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ABSTRACT
Selecting from or ranking a set of candidate variables in terms of their capacity for predicting an outcome of
interest is an important task in many scientific fields. A variety of methods for variable selection and ranking
have been proposed in the literature. In practice, it can be challenging to know which method is most
appropriate for a given dataset. In this article, we propose methods of comparing variable selection and
ranking algorithms. We first introduce measures of the quality of variable selection and ranking algorithms.
We then define estimators of our proposed measures, and establish asymptotic results for our estimators.
We use our results to conduct large-sample inference for our measures, and we propose a computationally
efficient partial bootstrap procedure to potentially improve finite-sample inference. We assess the properties
of our proposed methods using numerical studies, and we illustrate our methods with an analysis of data
for predicting wine quality from its physicochemical properties. Supplementary materials for this article are
available online.
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1. Introduction

1.1. Background and Literature Review

In many scientific settings, researchers may wish to identify a
subset of the available variables that are highly predictive of an
outcome of interest or to rank the variables in terms of their
predictive ability. For example, cell function is often regulated
by only a small subset of genes, and identifying which genes
control a specific cell function is an important research area
in biology (Leclerc 2008). Similarly, the risk of many medical
events only depends on a small subset of the collected covariates,
and determining which covariates are risk factors is important
for improving scientific understanding of an event of interest
(Fan and Li 2002). Finally, in chemical and materials discovery,
feature ranking techniques are an important tool for evaluating
candidate materials (Janet and Kulik 2017).

Due to the importance of variable selection and ranking
in an array of scientific fields, a variety of variable selection
methods have been proposed. Some of the most well-known
methods include best subset selection (Hocking and Leslie
1967), least absolute shrinkage and selection operator (LASSO)
(Tibshirani 1996), elastic net (Zou and Hastie 2005), random
forest (Breiman 2001), and Bayesian methods (Mitchell and
Beauchamp 1988; George and McCulloch 1997; Park and Casella
2008). For a broad review of variable selection methods, we
refer the reader to Heinze, Wallisch, and Dunkler (2018) and
the references therein.

With a plethora of variable selection and ranking methods
to choose from, it is not always clear which of these meth-
ods is best for a given dataset. Furthermore, applying different
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methods to the same data often results in different selected sets
or variable ranks. It is therefore important to have a way of
choosing the most appropriate selection or ranking method.
Different methods have theoretical guarantees that rely on dif-
ferent assumptions about the true data-generating mechanism;
for example, assumptions about the true regression function
such as sparsity, linearity, or additivity, or assumptions about
the marginal distribution of the predictors such as approximate
independence or multivariate normality. If the relevant prop-
erties of the true distribution are known, it may be possible
to narrow the set of viable methods to those that work well
under the given conditions. However, since these properties are
typically not known in practice, it is of interest to compare the
performance of variable selection or ranking procedures using
the data at hand. Several authors have studied the problem of
comparing the performance of variable selection procedures.
Heinze, Wallisch, and Dunkler (2018) suggested assessing the
stability and sensitivity of candidate algorithms using quantities
such as inclusion frequencies and root mean squared difference
over bootstrap samples. Other authors have employed cross-
validation to compare variable selection procedures (Stone 1974;
Lachenbruch and Mickey 1968; Cover 1969; Refaeilzadeh, Tang,
and Liu 2007; Murtaugh 2009; Sanchez-Pinto et al. 2018).

It is also important to quantify uncertainty when comparing
variable selection and ranking procedures. For example, while
selecting more variables typically reduces the cross-validated
risk, a confidence interval may reveal that there is substantial
uncertainty in the risk reduction. In this case, the method that
selects a more parsimonious model may be preferred. Alterna-
tively, if two different methods select different subsets of the
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same size, testing the null hypothesis that the two sets have the
same risk or obtaining a confidence interval for the difference
or ratio of the risks allows the researcher to rigorously assess
whether and to what extent one subset is more predictive than
the other. Finally, when comparing variable ranking procedures
across a range of subset sizes, uniform confidence bands for
the risks or risk differences over the range allow the researcher
to assess whether one method dominates another. To the best
of our knowledge, no method yet exists for providing valid
inference for comparisons of variable ranking procedures.

In this article, we propose a framework for empirically com-
paring variable selection and ranking procedures. Our frame-
work is based on the nonparametric methods of assessing vari-
able importance proposed in Williamson et al. (2022). However,
Williamson et al. (2022) considered assessing the importance
of fixed sets of variables, whereas here, the variable sets are
random because the selection and ranking procedures use the
data in potentially complicated ways. In Section 2, we review
the framework of Williamson et al. (2022), define our proposed
measures of the quality of a variable selection or ranking proce-
dure, and discuss their interpretation. In Section 3, we propose
estimators and provide conditions under which our estima-
tors are asymptotically linear. In Section 4, we use our asymp-
totic results to derive large-sample confidence regions for our
parameters of interest, and we also propose a computationally
efficient modified bootstrap procedure to potentially improve
finite-sample inference. In Section 5, we present a simulation
study assessing the finite-sample properties of our methods, and
in Section 6, we use the proposed methods to compare variable
selection and ranking methods for predicting wine quality from
its physicochemical properties. In Section 7, we provide a brief
discussion. The proofs of all theorems and code implement-
ing the methods in this article are provided in supplementary
material.

2. Parameters of Interest and their Interpretation

2.1. Statistical Setting

We suppose that X = (X1, . . . , Xp) ∈ X ⊆ R
p is a covariate

vector, and Y ∈ Y ⊆ R is an outcome. We suppose that the
observed data {(X1i, . . . , Xpi, Yi) : i = 1, . . . , n} are drawn
IID from an unknown distribution P0. We assume that P0 is
known to lie in a model M, which is typically a nonparametric
model. With some abuse of notation, we also use P0 as the
true marginal distribution of (X1i, . . . , Xpi). The use of subscript
0 refers to evaluation under P0; for example, we write E0 to
denote expectation under P0. We define Pn as the empirical
distribution of the observed data. For any measure P and P-
integrable function f , we set Pf := ∫

f dP. For any S ⊆ {1, . . . , p}
and X ∈ X , we denote X−S as the elements of X whose
indices do not fall in S, and we let X−S be the sample space
of X−S.

2.2. Measures of Variable Importance

Williamson et al. (2022) proposed an approach to defining
algorithm-agnostic, population-level measures of predictiveness
of a subset of covariates. We will use their framework as part of

our method of quantifying the quality of a variable selection
or ranking algorithm, so we briefly describe the key elements
of their approach. We first require a user-defined predictiveness
metric V : F × M → [0, 1], where F is a class of functions
from X to R endowed with a norm ‖·‖F . For example, F
may consist of all f : X → R such that

∫
f 2 dP0 < ∞ and∥∥f

∥∥
F := [∫ f 2 dP0]1/2. Then, V(f , P) is assumed to provide a

measure of the predictiveness of a candidate prediction function
f ∈ F when generating data from P ∈ M, where higher
values are assumed to correspond to better predictiveness.
The population maximizer f0 ∈ argmaxf ∈F V(f , P0), is the
best possible prediction function in F relative to V under
sampling from P0, and the oracle predictiveness V(f0, P0)
measures the best possible capacity of the entire covariate
set X for predicting Y under sampling from P0. Given S ⊂
{1, . . . , p}, the residual oracle predictiveness is V(f0,−S, P0), where
f0,−S ∈ argmaxf ∈F−S V(f , P0) and F−S is the subset of F
consisting of functions f ∈ F that do not depend on the
covariates with indices in S. Thus, V(f0,−S, P0) quantifies the
remaining prediction potential after excluding the covariates
with indices in S. The population variable importance, defined as
ψ0,S := V(f0, P0) − V(f0,−S, P0), measures the amount of oracle
predictiveness lost by excluding covariates with indices in S.

