselves do not have access to the predictive models 
or have them explained (as would be desired), doctors certainly should.

I believe in the old adage, knowledge is power. To make patients aware of the 
inherent uncertainty in any predictive model is, to my mind, ethically mandatory. 
To give them the opportunity to get some idea of how uncertain the prediction is, is 
arguably just as important. I think most patients want to be given the best available 
information, and to have explained to them how that information may, or may not, be 
completely useful in their particular case.

However, I do acknowledge that there are instances when patients/parents may not 
wish to be given this additional information. Some may choose not to access it. Some 
may reason that the knowledge would not change their decisions. If there is only one 
treatment path available, does it matter if you have absolute or only partial confidence 
of the outcome? That is ultimately a decision for the patient.”

4 doi: 10.1136/bmj-2024-080749 | BMJ 2025;388:e080749 | the bmj
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distribution of risk estimates obtained from a bootstrap 
process in a frequentist framework (see later). Other 
point estimates may also be relevant, such as the 
median or the mode of the uncertainty distribution.30

Consider a diagnostic prediction model to estimate 
the risk of having prostate cancer for a particular 
individual who specifies that, if their risk is ≥0.05, they 
would choose to biopsy. Applying the fitted model (a 
logistic regression) equation ignoring uncertainty in 
the model parameters, the individual’s point estimate 
of risk is 0.051 and so, as this value is above their 
threshold, the decision would be to biopsy. However, 
use of the actual uncertainty distribution for the 
individual’s risk, which is shown in figure 3A, is more 
accurate; this distribution has a mean (median) value 
of 0.047 (0.043), which suggests not to biopsy because 
this value is below their threshold. Thus, although 
the difference in point estimates is small (eg, mean is 
0.047 compared with a point estimate of 0.051 derived 

from the logistic equation), the more exact approach, 
accounting for uncertainty, has the potential to 
change the individual’s decision here (based on the 
model alone).22 This issue is most likely to occur in 
individuals with point estimates that are close to 
their chosen risk threshold, and with heavily skewed 
uncertainty distributions. Supplementary material 
S1 shows this formally using a decision analysis 
framework,31 leading to a higher expected utility for 
no biopsy compared with biopsy after accounting for 
uncertainty (figure 3B).

Challenges in communicating and interpreting 
uncertainty of risk estimates
As outlined previously, understanding uncertainty of 
risk estimates is important for different stakeholders 
including model developers, health professionals, 
and those critically appraising a model. However, 
acknowledging uncertainty does raise potential 
challenges for medical communication, for example, 
in the doctor-patient consultation, and may not always 
be appropriate. Indeed, we do not recommend that 
uncertainty of risks is always (ie, by default) presented 
and communicated to patients. Furthermore, even 
when it is appropriate, any communication of 
uncertainty needs to be tailored for the setting and 
individual at hand, for the following reasons.

Firstly, a single point estimate of risk can often be 
difficult to communicate and interpret for some end 
users of the model. For example, if a model estimates an 
individual’s five year risk of death to be 0.3, the health 
professional may relay this value to the individual 
as: “In a group of 100 individuals with the same 
characteristics as you, based on the model, we would 
expect 70 of them to be alive at five years, and 30 not 
to be alive at five years.” In this statement, uncertainty 
is already present because we do not know if the 
individual will be one of the 70 who will be alive, or 
one of the 30 who will not. Thus, expressing additional 
uncertainty around the 0.3 risk estimate adds an extra 
challenge for the doctor-patient consultation, which 
may often be an unnecessary complication.17 18

Secondly, concerns have also been raised that 
communication of uncertainty might increase patient 
anxiety and reduce trust in health professionals.32 For 
example, International Patient Decision Aids Standards 
collaboration recommends healthcare professionals 
to be cautious about presenting uncertainty of 
risk estimates33 because “this uncertainty may be 
psychologically aversive and difficult to understand, 
and that optimal methods of communication remain 
to be determined.” Furthermore, Politi and colleagues 
performed a review of communicating uncertainty 
of harms and benefits of medical interventions,32 
and conclude that “both patients’ and physicians’ 
interpretation of and responses to uncertainty 
may depend on their personal characteristics and 
values and may be affected by the manner in which 
uncertainty is communicated.” Therefore, a patient-
specific approach may be required when considering 
communicating uncertainty of risk estimates from 

