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Abstract 

In most epidemiological studies and in clinical research generally, there are variables with a spike 

at zero, namely variables where a proportion of individuals have zero exposure (e.g. never 

smokers) and among those exposed the variable has a continuous distribution. For modeling such 

variables different options exist, such as categorization where the non-exposed form the reference 

group, or ignoring the spike by including the variable with or without some transformation or 

modeling procedures in the regression model.  

It has been shown that such situations can be analyzed by adding a binary indicator 

(exposed/non-exposed) to the regression model, and a method based on fractional polynomials to 

estimate a suitable functional form for the positive part has been developed.  

In this paper we compare different approaches using data from three case-control studies 

conducted in Germany. These are the MARIE study on breast cancer, conducted from 2002 to 

2005; the RHEIN-NECKAR-LARYNX study on laryngeal cancer, conducted from 1998 and 

2000 and a study on lung cancer, conducted from 1988 to 1993. Strengths and limitations of 

different procedures are demonstrated, and some recommendations for practical use are given.  

Keywords: case-control study; dose-response model; fraction unexposed; fractional polynomials; 

regression modeling  
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A goal in the analysis of epidemiological data is often the estimation of a dose-response 

relationship for risk factors which are composed of positive continuous values and zeros. Typical 

examples are occupational exposures, e.g. asbestos exposure or tobacco consumption where a 

proportion of individuals may be completely unexposed (spike at zero, SAZ), and the exposure of 

those who have been exposed follows a continuous distribution. 

  

There are both statistical problems, and problems with regard to interpretation arising from this 

situation. The simplest method to deal with the situation is to categorize the variable, and use the 

non-exposed group as reference. This is intuitively appealing, easy to interpret and popular. 

However, there are major disadvantages which have been described in many papers, such as 

Altman et al. (1), Vickers and Lilja (2), and Barendregt et al. (3).   

 

To account for the SAZ variable, Jedrychowski et al. (4) included a binary variable smoker/non-

smoker into the model in addition to the dose variable. This was an ad hoc approach without 

giving a formal rationale. The method was more formally described in Robertson et al. (5). The 

first parameter then represents the basic association of exposure and the second parameter 

represents the association of the levels of exposure among the exposed.   

 

For general modeling of a continuous variable, the fractional polynomial approach (FP) has 

become popular. Recently, the SAZ situation has been considered using an extended FP approach 

in Royston et al. (6) and refined in Becher et al. (7). We have derived the theoretically correct 

model under some specific assumptions on univariate continuous distributions (8). We have 

expanded this by investigating the correct dose-response curve for a SAZ situation and univariate 

normal, log normal and gamma distribution of the positive part of X (7). Extensions to the 
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bivariate case were published recently (9). However, in real data the exposure distribution often 

takes no recognizable or standard form.  

 

The main aim of this paper is to present and compare methods to model a continuous variable 

with a SAZ and to give recommendations for practical applications. In section 2, we describe the 

methods. In section 3, we introduce studies which included a variable with a SAZ. We re-analyze 

the data, modeling the SAZ using the above alternative approaches and compare to the original 

analysis.  The discussion includes recommendations for practical application. 

   

METHODS 

 

In this section, we describe five methods to model the functional form of continuous variables 

with a SAZ with regression models. These are summarized in Table 1. 

 

(1) Categorization of the SAZ variable  

The continuous variable X with a SAZ is transformed into k categories. The non-exposed group 

defines the baseline.  From the regression model we get k-1 regression coefficients which allow 

direct estimation of the association of categories 2 to k relative to category 1. This method is still 

commonly used in epidemiology. It corresponds to classical methods for the analysis of grouped 

data. The criteria for choosing the number of categories and their limits are the same as for the 

classical methods described in Becher et al. (10). Three to five groups seem to be used most 

often.  

 

(2) Modeling the SAZ variable assuming a linear association (untransformed) 

Page 4 of 23American Journal of Epidemiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5 

 

The standard method which uses the full information is to include X untransformed into the 

model without considering a binary indicator. It assumes linearity in the linear predictor. This 

will be called “Linear” in the following. 