In this article, we make a simplifying assumption about the
form of the predictiveness metric V . We assume there exist
ζ : F × M → R and η : M → R and a function U :
range(ζ ) × range(η) → R such that P �→ ζ(f , P) is linear
and V(f , P) = U

(
ζ(f , P), η(P)

)
. Hence, we assume that V only

depends on f and P together through a function that is linear in
P. Such V are referred to as standardized V-measures of degree
one in Williamson et al. (2022). This form greatly simplifies the
technical conditions used for the theoretical results provided
in Section 3.2, and so we sacrifice some generality for the sake
of clarity and simplicity. Additional conditions on ζ , η, and U
will be provided in Section 3.2. Among the four examples of
predictiveness metrics V considered in Williamson et al. (2022),
only the area under the ROC curve does not have this form. We
now review three examples of predictiveness measures.
Example 1 (R-squared). Set V(f , P) := 1 − EP[Y − f (X)]2/σ 2

P ,
where σ 2

P := varP(Y). This measure quantifies the proportion of
variance in Y explained by f (X). In this case, ζ(f , P) = EP[Y −
f (X)]2, η(P) = σ 2

P and U(v, w) = 1 − v/w.

Example 2 (Deviance). For binary Y , let V(f , P) := 1 −
EP[ν(Y , f (X))]/ν(πP, πP) for ν(u, v) := u log v+(1−u) log(1−
v), and where πP := P(Y = 1). In this case, we have ζ(f , P) =
EP[ν(Y , f (X))], η(P) = ν(πP, πP) and U(v, w) = 1 − v/w.

Example 3 (Classification accuracy). Suppose Y is binary, and
define V(f , P) := P(Y = f (X)). This measure quantifies how
often the prediction f (X) coincides with Y . In this case, we have
ζ(f , P) = P(Y = f (X)), η(P) = 1 and U(v, w) = v.

In Examples 1–2, the maximizer of f �→ V(f , P) over all f is
the conditional mean function μP : x �→ EP(Y | X = x), and
in Example 3, it is the Bayes classifier x �→ I{μP(x) > 0.5}.
Similarly, the maximizer of f �→ V(f , P) over f ∈ F−S is
μP,−S : x �→ EP(Y | X−S = x−S) in Examples 1–2 and
x �→ I{μP,−S(x) > 0.5} in Example 3.
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A central feature of this framework is that it is algorithm-
agnostic, meaning that the population variable importance does
not depend on the particular algorithm used for estimating
f0 or f0,−S. Valid inference for the variable importance using
the observed data requires estimating f0 and f0,−S, which does
involve choosing an estimation algorithm, but the choice of an
algorithm for purposes of estimation of the variable importance
is separate from the definition of the parameter itself. We adopt
this same approach when defining our measures of variable
selection and ranking procedures.

2.3. Measures of Variable Selection Algorithms

Williamson et al. (2022) focused on assessing the importance
of a fixed set of covariates S defined a priori by the researcher.
Here, our focus is on assessing and comparing the performance
of automatic variable selection algorithms—that is, algorithms
that use the observed data to select a subset of the covariates. The
variables selected by such an algorithm are a random subset of
the covariates, which we denote Sn ⊆ {1, . . . , p}. The subscript
n indicates that this random subset depends on the n observed
data points in some possibly complicated way. To produce an
interpretable measure of the quality of a variable selection pro-
cedure, we first define a population parameter of interest for a
given variable selection procedure, and we then tackle statistical
inference for this population parameter. Our measures will be
algorithm-agnostic in the sense that they will not be tied to
the model or algorithm used by a given selection or ranking
procedure.

In order to define a population parameter of interest, the
simplest approach is to assume that the random subset Sn con-
verges in probability to a fixed S0 ⊆ {1, . . . , p}. We will relax
this condition later. We can then consider Sn as an estimator of
S0. We then define our population-level parameter of interest as
the variable importance ψ0,S0 = V(f0, P0) − V(f0,−S0 , P0) of the
limiting subset S0.

We could then compare the random subsets Sn and S′
n

produced by two different variable selection algorithms by
comparing estimators of ψ0,S0 and ψ0,S′

0
, where S0 and S′

0
are the limiting subsets to which Sn and S′

n are assumed to
converge. However, this natural approach suffers an important
drawback. Variable importance metrics are nested: S0 ⊂ S′

0
implies that ψ0,S0 ≤ ψ0,S′

0
. Hence, simply comparing ψ0,S0 to

ψ0,S′
0

is not sufficient to compare the quality of the selection
algorithms (even if these population quantities were known
exactly), because an algorithm that tends to select more
variables will tend to produce higher variable importance. As
an extreme example, the trivial algorithm that always selects
all the variables will always have the maximal possible variable
importance.

To resolve this drawback, we propose simply adding a
second piece of information: the number of variables selected
by the algorithm. Thus, our bivariate parameter of interest is
(|S0|, ψ0,S0). Furthermore, different algorithms can then be
graphically compared by plotting the bivariate parameter in
the coordinate plane [1, p] × [0, 1]. This plot conveys how
predictive the subset selected by each algorithm is against
the number of covariates selected. If an algorithm achieves
high variable importance with few selected variables, the point

corresponding to the true parameter vector of the algorithm
would be in the upper left region of the plot. For two limiting
subsets S0 and S′

0, if the point (|S0|, ψ0,S0) is to the lower right of
the point (|S′

0|, ψ0,S′
0
) on this plot, meaning that |S0| ≥ |S′

0|
and ψ0,S0 ≤ ψ0,S′

0
, and at least one of these inequalities is

strict, then an algorithm with limiting subset S′
0 dominates an

algorithm with limiting subset S0 because its selected subset
is smaller, yet has higher variable importance. On the other
hand, if |S0| > |S′

0| and ψ0,S0 > ψ0,S′
0
, then the subset S0

is more important, but also larger, than the subset S′
0. In this

case, whether the additional variables are worth the gain in
importance is up to the user. One simple way to combine the two
pieces of information to produce a single metric is by dividing
the variable importance of the selected set by the size of the
selected set; that is ψ0,S0/|S0|. This measure can be interpreted
as the average variable importance per selected variable, and
graphically, can also be portrayed in the suggested diagram
as the slope of the line connecting (0, 0) and (|S0|, ψ0,S0). An
illustration of this diagram will be given in Section 2.5. We call
this parameter the predictiveness per selected variable (PPSV)
for short. If ψ0,S0/|S0| > ψ0,S′

0
/|S′

0|, then an algorithm with
limiting subset S0 outperforms an algorithm with limiting
subset S′

0 in terms of PPSV, meaning that the first algorithm
produces higher predictiveness per selected variable than the
second.