(A) Risk of prostate cancer
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(B) Difference in utility of biopsy and no biopsy
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Fig 3 | Uncertainty distributions derived from bootstrapping for a particular individual 
after fitting a logistic regression model to estimate risk of having prostate cancer. Based 
on the model, panel A shows their risk of prostate cancer and the bottom panel shows 
the difference in their utility of choosing biopsy or no biopsy. The difference in utility 
is zero if their risk of prostate cancer is 0.05 (5%), as this is the individual’s chosen 
threshold for biopsy (see supplementary material S1). When ignoring uncertainty in the 
estimated model parameters, the individual’s point risk estimate is 0.051 (5.1%) and 
their expected utility is higher for biopsy than no biopsy. By contrast, when uncertainty 
is accounted for, panel A shows their point (mean) risk estimate is 0.047 (4.7%), as this 
is below the individual’s chosen risk threshold of 0.05 (5%), it suggests no biopsy is the 
preferred decision. Panel B has an expected (mean) value of distribution of −0.11. As 
this is negative, no biopsy is suggested as the preferred decision
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prediction models, especially because not all patients 
will want or benefit from this information (box 1). 
Further research into communication of uncertainty is 
needed.

Finally, care is needed when interpreting whether 
the extent of uncertainty makes a model’s risk estimate 
unacceptable for a particular individual, as this 
acceptability is context and individual dependent, 
potentially depending on any personal risk thresholds 
for their decision making.34 For example, returning to 
the prostate cancer example, if a model estimates an 
individual’s risk of prostate cancer to be 0.005 (0.5%), 
but with a 95% uncertainty interval of 0.001 to 0.10 
(0.1% to 10%), the impact of this interval depends on 
the specific individual. If they are aged 85 years with 
many existing comorbidities, they might conclude 
the interval range reflects a low enough risk to justify 
no biopsy. By contrast, a younger man aged 40 years 
with no comorbidities, for whom interventions may 
substantially prolong life if prostate cancer is detected 
early, might be concerned about the upper range risk 
of 0.10 (10%) and request additional information to 
better inform their decision.

How to quantify uncertainty of individual risk estimates 
from prediction models
We now describe methods to derive uncertainty 
of risk estimates when using model development 
and evaluation (validation) datasets. We focus on 
the key statistical approaches and do not intend 
to be exhaustive; the topic is an area of growing 
methodological research with emerging approaches 
gaining interest, such as conformal prediction.35  36 
A detailed overview is provided by Kompa and 
colleagues.16 When quantifying uncertainty, 
datasets should be used that are high quality (eg, 
with appropriate methods of measuring outcomes 
and predictors)37 and representative of the target 
population and setting where the model will be applied 
in practice. If this is not the case, then using datasets 
to estimate uncertainty of individual risk (or indeed a 
point estimate of risk) may not be reliable.

Deriving uncertainty of risk estimates using the 
model development dataset
After fitting a model in a Bayesian framework, 
the uncertainty of an individual’s risk is naturally 
summarised by their posterior distribution of risk 
conditional on their predictor values and all parameter 
uncertainties in the fitted model. For example, Fanconi 
and colleagues used a Bayesian framework to fit logistic 
regression models with the aim to estimate the risk of 
acute care use in patients with cancer after starting 
chemotherapy.38 They derived posterior distributions 
for each individual’s risk, which were used to identify 
individuals with uncertainty intervals that overlapped 
a chosen risk threshold of 0.2, for whom the authors 
suggested further information is required before 
classification (this can also be presented using a 
classification instability plot12). They also compared 
uncertainty for different ethnic subgroups, as part 

of model fairness checks, and identified that Black 
individuals had higher uncertainty in their predictions 
than people of Asian, White, or of another ethnic 
group.