 

(3) Fractional polynomial procedure  

The FP approach has originally been suggested by Royston and Altman (11). The idea of FP is to 

allow the variable to enter the model after it has been transformed, in order to allow non-linear 

relationships. The transformation used is selected from a predefined set of eight different values 

giving first degree FP functions (FP1).  This set is defined as H1(x) =��xp with p ∈ S =  {-2,-1,-

0.5, 0, 0.5, 1, 2, 3} with x
0
 being defined as log(x). More flexible second degree FP functions 

(FP2) are defined by ����� = ���
 + ���� with p and q taken from S. If p=q the second 

transformation is defined as �
 log���  such that H2(x) =	��xp + ��xp log(x).  Royston and Altman 

(11) showed that second degree FPs (m=2) cover a rich family of dose-response relationships 

which is sufficient in most applications (11). To account for the fact that some of these 

transformations cannot be performed for X=0, a small constant c is added to each observation. 

We follow a common procedure to use c=1 (12), although it has been criticized since the result of 

the modeling procedure depends on the choice of c and alternatives have been suggested (section 

4.7 and 5.6 in  (13)).   

For model selection, a closed test procedure, called FSP (function selection procedure), has been 

suggested (13).  

The user must choose the significance level (α) and the degree (m) of the most complex FP 

model allowed. Typical choices are α = 0.05 and FP2 (m=2). Furthermore, a default function for 

X is required. The identity (p=1) is chosen. The FSP selects a function in several steps. First, the 

best FP2 model is compared to the null model on 4 d.f. (one d.f. for parameters β1 and β2 and one 
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d.f. each for the choice of p and q). If the likelihood ratio (LR) test is not significant and selection 

of variables is of interest (for example in the multivariable fractional polynomials (MFP) 

procedure (13)) the algorithm stops. In the present context when estimation of the dose-response 

is the main purpose, the (default) linear function is chosen and corresponding parameter estimates 

are provided. A non-significant association in the first stage of the FSP does not imply that a 

usual test for linearity is also non-significant (see 4.16 in Royston and Sauerbrei (13)). If the first 

test is significant, the best FP2 model is compared to the default function (3 d.f.). If the test is not 

significant, the algorithm stops choosing the default as final model (R(X=x vs X=0) = exp(βx)). 

Otherwise, the best FP2 model is tested against the best FP1 model. If the test is not significant, 

the algorithm stops choosing the best FP1 model. Otherwise the best FP2 model is chosen as final 

function.   

 

We denote the result of the FP method using the closed test procedure as “FP”. “best FP1” refers 

to the first degree FP with the smallest deviance among all eight FP1 functions, and “best FP2” 

denotes the second degree FP with the smallest deviance among all 36 FP2 functions. The 

principle of the FSP does not change if adjustment for further variables is required.  

 

(4) Modeling the SAZ variable assuming a linear association (untransformed) and 

including a binary indicator  

Robertson et al. (5) described a method to include a binary indicator Z, which takes value 1 if 

X=0 and 0 otherwise, into the model in addition to the untransformed dose variable. This 

approach accounts for modeling unexposed individuals separately while the continuous part of 

the variable is modelled assuming linearity. We refer to this method as “Linear+z”.  
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(5) Fractional polynomial procedure including a binary indicator for the SAZ 

An FP procedure to model one continuous variable with a SAZ was described in Becher et al. (7). 

We refer to this version as “FP-spike”. In a SAZ situation, an additional coefficient �� is 

estimated which refers to the binary indicator Z which takes the value 1 if X=0 and 0 otherwise. 

The positive continuous variable (X>0) is modelled using FPs with transformations from the class 

of FP functions as defined in method (3). Adding a constant term c was obviated by applying the 

transformations to positive values only.  The procedure is an extension to the standard FP 

procedure with two stages. In a first stage the FSP is applied in the same way, but all models 

include Z. The best FP2 model with Z (FP2+z) is compared to the null model on 5 d.f. (one d.f. 

for parameters β1 and β2 one d.f. each for the choice of p and q, and one for Z). If the LR test is 

not significant, the variable is considered to have no association at the specified α level. As 

before, the default (linear) function would be chosen as the result of the first stage of the 

procedure. Provided that the first test is significant, the best FP2+z is compared to the default 

function with Z (3 d.f.). If the test is not significant, the first stage ends. Otherwise, the best 

FP2+z is tested against the best FP1+z. If the test is not significant, the first part of the algorithm 

stops choosing the best FP1+z. Otherwise the best FP2+z will be the result of the first stage. 