In the case where ψ0,S0 increases linearly with |S0|, each
variable contributes equally to the total importance, resulting in
a constant PPSV. This suggests that removing any predictors may
lead to a significant loss in predictive capacity. Consequently,
while the PPSV plot indicates the value of retaining a large set
of variables, practical considerations such as interpretability or
computational constraints may still necessitate variable reduc-
tion. In such cases, practitioners should use the PPSV plot in
conjunction with these additional factors to guide their selection
strategy.

We also note the conceptual similarity between our pro-
posed PPSV metric and classical information criteria such as
Akaike’s Information Criterion (AIC) (Akaike 1998) and the
Bayesian Information Criterion (BIC) (Schwarz 1978). Both AIC
and BIC combine model fit and complexity into single-number
summaries. Similarly, PPSV combines variable importance and
the number of selected variables into one interpretable metric.
An advantage of PPSV is its broader applicability, as it does
not require a correctly-specified parametric or semiparametric
model, making it especially useful for data-adaptive methods.

2.4. Measures of Variable Ranking Algorithms

We now extend the population parameters proposed in Sec-
tion 2.3 for comparing variable selection algorithms to compare
variable ranking algorithms; that is, algorithms that rank the
p variables in terms of their potential for predicting the out-
come. A variable ranking algorithm is a random ranking of the
covariates. Specifically, we define a variable ranking algorithm
Rn based on the n data points as a random permutation of
{1, . . . , p}. For each j ∈ {1, . . . , p}, we denote [j] := {1, . . . , j}
and Rn,[j] as the first j elements in Rn, which are the indices
of the j most predictive covariates according to the algorithm.
For example, if p = 3, and Rn = (3, 2, 1), then Rn ranks
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X3 as the most important for predicting Y , X2 as the second
most important, and X1 as the least important, and Rn,[2] would
be (3, 2). As with variable selection algorithms, we are most
interested in situations where Rn depends on the data in a
possibly complicated way. For instance, Rn may be the random
variable ranking resulting from running a penalized regression
algorithm on the data.

In order to define a population parameter of interest, the
simplest approach is again to assume that the random ranking
Rn converges in probability to a fixed rank R0; that is, P0(Rn =
R0) −→ 1. This too will be relaxed later. We then consider Rn as
an estimator of R0. Intuitively, the quality of a variable ranking
algorithm is higher if the variables that it tends to rank first have
higher variable importance. Hence, for any variable rank R0,
we define the population variable ranking operator characteristic
(VROC) as

(
ψ0,R0,[1] , . . . , ψ0,R0,[p]

)
= (

V(f0, P0) − V(f0,−R0,[1] , P0), . . . ,

V(f0, P0) − V(f0,−R0,[p] , P0)
)

,

so that ψ0,R0,[j] is the population variable importance of the
variables indexed by R0,[j]. We note that ψ0,R0,[1] ≤ ψ0,R0,[2] ≤
· · · ≤ ψ0,R0,[p] because adding variables to the set used for
prediction increases the size of the subset of F over which the
optimization occurs.

We call the curve formed by plotting
(
ψ0,R0,[1] , . . . , ψ0,R0,[p]

)

on the vertical axis against (1, . . . , p) on the horizontal axis
the VROC curve. Examples of population VROC curves will
be provided in Section 2.5. As with the ROC curve in the
context of prediction of a binary outcome (Woodward 1953),
the closer the VROC curve is to the upper left corner of the
rectangle [1, p]×[0, 1], the better the performance of the ranking
algorithm. This is because the ideal ranking algorithm ranks the
variables with the largest impact on the predictiveness metric
first. Unlike the ROC curve, which necessarily ends at the point
(1, 1), the endpoint of the VROC curve is typically not (p, 1)

because the oracle predictiveness of all variables is usually not
1. However, the endpoint of the VROC curve is the same for all
possible variable rankings because the endpoint represents the
variable importance of all p covariates. In addition, there is not
necessarily an optimal variable ranking in terms of the VROC
curve in the sense that there may not exist any ranking such that
the corresponding VROC curve is no smaller than that of any
other ranking at all points. An exception is the case where the
true conditional mean function μ is additive in the covariates
and V is the R-squared predictiveness metric. In this case, the
VROC curve is optimal if and only if it is concave. This will be
demonstrated more in the examples below.

A one-number measure of the overall population perfor-
mance of a ranking algorithm can be obtained as
φ(ψ0,R0,[1] , . . . , ψ0,R0,[p]) for any order-preserving summary φ :
R

p → R. Here, by order-preserving, we mean that aj ≤ bj for
each j ∈ {1, . . . , p} implies that φ(a1, . . . , ap) ≤ φ(b1, . . . , bp).
In particular, we will consider φ(ψ0,R0,[1] , . . . , ψ0,R0,[p]) :=∑p

j=2[ψ0,R0,[j] + ψ0,R0,[j−1] ]/2, which measures the area under
the linear interpolation of the VROC curve. We call this the area
under the VROC curve (AUVROC) for short.

2.5. Illustrative Example

Here, we illustrate the proposed measures of variable selection
and ranking algorithms in a toy example. We suppose there
are p = 10 covariates drawn from an independent uniform
distributions on [−1, 1]. The outcome Y is generated according
to Y = 0.4X1 + √

X2 + 1 + 2X2
3 + ε, where ε follows a standard

normal distribution independent of the covariates. We use the
R-squared predictiveness metric V defined in Section 2.2. We
consider two variable selection algorithms: the variable subset
returned by marginal regression (MR), and the subset selected
by multivariate adaptive regression splines (MARS) (Friedman
1991). For MR, we regress the outcome on each covariate sep-
arately using univariate linear regression and select the covari-
ates whose resulting absolute standardized coefficients exceed a
threshold. In this example, we use 0.1 and 0.2 as two thresh-
olds for MR, and the corresponding selection algorithms are
denoted MR(0.1) and MR(0.2). MARS uses regression splines
to automatically model nonlinearities and interactions between
variables.

By simulation, we find the limiting selected variables
for MR(0.1), MR(0.2), and MARS are S0,MR(0.1) = {1, 2},
S0,MR(0.2) = {2} and S0,MARS = {1, 2, 3}. The corresponding
population parameters are (|S0,MR(0.1)|, ψ0,S0,MR(0.1)

) = (2, 0.11),
(|S0,MR(0.2)|, ψ0,S0,MR(0.2)

) = (1, 0.035) and (|S0,MARS|, ψ0,S0,MARS)

= (3, 0.34), respectively. Figure 1 (left panel) shows the three
resulting parameters in the rectangle [1, p] × [0, 1]. Although
the limiting subset selected by MARS has higher variable
importance, MARS doesn’t dominate MR(0.1) or MR(0.2)
because these selected fewer variables than MARS. However,
the PPSV corresponding to MARS, MR(0.1), and MR(0.2) are
0.11, 0.054, and 0.035, respectively, so the PPSV of MARS is
larger than either of the MR methods. This can be determined
using the left panel of Figure 1 by noting that the slope of the
line corresponding to MARS is larger than that of MR(0.1) and
MR(0.2).