In a frequentist framework, after fitting a standard 
(unpenalised) regression model (eg, logistic regression 
with the CRASH tool) the variance-covariance matrix 
of the parameter estimates (intercept and predictor 
effects) can be used to derive uncertainty intervals 
and distributions.39 A more general approach is 
bootstrapping,12 40 which is described in supplementary 
material S2. Figure 4 uses the bootstrap process to 
obtain uncertainty intervals and distributions for two 
comparable models (panel A (model A) and panel B 
(model B)), both developed using logistic regression 
with a lasso penalty (to address potential overfitting) 
and applied to the same five individuals, where the 
aim was to estimate the risk of 30 day mortality in 
individuals diagnosed with an acute myocardial 
infarction. Model A was developed using a large 
dataset,41 and Model B was developed using a small 
dataset. Model B was far more unstable due to the small 
sample size used for development, and thus gave less 
reliable point estimates reflected by wide uncertainty 
intervals and distributions. As such, Model B could not 
be used to inform decisions for some individuals. For 
example, one individual had a point estimate of 0.24 
from Model B, but a 95% uncertainty interval of about 
0.08 to 0.58, ranging from quite low to very high risk.

The bootstrap approach has a key advantage of being 
able to be applied to any model development method 
(eg, penalised regression, random forest, or deep 
learner) and outcome data type (eg, binary or time-to-
event). This method can also account for any predictor 
selection steps and thus gives a better reflection of 
the uncertainty than if just based on the final set of 
predictors. Example code for using bootstrapping 
is provided at https://github.com/gscollins1973/
Instability and elsewhere.12 However, the steps can be 
computationally intensive when using big datasets, 
deep learning methods, or multiple imputation to 
handle missing data, for example.

Crucially, regardless of the method used to quantify 
uncertainty, the actual model development approach 
must target well calibrated predictions (ie, estimated 
and observed risks should agree, ideally across the full 
spectrum of risks from 0 to 1). Otherwise, uncertainty 
distributions will reflect the uncertainty in predictions 
that are poorly calibrated in the population, which 
is not helpful. For example, the model development 
process could include an (additional) bootstrap or 
cross-validation process to check and adjust for any 
miscalibration as part of model tuning, or use a hold-
out calibration dataset as in conformal prediction 
approaches,16 which is similar to when evaluating a 
model in a new dataset, as follows.

Deriving uncertainty of risk when evaluating models 
in test or evaluation datasets
Currently, when evaluating an existing model in new 
data, the uncertainty of that model’s predictions is 
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difficult to take forward from the development dataset. 
This challenge is because most models only allow 
users to calculate (eg, via a regression equation, web 

tool, or mobile app) a single point estimate of risk for 
an individual. For uncertainty to be carried forward, 
the existing model would need to provide additional 
information from the development stage, such as 
all 1000 bootstrap models (supplementary material 
S2), the variance-covariance matrix of parameter 
estimates,39 or the original development dataset itself 
with code to enable derivation and sampling from an 
individual’s uncertainty (posterior) distribution of 
risk. We hope provision of this information becomes 
common practice,42 but until then, researchers 
evaluating a model will need to derive uncertainty of 
risks based on the evaluation (test, validation) dataset 
itself.

When using an evaluation dataset, deriving 
uncertainty of risks fully conditional on all predictor 
values in the original model is usually difficult, but 
examining uncertainty conditional on estimated risk 
is possible by using calibration plots and calibration 
curves. Calibration examines the agreement between 
estimated risks (from the existing model) and observed 
risks (in the evaluation dataset), and the uncertainty 
in calibration performance stems entirely from the 
number of participants and observed outcome events, 
and the participants’ distribution of risk estimates, in 
the evaluation dataset itself.