Then, in a second stage, it is tested whether either Z or the selected FP can be removed from the 

model.  

 

RESULTS 
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This section presents a comparison of these methods in three case-control studies. In addition to 

the original analysis as presented in the publications, we re-analyzed the data, using the above-

described methods (2) to (5). Resulting dose-response functions are displayed graphically and 

deviances and deviance differences which are needed for the FSP are presented. 

 

Study on postmenopausal breast cancer  

 

This is a large population-based case-control study on breast cancer conducted in Germany, 

including 3,464 cases aged 50-74 years and 6,657 controls, frequency matched by region and age 

(14). Here, duration of use of hormone therapy in years (HT) was considered as continuous risk 

factor with a SAZ. Exposure was reported in 29.85% of cases and 21.95% of controls. The 

distribution of the continuous part is given in Figure 1. 

  

The original paper provides an analysis with duration of HT categorized into four groups and  

adjusted for menopausal status, age at menarche, number of full-term pregnancies, ever breast-

feeding, number of mammograms, ever benign breast disease, body mass index, first-degree 

family history of breast cancer and occupational status (14) (Figure 3 in original publication). The 

same adjustment variables are used in all other approaches. Results are given in Table 2 and 

Figure 2.  

Compared to unexposed individuals, significantly elevated ORs were observed for duration of 

use of HT of less than 5 years, 5-9 years, 10-14 years and 15 or more years. The risk started to 

increase after 5 years of use but did not significantly increase further in the categories with a 

longer duration of use (14).   

The standard FP approach was applied adding the constant c=1 to the original observations of X.  
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The FSP yielded a FP1 as best model (Table 2, method 3) with power (p) as 0, i.e. transformation 

����� + 1�. The fit is significantly better than the linear function (Table 2, method 2) and not 

significantly worse than the best FP2 function (Table 2, method 3b). The FSP procedure is as 

follows: The deviance difference of the best FP2 to the null model, 123.23 is much larger than 

��,�.��	� = 9.49 indicating an overall significant association of HT use. When comparing the best 

FP2 model to the default (linear) function, the deviance difference, 123.23-105.09=18.14 is larger 

than ��,�.��	� = 7.12 indicating that the default function is not sufficient. Then, the best FP2 model 

is compared to the best FP1 model. Here the deviance difference is 123.23-117.79=5.44<��,�.��	� = 

5.99 and thus the best FP1 model is the result of the FSP. 

The FP-spike approach yielded a FP1 function with power p=0 as the best model (Table 2, 

method 5). The procedure runs as follows: The deviance difference of the best FP2+z to the null 

model, 125.52, is larger than ��;�.��	� = 11.07 indicating an association of HT use. In the next step, 

the best FP2+z model is compared with the default (linear) function with Z. The deviance 

difference, 125.52-109.10=16.42 is larger than ��;�.��	� = 7.12 indicating that the default function 

with Z does not appropriately describe the dose-response. In the next step, the best FP2+z model 

is compared to the best FP1+z model. Here the deviance difference, 125.52-121.52=4.00 

<	��;�.��	� = 5.99 and thus the best FP2+z model is not superior to the best FP1+z model. The result 

of the first stage is thus an FP1+z. In the second stage Z and the FP1 component are each tested 

for removal. The deviance difference to the model with Z only is 121.52-92.03=29.49>��;�.��	� = 

5.99 indicating that the continuous term cannot be omitted. The deviance difference to this model 

without Z is 121.52-121.514=0.006<��;�.��	� = 3.84  indicating that Z only marginally improves 

the fit and therefore can be omitted. The resulting function for OR(X=x vs X=0) in the second 

stage is exp(0.24log���) is displayed in Figure 2. The other approaches which are more limited in 
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terms of possible shapes of the dose-response show a considerably worse fit (Table 2, methods 2, 

3b, 4).  