To illustrate our proposed measures of variable ranking
algorithms, we compare two ranking procedures: the rank
obtained by sorting the absolute standardized coefficients
from marginal regression (MR), and the rank obtained by
sorting the p-values from smallest to largest from a generalized
additive model (GAM) (Hastie and Tibshirani 1986) of Y on
the covariates (using the default settings in the mgcv package
in R). By simulation, we find that the limiting rankings of MR
and GAM from most important to least important in predicting
the outcome differ only on the first three variables. MR returns
X2, X1, X3 as the order of the first three variables, and GAM
returns X3, X2, X1 as the order of the first three important
variables. Correspondingly, the population variable importances
are (0.073, 0.11, 0.34, . . . , 0.34) and (0.23, 0.31, 0.34, . . . , 0.34),
respectively. Figure 1 (right panel) shows the two resulting
VROC curves for MR and GAM with values of AUVROCs equal
to 2.7 and 3.0, respectively. In this case, the population ranking
of GAM is better than that of MR because the first and first two
variables selected by GAM have higher population R-squared
values than the corresponding variables selected by MR. This
is because the true data-generating process follows a GAM, but
not a linear model, and MR fails to recognize the importance of
the covariates with nonlinear effects. We also note that since the
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Figure 1. Illustration of the variable selection and ranking measures using the example described in Section 2.5. Left: The ratio of the variable importances of selected
variables to the total variable importances for the MARS, MR(0.1), and MR(0.2) selection algorithms. Right: VROC curves scaled by the total variable importance for the MR
and GAM ranking algorithms.

true model is a GAM, the optimal VROC curve is concave, as
discussed above. An example where the optimal VROC curve is
not concave will be provided in Section 5.

2.6. Asymptotically Stable Selection and Ranking
Algorithms

When defining our measure of variable selection and ranking
algorithms, we assumed that the algorithm converges in proba-
bility to a fixed limit. This is often too strong to hold in practice,
so we now relax this assumption. One major reason that a
ranking or selection algorithm may not converge to a fixed limit
is the presence of null variables—that is, variables that do not
change the value of the predictiveness function. For example,
if there are p = 3 variables, but the outcome only depends
on the first variable, then there is no true signal upon which
to form a ranking of the last two variables, so these variables
will be ranked on noise alone. As a result, the ranking Rn may
not converge to a single fixed ranking as n increases, as small
changes in the noise may change the ranking of the null vari-
ables. However, as long as the ranking algorithm asymptotically
ranks the first variable first, it is reasonable to expect that Rn
will asymptotically be contained in the set of rankings R0 with
the first variable ranked first, that is, R0 = {(1, 2, 3), (1, 3, 2)}.
Furthermore, the true oracle predictiveness function sequence
(f0,−R0,[1] , f0,−R0,[2] , f0,−R0,[3]) is the same for each rank R ∈ R0
because both X2 and X3 are null variables. Similar situations can
also happen for variable selection algorithms. For instance, if an
algorithm is designed to select at least two variables, but there is
only one true non-null variable, the algorithm may not converge
to a fixed S0 because it may add null variables to the selected
set at random. However, the algorithm may be asymptotically
contained in the set S0 with the first variable always selected,
that is, S0 = {{1, 2}, {1, 3}}. Furthermore, the true oracle predic-
tiveness function is the same for each S ∈ S0. This leads us to
the relaxed notion of asymptotically stable selection and ranking
algorithms.

Definition 1. A variable selection algorithm Sn is asymptotically
stable with limiting selection set S0 if P0(Sn ∈ S0) → 1 and
f0,−S = f0,−S′ for all S, S′ ∈ S0. A variable ranking algorithm
Rn is asymptotically stable with limiting rank set R0 if P0(Rn ∈
R0) → 1 and f0,−R[j] = f0,−R′[j] for all R, R′ ∈ R0 and j ∈
{1, . . . , p}.

A selection algorithm is asymptotically stable if it is asymptot-
ically contained in a set of selections with common predictive-
ness function under P0, and a ranking algorithm is asymptoti-
cally stable if it is asymptotically contained in a set of rankings
with a common sequence of predictiveness functions under P0.
These definitions permit in particular that a selection algorithm
includes random, non-converging sets of null variables in the
selected set, and that a ranking algorithm ranks null variables in
an arbitrary manner. Under this relaxed condition, our param-
eters of interest are still well-defined, and we will still be able to
establish asymptotic results for our estimators.

Some selection or ranking algorithms may not be asymptot-
ically stable. For example, suppose as above that there are p = 3
independent covariates, and that the true response model is Y =
X1 + X2

2 + ε, for independent noise ε. If X2 has a distribution
symmetric around 0 and we rank the variables using MR defined
in Section 2.5, X2 and X3 will both be regarded as null by the
model, and hence once again the ranking may not converge to a
fixed rank, but instead only be asymptotically contained in the
setR0 defined above. However, unlike the previous example, the
predictiveness function sequences of the two ranks inR0 are not
the same because X2 is not truly null. Situations like this may not
be covered by our theoretical results.

3. Estimation and Asymptotic Results

3.1. Estimating the Proposed Measures

In this section, we introduce estimators of our parameters of
interest and provide theoretical results guaranteeing conver-
gence in distribution of our proposed estimators to mean-zero
normal distributions. We use these results to construct asymp-
totically valid confidence sets for our parameters of interest
based on our estimators.

We first propose estimators of our population parameters
of interest. We recall that both of our parameters of interest
involve ψ0,S := V(f0, P0) − V(f0,−S, P0) = U(ζ(f0, P0), η0) −
U(ζ(f0,−S, P0), η0) for sets S ⊆ {1, . . . , p}. To estimate V(f0, P0)
and V(f0,−S, P0), we will consider cross-fit plug-in estimators.
We begin by obtaining the variable selection Sn and rank Rn on
the whole dataset. Then, we randomly (independently of the
data) partition the data into K ≥ 2 folds with roughly equal
sizes, meaning that limn→∞ max1≤k≤K

∣∣∣ n
Knk

− 1
∣∣∣ = 0, where

nk is the size of the kth fold. For simplicity, we assume that
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K is fixed. For each k ∈ {1, . . . , K}, we construct estimators
fn,k, fn,k,−S, fn,k,−R[j] , and ηn,k of f0, f0,−S, f0,−R[j] , and η0,
respectively, based on the training set for fold k—that is, the
data excluding fold k. For each k, we then define Vn,k :=
U(ζ(fn,k,Pn,k), ηn,k), Vn,k,−Sn := U(ζ(fn,k,−Sn ,Pn,k), ηn,k), and
Vn,k,−Rn,[j] := U(ζ(fn,k,−Rn,[j] ,Pn,k), ηn,k), where Pn,k is the
empirical distribution of the kth fold. Finally, we construct
the K-fold cross-fitting estimators of V(f0, P0), V(f0,−S, P0)

and V(f0,−R[j] , P0) as 1
K

∑K
k=1 Vn,k, 1

K
∑K

k=1 Vn,k,−Sn , and
1
K

∑K
k=1 Vn,k,−Rn,[j] , respectively. We then define ψn,Sn :=

1
K

∑K
k=1(Vn,k − Vn,k,−Sn).