Evaluation datasets must contain the values of the 
outcome, and any predictors used in the model, so 
that the model can be applied to every individual (ie, 
to make predictions) and comparisons made between 
predicted and observed outcomes. These comparisons 
allow the derivation of smoothed calibration curves, 
which measure the (potentially non-linear) agreement 
between observed risks and model estimated risks,7 20 
across the entire range of predictions (ie, estimated 
risks from 0 to 1). The smoothed curve can be 
generated using, for example, polynomials, splines, 
or non-parametric methods,43-45 with confidence 
intervals derived post-estimation using methods 
such as Fisher’s Information or bootstrapping. The 
curve and confidence interval can be displayed 
on a calibration plot, as shown in figure 5 from an 
external validation of a model used to estimate five 
year recurrence risk after a primary breast cancer 
diagnosis.5  7 The confidence interval (vertical range 
on the y axis) around the curve at a particular point 
on the x axis, provides the uncertainty interval for the 
actual risk of a group of individuals with the same 
estimated risk from the model (x axis). For example, 
figure 5 shows that the group of individuals with an 
estimated risk of 0.8 (x axis) have a 95% uncertainty 
interval around the curve (y axis) of between 0.78 and 
1.00. Thus, if a new individual is estimated a risk of 
0.8 by the model, we could use this interval to say: “In 
a group of 100 individuals with the same estimated 
risk as you, the model suggests that between about 
78 and 100 will have a recurrence by five years.” The 
sample size of the evaluation study can be targeted to 
reach a particular level of precision in the calibration 
curve,46 47 to reduce the width of these risk conditional 
uncertainty intervals.
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Fig 4 | Uncertainty intervals and distributions produced by applying the bootstrap 
process to models developed with large (40 830 participants, top) and small (500 
participants, bottom) datasets. We developed a prediction model to estimate the risk 
of 30 day mortality in individuals diagnosed with an acute myocardial infarction, using 
the GUSTO-1 dataset.41 A lasso logistic regression model was fitted considering eight 
predictors, as described elsewhere,13 firstly using (panel A) the full sample of 40 830 
participants (2851 deaths) referred to as Model A; and (panel B) a random subsample 
of 500 participants (35 deaths) referred to as Model B. After fitting each model, we 
applied the bootstrap process (using 10 000 bootstrap models) to derive uncertainty 
distributions and intervals for the same five individuals. Intervals are defined between 
capped lines (95%) and coloured boxes (50%).
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A drawback is that, as these intervals are conditional 
only on the estimated risk, they do not take into account 
any other characteristics such as an individual’s 
specific predictor values; hence, the intervals are 
less individualised than those derived using the 
development itself (which are conditional on specific 
predictor values). To partly address this, calibration 
plots and curves can also be derived separately for 
subgroups defined by particular (combinations 
of) predictor values or other characteristics,48 for 
example, defined by age, sex, and ethnic group; this 
may also inform model fairness checks. However, as 
each subgroup will have a smaller sample size than 
the overall dataset, the uncertainty intervals around 
their calibration curves may be wide, unless the overall 
dataset is very large.49

Sometimes the uncertainty interval around 
the calibration curve may not even contain the 
corresponding risk estimate from the original model. 
For example, figure 5 shows that for individuals with 
an estimated risk of 0.2, the 95% confidence interval 
for this group’s actual risk is about 0.25 to 0.45 in 
the validation data. This value may be due to chance 
but could also be due to the original model being 
miscalibrated in the evaluation population (eg, due to a 
different case-mix or different predictor effects), which 

might motivate strategies to update and recalibrate 
the original model. As updating a model is akin to 
developing a new one, uncertainty distributions and 
intervals can then be derived by the methods explained 
in the previous section (eg, a bootstrap process).

Concluding remarks
In summary, clinical prediction models enable an 
individual’s outcome risk to be estimated, but most 
only provide a point estimate of risk and do not present 
corresponding uncertainty intervals or distributions. 
We suggest that this should change, especially as 
many models are developed using an inadequately 
sized dataset leading to large model instability and 
large uncertainty in individual predictions. Presenting 
uncertainty of risk estimates helps stakeholders to 
evaluate and critically appraise a prediction model, 
and directs further research for developing and 
updating models, alongside other performance aspects 
(eg, calibration, discrimination, and clinical utility) 
and information detailed in the TRIPOD+AI reporting 
guideline.42

Derivation and display of uncertainty could be 
embedded in the same tool (eg, health system, web 
tool, or mobile app) that is used to apply the model 
to individuals.50 If appropriate, this uncertainty could 
be presented alongside point risk estimates within the 
doctor-patient consultation. However, communicating 
uncertainty of outcome risks with patients is 
challenging and should not always be done. Future 
research is needed into communicating prediction 
uncertainty, ideally with input from PPIE groups and 
clinical stakeholders because the best approach to 
disseminate and communicate uncertainty will often 
need tailoring to the setting and individual at hand.
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