For our proposed VROC measure (ψ0,R0,[1] , . . . , ψ0,R0,[p])
of a variable ranking algorithm whose ranks Rn (which we
recall is a random permutation of {1, . . . , p}) are converging
to R0, we propose the VROC estimator (ψn,Rn,[1] , . . . , ψn,Rn,[p])

for ψn,Rn,[j] := 1
K

∑K
k=1(Vn,k − Vn,k,−Rn,[j]). For the AUVROC

φ(ψ0,R0,[1] , . . . , ψ0,R0,[p]), we propose the analogous
AUVROC estimator φ(ψn,Rn,[1] , . . . , ψn,Rn,[p]) := ∑p

j=2(ψn,Rn,[j]
+ψn,Rn,[j−1])/2.

We note that in theory, different algorithms could be used for
the estimators fn,k,−S and fn,k,−S′ of f0,−S and f0,−S′ , respectively,
for two different sets of variables S and S′. Our theoretical results
below would still hold as long as the two estimators both satisfied
the required conditions. Nevertheless, in practice, we are not
aware of a reason one would use two different algorithms, and
for the sake of comparability and simplicity, we recommend
using the same algorithm to construct fn,k,−S for each variable
set S.

3.2. Asymptotic Linearity

We now provide conditions under which our estimators are
asymptotically linear. Asymptotic linearity of an estimator
implies n−1/2-rate consistency and asymptotic normality, which
facilitates large-sample statistical inference. Asymptotic linearity
further enables joint asymptotic results, which facilitates joint
large-sample inference. For a review of asymptotic linearity and
semiparametric efficiency theory, we refer the reader to Le Cam,
LeCam, and Yang (1990), van der Vaart (1998), and Kennedy
(2016).

We recall that we assume V(f , P) = U(ζ(f , P), η(P)). We
introduce the following conditions, which are specific to a subset
S ⊆ {1, . . . , p}.

(A1) There exists a function ζ̇ : F → L2(P0) such that
ζ(f , P) = P[ζ̇ (f )] and such that f �→ ζ̇ (f ) is con-
tinuous at f0,−S. Also, there exist C, δ ∈ (0, ∞) such
that for all f ∈ F−S with

∥∥f − f0,−S
∥∥
F < δ, we have∣∣P0

[
ζ̇ (f ) − ζ̇ (f0,−S)

]∣∣ ≤ C
∥∥f − f0,−S

∥∥2
F .

(A2) The map (ζ , η) �→ U(ζ , η) is differentiable at (ζ(f0,−S, P0),
η0) with U̇ζ (ζ , η) := ∂U

∂ζ
(ζ , η) and U̇η(ζ , η) := ∂U

∂η
(ζ , η).

(A3) It holds that ‖fn,k,−S − f0,−S‖F = oP0(n−1/4) for each k ∈
{1, . . . , K}.

(A4) It holds that E0‖ζ̇ (fn,k,−S)−ζ̇ (f0,−S)‖L2(P0) = o(1) for each
k ∈ {1, . . . , K}.

(A5) It holds that ηn,k = η0 + Pn,kφ0 + oP0(nk
−1/2).

Under these conditions, we have the following result.

Theorem 1. If the selection algorithm Sn is asymptotically stable
with limiting selection set S0 and conditions (A1)–(A5) hold for
S ∈ S0, then 1

K
∑K

k=1 Vn,k,−Sn = V(f0,−S, P0) + PnV̇0(f0,−S) +
oP0(n−1/2) for

V̇0(f0,−S) = U̇ζ (ζ(f0,−S, P0), η0)
[
ζ̇ (f0,−S) − P0ζ̇ (f0,−S)

]

+ U̇η(ζ(f0,−S, P0), η0)φ0.

If the ranking algorithm Rn is asymptotically stable with limiting
ranking set R0 and conditions (A1)–(A5) hold for all S = R[j]
where R ∈ R0 and j ∈ {1, . . . , p}, then 1

K
∑K

k=1 Vn,k,−Rn,[j] =
V(f0,−R[j] , P0) + PnV̇0(f0,−R[j]) + oP0(n−1/2).

Theorem 1 provides conditions under which the cross-fitting
estimators are asymptotically linear with influence functions
equal to the nonparametric efficient influence functions estab-
lished in Supplementary Material. Theorem 1 will be used to
facilitate statistical inference for our parameters of interest in
Section 4. Notably, asymptotic linearity of the cross-fitting esti-
mators does not require any Donsker conditions. Theorem 1
differs from the results of Williamson et al. (2022) in that the set
of covariates are random subsets of the p covariates. However,
other than the limiting selection set S0 and limiting ranking
set R0, the variable selection and ranking algorithms do not
play a role in the influence functions of the estimators. This is
because both the selected subset and variable ranks are discrete
parameters, and the asymptotic stability assumption ensures that
the true predictiveness of the estimated subsets equals a fixed
limit asymptotically. However, in finite samples, the behavior
of the selection or ranking algorithm can contribute to the
sampling distribution of our estimators, which is not captured
in the first-order asymptotic results of Theorem 1. This can
result in under-coverage of confidence intervals. We propose an
alternative bootstrap inference procedure in Section 4 to address
this issue.

The estimators considered in Theorem 1 are based on the
plug-in principle. Usually, plug-in estimators based on data-
adaptive nuisance estimators inherit non-negligible asymptotic
bias from the nuisance estimator, which hinders valid statistical
inference for the parameter of interest. However, Theorem 1
demonstrates that plug-in estimators do not suffer from this
problem in this case. As discussed in Williamson et al. (2022),
this is because f0,−S is a maximizer of f �→ V(f , P0) over
F−S, so that we may expect ∂

∂ε
V(fε,−S, P0)

∣∣
ε=0 = 0 for a

sufficiently smooth path Pε through P0 at ε = 0. As a result,
we can expect that V(f , P0) − V(f0,−S, P0) is bounded locally by
‖f − f0,−S‖2

F , as required by condition (A1). Hence, the plug-in
bias V(fn,k,−S, P0)− V(f0,−S, P0) is controlled by the behavior of
‖fn,k,−S − f0,−S‖2

F , so that if ‖fn,k,−S − f0,−S‖F = oP0(n−1/4), as
required by condition (A3), then the plug-in bias is oP0(n−1/2).

Condition (A1) requires linearity of P �→ ζ(f , P). As men-
tioned earlier, this holds in many examples, and simplifies tech-
nical details. Condition (A1) also requires that the local behavior
of f �→ V(f , P0) in a neighborhood of f = f0,−S is controlled
by the quadratic norm of f − f0,−S. This can be expected to
hold because, as discussed in Williamson et al. (2022) and
elsewhere, f0,−S is defined an optimizer of f �→ V(f , P0).
Condition (A2) requires that the function U is differentiable
so that the delta method can be used to obtain the influence
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function of V(fP,−SP , P). In supplementary material, we show
that conditions (A1)–(A2) hold and provide ζ̇ and φ0 for the
three examples introduced in Section 2.2.

Condition (A3) requires that the maximal error of the nui-
sance estimators converges faster than n−1/4. Since the rate
n−1/4 is slower than n−1/2, condition (A3) can in principle be
satisfied by data-adaptive estimators. However, the rate n−1/4 is
not achievable without some smoothness or structural assump-
tions about f0, and the strength of these assumptions needs to
increase with p due to the curse of dimensionality (Bühlmann
and van De Geer 2011). For example, the minimax optimal rate
of convergence of an estimator of f0 in a model where f0 is
assumed to be m times differentiable is n−m/(2m+p) (Stone 1982).
Hence, to achieve a rate faster than n−1/4, one would need m >

p/2. Similarly, if the covariates lie on a d-dimensional manifold
in R

p for d < p, then the rate n−1/4 can be achieved if f0 belongs
to a Sobolev class with smoothness α for α > d/2 (Bickel and
Li 2007). If f0 is assumed to be additive and differentiable, the
rate n−1/4 can be achieved for any p (Stone 1985). As a final
example, if f0 is known to be a sparse function that depends
only on d ≤ min{n, p} variables, and f0 belongs to a Hölder α-
smooth class, then the rate n−1/4 can be achieved if α > d/2
and n−1/2d log(p/d) → 0 (Yang and Tokdar 2015). However,
whether the true function possesses these or other properties,
and hence which regression estimator is best suited to the data, is
typically unknown in practice. One approach to dealing with this
uncertainty is to select between or combine several candidate
estimators using cross-validation. For example, SuperLearner
(van der Laan, Polley, and Hubbard 2007) is a generalization of
the stacking algorithm that combines multiple candidate esti-
mators, and achieves at least the best rate of convergence of the
candidate estimators (van der Laan and Rose 2011).

Condition (A4) requires convergence in mean of the esti-
mated influence function, which is used to control the empir-
ical process term of the cross-fitting estimator. Condition (A4)
follows from conditions (A1) and (A3) if supf ∈F |ζ̇ (f )| is uni-
formly bounded. Condition (A5) requires that the estimator ηn,k
of η0 is asymptotically linear with influence function φ0 for each
fold.

Finally, we establish asymptotic linearity of our estimator of
the AUVROC parameter, which follows by the delta method.

Corollary 1. If the ranking algorithm Rn is asymptotically
stable with limiting ranking set R0 and conditions (A1)–(A5)
hold for all S = R[j] where R ∈ R0 and j ∈ {1, . . . , p},
then φ(ψn,Rn,[1] , . . . , ψn,Rn,[p]) = φ(ψ0,R0,[1] , . . . , ψ0,R0,[p]) +
Pn

∑p
j=2[V̇0(f0)−V̇0(f0,−R[j])/2−V̇0(f0,−R[j−1])/2]+oP0(n−1/2).

4. Large-Sample Statistical Inference

Theorem 1 can be used to construct asymptotically valid confi-
dence intervals for ψ0,S, where S ∈ S0, as long as ψ0,S > 0. If
σ 2

n is a consistent estimator of σ 2
0 := P0

[
V̇0(f0) − V̇0(f0,−S)

]2,
then a Wald confidence interval for ψ0,S is given by ψn,Sn ±
z1−α/2n−1/2σn, where zp is the lower pth quantile of the standard
normal distribution. Theorem 1 can also be used to construct
asymptotically valid confidence intervals for each ψ0,R[j] , as long
as ψ0,R[j] > 0, as well as uniformly valid confidence sets for

(ψ0,R[1] , . . . , ψ0,R[p]), where R ∈ R0, as long as ψ0,R[1] > 0.
The asymptotic variance can be estimated using so-called influ-
ence function-based estimators. Since these methods are well-
known, we omit the details here, but provide them in sup-
plementary material. Asymptotically valid confidence intervals
for the AUVROC parameter can also be constructed using an
influence function-based variance estimator using Corollary 1.

The bootstrap is an alternative method of constructing con-
fidence intervals (Efron 1982; Efron and Tibshirani 1994). In
some settings, bootstrap confidence intervals have been shown
to have higher-order accuracy and better finite-sample coverage
than Wald intervals (Diciccio and Romano 1988; Hall 1988,
1992). In our setting, the bootstrap may be able to address at least
two sources of potential finite-sample bias in the large-sample
confidence intervals defined above. First, even if the selection
or ranking algorithm is asymptotically stable, it may possess
variability in finite samples that is not captured by the influence
function-based variance estimators. Second, while the precise
behavior of the prediction estimators does not play a role in the
asymptotic distribution of our estimators as long as the predic-
tion estimators satisfy the rate and complexity conditions, they
may contribute to the finite-sample variability of our estimators.
Accounting for these two sources of additional variability could
improve the properties of our confidence intervals.

To implement a standard empirical bootstrap, we would gen-
erate n IID samples from the empirical distribution and use
the bootstrap data to construct a bootstrap estimator in the
exact same manner as the estimator was constructed using the
original data. However, this standard approach has two short-
comings for our estimators. First, to avoid model misspecifi-
cation, we advocate for using data-adaptive estimators for the
prediction functions. Such estimators may be computationally
intensive, and repeating this computationally intensive proce-
dure for every bootstrap sample may be infeasible since the
number of bootstrap samples B is typically in the hundreds
or thousands. Second, the bootstrap can fail if the estimator
is sensitive to replicated observations (Bickel, Götze, and van
Zwet 1997), which may be the case for our estimators. Many
data-adaptive estimators involve cross-validation as part of the
procedure. When there are replicated observations in the data,
the same observation can appear in the training and test sets,
which breaks the independence of training and test sets and
leads to overfitting (van der Laan and Rose 2018, chap. 28).

To address these two problems, we propose a modified partial
bootstrap procedure. Specifically, when constructing our estima-
tors using the bootstrap data, we use the prediction function
estimator based on the original data rather than constructing
new prediction function estimators using the bootstrap data.
This reduces the computational burden of the bootstrap because
the prediction function only needs to be estimated once per
unique variable set generated over all bootstrap samples, rather
than estimated for each variable set in each bootstrap sample.
In addition, in practice many variable selection and ranking
algorithms tend to concentrate on a small set of variables in
different bootstrap samples, so the total number of variable
sets for which the prediction function needs to be estimated is
usually much smaller than all 2p possible sets.

By fixing the prediction estimator, our proposed partial boot-
strap does not account for variability in this estimator, which
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may result in worse finite-sample performance than a proce-
dure that does account for this variability. However, our partial
bootstrap does account for variability in the selection or ranking
algorithm. In addition, issues with replicated observations due to
the prediction function estimator are also resolved. Since we are
proposing to bootstrap the variable selection or ranking algo-
rithm, we are implicitly assuming this algorithm is not sensitive
to replicated observations.

Here are the details of our partial bootstrap procedure for the
K-fold estimator based on cross-fitting. As in Section 3.2, we
randomly partition the indices {1, . . . , n} into K folds I1, . . . , IK
of roughly equal sizes, and for each k we construct the pre-
diction function estimator fn,k,−S using the data excluding the
indices in Ik. For each b ∈ {1, . . . , B}, we construct the bth
empirical bootstrap estimator as follows. We first draw n indices
(αb,1, . . . , αb,n) IID from a uniform distribution on {1, . . . , n},
and we define

{(
Xαb,i , Yαb,i

)
: i = 1, . . . , n

}
as the bootstrap data

(which typically contains replicates of the original observations).
We then estimate the variable selection S(b)

n and variable rank
R(b)

n using the bootstrap data. Next, for each k ∈ {1, . . . , K}, we
define P

(b)

n,k as the empirical distribution of the bootstrap data
whose indices fall in Ik. We then define ψ

(b)

n,k,S := V(fn,k,P(b)

n,k) −
V(fn,k,−S,P(b)

n,k) and ψ
(b)
n,S := ∑K

k=1 w(b)

n,kψ
(b)

n,k,S, where w(b)

n,k :=
1
n

∑n
i=1 I(αb,i ∈ Ik). Finally, we use the bootstrap estimates(

ψ
(1)
n,S , . . . , ψ(B)

n,S

)
to construct bootstrap confidence intervals.

5. Numerical Studies

We conducted both a simple and a more complex simulation
study to validate the large-sample results presented in Section 3
and to evaluate the finite-sample performance of the proposed
methods. Due to space constraints, the simulation results and
discussion for the simple case are provided in the supplementary
material. For the more complex simulation setting, we consid-
ered the following data-generating process P0. We first generated
(X1, X2, . . . , X5) from a multivariate normal distribution with
E0[Xj] = 0 and Var0(Xj) = 1 for all j and Cor0(Xj, Xk) =
0.4 for each j 
= k. Given (X1, . . . , X5), we then generated
Y from a normal distribution with mean μ0(x1, . . . , x5) :=
(x1 + 0.5)(x2 + 1)+√

max(x2 + 5, 0)+ 5
√

(x3 − 0.2)2 + 1 and
variance 1 + |x4| + |x5|. Hence, our data-generating process
involved an interaction term, nonlinear terms, null variables,
correlated variables, and heteroscedasticity.

We considered three ranking algorithms. First, we consid-
ered the ranking obtained from the coefficient path from a
LASSO regression (Tibshirani 1996) using the default settings
in the glmnet package in R. Second, we considered the rank-
ing obtained by ordering the p-values from smallest to largest
from a generalized additive model (Hastie and Tibshirani 1986)
using the default settings in the mgcv package in R. Finally,
we considered the ranking obtained by ordering the estimated
variable importances from smallest to largest from a multivariate
adaptive regression splines regression (Friedman 1991) using
the default settings in the earth package in R. Throughout this
section, we abbreviate “generalized additive model” as “GAM”
and “multivariate adaptive regression splines” as “MARS”. By
simulating n = 105 samples multiple times and inspecting

the rankings for each procedure, we determined that MARS
and GAM were converging to the limiting rank set R0 =
{(3, 1, 2, 4, 5), (3, 1, 2, 5, 4)} with true R-squared predictiveness
sequence (0.39, 0.55, 0.66, 0.70, 0.75) and AUVROC equal to
2.48, while LASSO was converging to the limiting rank setR0 =
{(1, 2, 3, 4, 5), (1, 2, 3, 5, 4)} with true R-squared predictiveness
sequence (0.14, 0.23, 0.66, 0.70, 0.75) and AUVROC 2.03.

We considered three selection algorithms. First, we consid-
ered the subset obtained from a LASSO regression using penalty
parameter selected by ten-fold cross-validation and default set-
tings in the glmnet package in R. Second, we considered the
selection obtained by including the variables that have p-value
smaller than 0.05 from a GAM using the default settings in
the mgcv package in R. Finally, we considered the selection
obtained from a MARS regression using the default settings
in the earth package in R. By simulating a large number of
samples, we determined that LASSO and MARS were converg-
ing to the limiting selection set S0 = {{1, 2, 3}} with true R-
squared predictiveness measure 0.66 and PPSV 0.22, and GAM
was converging to the limiting selection set S0 = {{1, 2, 3, 4, 5}}
with true R-squared predictiveness measure 0.75 and PPSV 0.15.

For each sample size n equal to 500, 1K, 2K, 3K, 4K, 5K, 10K,
and 20K, we simulated 500 samples of n IID observations from
the above data-generating mechanism. We considered V equal
to the R-squared predictiveness metric defined in Section 2.2.
We estimated our proposed measures ψ0,S0/|S0| and AUVROC
using both the cross-fitting estimator with K = 5 folds. To esti-
mate the regression functions, we used SuperLearner (van der
Laan, Polley, and Hubbard 2007) with 5-fold cross-validation
and a library consisting of xgboost (Chen and Guestrin 2016;
Chen et al. 2021), gam (Hastie and Tibshirani 1986; Hastie
2020), and earth (Friedman 1991; Milborrow 2021). We con-
structed 95% Wald intervals using the cross-fitting influence
function-based variance estimator and the partial bootstrap pro-
cedure. We considered three types of bootstrap confidence inter-
vals: the percentile method, percentile t-method, and Efron’s
percentile method (in the terminology of van der Vaart 1998).
The true VROC curves for the three ranking algorithms along
with cross-fitting estimators and pointwise Wald and uniform
95% confidence sets for a single simulation with n = 1000 are
provided in supplementary material.

We now turn to the results of the simulation study. Figure 2
displays the properties of the AUVROC (top row) and PPSV
(bottom row) estimators and corresponding Wald confidence
intervals. The left column displays n1/2 times the bias of the
estimators. In all cases, the bias appears to tend to zero faster
than n−1/2 for large enough sample sizes, but there is consid-
erable heterogeneity in the finite-sample bias of the estimators.
For the PPSV, the absolute bias appears to decrease slower than
n−1/2 for n less than roughly 5000. As we discuss more below,
this is because the sampling distribution of the PPSV estima-
tors is multi-modal at these sample sizes. The middle column
of Figure 2 displays n1/2 times the standard deviation of the
estimators. The standard deviations appear to stabilize at the
n−1/2 rate for all estimators except that of the PPSV with the
GAM algorithm. This is because the subset selected by GAM
is still not stable at sample size 20K, and the standard devia-
tion decreases as the selection algorithm stabilizes. The right
column of Figure 2 displays the empirical coverage rate of 95%



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 9

Figure 2. Properties of the AUVROC (top row) and PPSV (bottom row) estimators for the three algorithms. Vertical bars represent 95% CIs accounting for Monte Carlo error.

Wald confidence intervals for the estimators. The confidence
intervals for the AUVROC are valid in large sample sizes and
have generally good performance for n ≥ 2K. However, for
the PPSV, the confidence intervals have poor coverage. This is
because the Wald confidence intervals do not take the variability
of the selected set Sn into account. The denominator of the
PPSV estimator is |Sn|, which is integer-valued and hence varies
substantially unless the selection algorithm Sn is very stable.
This results in a multi-modal sampling distribution of the PPSV
estimator. The Wald interval uses a normal approximation to
the sampling distribution, but the normal distribution is a bad
approximation to the true multi-modal sampling distribution.
The multi-modality of the sampling distribution is shown in
additional figures in Supplementary Material. By sample size
20K, the selected set Sn is stable enough for the MARS and
LASSO algorithms that the Wald confidence intervals have close
to nominal coverage. However, the set selected by GAM is not
stable even at this sample size, which results in poor coverage.
As we will discuss below, our partial bootstrap procedure can in
some cases improve the coverage of the PPSV.

Figure 3 displays the empirical coverage rate of 95% par-
tial bootstrap confidence intervals. All bootstrap confidence
intervals have close to 95% coverage for sample size 20K. The
coverage of all types of bootstrap intervals for the AUVROC
(top row) have comparable or better coverage than the Wald
interval for small and moderate samples, and have coverage
greater than 90% for all cases when n ≥ 1K. The partial
bootstrap yields better coverage than the Wald intervals for
the AUVROC because the bootstrap procedure incorporates
the variability of the ranking algorithm. For the PPSV (bot-
tom row), the confidence intervals again have better coverage
than the Wald intervals for the same reason. However, in this
case, the percentile and percentile-t methods still have far from

nominal coverage for n < 10K. Efron’s percentile method,
which uses the quantiles of the sampling distribution of the
estimator directly to construct confidence intervals, has the best
coverage by a wide margin. Efron’s percentile method has close
to nominal coverage for most sample sizes for the GAM algo-
rithm, but requires larger sample sizes for the LASSO and MARS
algorithms.

6. Application to Wine Quality Prediction

In this section, we use the methods developed in this article to
compare variable selection and ranking algorithms for predict-
ing the quality of wine. We use the data described in Cortez et al.
(2009), which are publicly available at https://archive.ics.uci.edu/
ml/datasets/Wine+Quality. This data contains 11 physicochem-
ical properties of n = 4898 different vinho verde wines. We treat
these as our covariates X. The data also contain a quality score
between 0 and 10, which was computed as the median of at least
three blind taste tests. We treat this as the outcome Y . Hence,
our goal is to predict the subjective rating of a wine based on its
physicochemical properties.

We used LASSO, GAM, and MARS to rank and select among
the 11 physicochemical properties in terms of their importance
for predicting wine quality. We refer the reader to Section 5
for precise explanations of these ranking and selection algo-
rithms. We evaluated these algorithms using the R-squared pre-
dictiveness metric. As in Section 5, to estimate the regression
function, we used SuperLearner with candidate library consist-
ing of xgboost, gam, and earth. We used the estimators
based on cross-fitting with K = 5 folds, and we constructed
pointwise confidence intervals using the Wald method and equi-
precision uniform confidence bands with influence function-
based (co)variance estimator.

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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Figure 3. Empirical coverage of 95% confidence intervals using the partial bootstrap for the AUVROC (top row) and PPSV (bottom row) for the three algorithms. Vertical
bars represent 95% CIs accounting for Monte Carlo error.

Table 1. Ranks of physicochemical properties for predicting wine rating.
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Table 1 displays the ranking of the physicochemical proper-
ties returned by the three ranking algorithms. All three algo-
rithms ranked volatile acidity, free sulfur dioxide, and residual
sugar among the top four most important variables, and MARS
and GAM agreed on the ordering of these three. MARS and
LASSO agree that alcohol is also important, but the rankings
diverge somewhat after these first four rankings. All three algo-
rithms ranked total sulfur dioxide second to last, and MARS and
GAM both ranked chlorides last.

The left panel of Figure 4 displays the estimated VROC curves
for the R-squared predictiveness metric scaled by the total R-
squared predictiveness metric, along with the corresponding
95% pointwise and simultaneous confidence sets. We note that
all three unscaled VROC curves ended at the point (11, 0.44),
implying that approximately 44% of the variance in wine ratings
is accounted for by the 11 physicochemical predictors. None of
the three scaled VROC curves were concave, suggesting that
the 11 variables contribute roughly equally to the prediction,
rather than a single or small set of variables outweighing the
importance of the others. In fact, the largest increment for all
three curves came when including variables 9, 10, and 11. This
suggests that while the last few physicochemical properties alone
may have had limited ability to explain the variation in wine

quality, they were able to account for a substantial amount of
variation when combined with the other physicochemical prop-
erties. This indicates the existence of interactions between the
physicochemical properties. Furthermore, the MARS ranking
algorithm generally had the largest estimated R-squared pre-
dictiveness of the three algorithms, which suggests that MARS
was best able to assess the relative importance of the variables
in the presence of interactions. Pairwise tests rejected the null
hypothesis that there is no difference in the VROC curves with
p < 10−8 for all three pairs. We estimate that the AUVROC
for MARS was 1.90, (1.75–2.06), the AUVROC for GAM was
1.62 (1.48–1.76), and the AUVROC for LASSO was 1.60 (1.46–
1.74). Pairwise tests rejected the null hypothesis that there is
no difference between the AUVROC of MARS and GAM (p =
2.3 × 10−7) and between MARS and LASSO (p = 1.0 × 10−6),
but not that there was no difference between GAM and LASSO
(p = 0.71).

The right panel of Figure 4 displays the R-squared predic-
tiveness metric of the selected variables scaled by the total R-
squared predictiveness metric, along with corresponding 95%
confidence intervals. The GAM selection algorithm selected all
variables and had an estimated PPSV of 0.039 (0.037–0.041).
MARS selected ten variables and had an estimated PPSV of
0.035 (0.032–0.037). LASSO selected nine variables and had an
estimated PPSV of 0.032 (0.029–0.035).

7. Conclusion

In this article, we proposed nonparametric, algorithm-agnostic
measures of the quality of variable selection and ranking
procedures. We proposed plug-in estimators of our measures,
and provided conditions under which our estimators are
asymptotically linear. Our theoretical results generalize those
of Williamson et al. (2022) because our proposed measures
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Figure 4. Left panel: Ratio of estimated VROC curve using R-squared predictiveness metric for prediction of wine rating by physicochemical properties with corresponding
95% pointwise and uniform confidence intervals. Right panel: Ratio of estimated R-squared predictiveness measure of selected physicochemical properties for prediction
of wine rating with corresponding 95% pointwise confidence intervals.

are based on the variable importance framework introduced
therein, but with random rather than fixed variable sets. We used
our asymptotic results to construct large-sample confidence
regions for our proposed measures. We also proposed a
computationally efficient partial bootstrap procedure to account
for finite-sample variability in the variable selection or ranking
procedure not accounted for in the asymptotic results.

There are several natural extensions to our work. First, some
variable selection and ranking procedures may not be asymptot-
ically stable as defined in Section 2.6. In these cases, it is not clear
how to even define a parameter of interest, or to achieve valid
inference for the parameter. This is an important area of future
research. Second, variable selection and ranking is of interest
outside of classical regression analysis, such as causal inference
and survival analysis (Fan, Feng, and Wu 2010; Shortreed and
Ertefaie 2017), and our methods could in principle be extended
to these areas as well.
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Appendices: Details on efficiency theory and construction of Wald confi-
dence intervals; proofs of all theorems; verification of conditions for the
examples; and additional results from numerical studies. (pdf)

R-code: R code implementing the methods described in the article. The
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analysis. (zip)
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