 

 

Dose-response curves derived by all five approaches are very different. The categorical analysis 

may be useful as a first step in the analysis. However, results depend strongly on chosen 

categories and may be severely misleading. The categorical analysis indicated a small risk for 

short exposure, and a rather constant elevated risk for longer exposures. This shape cannot be 

approximated well by any of the other approaches. The results of the FP and the FP-spike 

procedure are similar in terms of deviance and functional form.  

 

Laryngeal cancer case-control study 

 

A case-control study with 257 cases (236 males, 21 females) and 769 population controls (702 

males, 67 females) 1:3 frequency matched by age and sex was conducted in southwest Germany 

(15). We consider the lifetime hours of occupational exposure to cement dust as a single risk 

factor with SAZ. Only a small number of patients with positive values of cement dust exposure 

was reported (35 (13.62	%�  cases and 37 (4.81	%�  controls). The distribution of the continuous 

part is given in Figure 3. Median lifetime exposure hours were 3,410 in exposed cases and 3,080 

in exposed controls.  

 

The results are presented in Table 3 and Figure 4. A logarithmic scale is used for the x-axis to 

better illustrate the association at the low exposure level. The original paper provides an analysis 
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with the categorized variable (Table 3, method 1), stratified for age and gender (15). Compared to 

unexposed individuals, significantly elevated and rather similar ORs were observed for exposure 

levels of 1-3,000 and 3,000 and more lifetime working hours, indicating that the level of 

exposure has no differential association. The standard FP approach yielded a FP1 with 

transformation (x+1)
-2

 as the best model (Table 3, method 3a). The fit is considerably better than 

the default (linear) function (Table 3, method 2) with a deviance difference of 20.44-

10.11=10.33. The best FP2 was obtained for transformations�� + 1�!� and �� + 1�� (Table 3, 

method 3c).  This, however, improved the fit only slightly with deviance difference 22.04-

20.07=1.97 and the FSP yielded the FP1 function as the best model.  

 

The FP-spike approach yielded a final model with only the binary indicator Z (Table 3, method 

5a). In the first stage, a linear function with Z was chosen. The second stage, investigating 

whether one or the other component can be removed from the final model, showed that Z already 

sufficiently described the functional relationship. The corresponding deviance difference is 

20.44-20.07=0.37, indicating that the additional linear term does not contribute to model 

improvement. Removing Z, however, significantly worsens the fit with deviance difference 

20.44-10.11=10.33. 

Methods 1, 3a and 5a as well as 3c and 5b give almost the same result in terms of deviance and 

shape of the function. This is because the exposure is associated with an increased risk, however 

with very little dose-dependence. Model 3a-c force the OR function continuously through the 

value 1 for x � 0, and similarities between 3a and 5a are obtained since (x+1)
-2

 �0. Among 

exposed, the lowest recorded exposure value is 100 hours and for this exposure the estimated OR 

is exp�−1.14	�	�100 + 1�!� − 1��� = exp�−1.14 × �−0.999�� ≈ exp�1.14� = 3.13.	The 
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dataset and Stata program used for this example are provided in Web Dataset 1 and Web Program 

1. 

 

 

Lung cancer case-control study  

 

A hospital-based case-control study with 1,004 lung cancer cases and 1,004 population controls 

matched for region, sex and age was conducted in two areas in Germany (16). Here, we consider 

lifetime hours of asbestos exposure as continuous risk factor with a SAZ. A relatively high 

number of cases (65.44%) and controls (71.81%) reported zero asbestos exposure. 

The continuous part is approximately log normally distributed in the 347 cases and 283 controls 

(Figure 5).  

The original paper provides an analysis with the categorized variable, adjusted for smoking in 

four categories (16). The exposure variable was categorized in the original values according to 

the tertiles of the distribution among exposed individuals.  Results are presented in Table 4 and 

Figure 6.     

 

Compared to unexposed individuals, elevated ORs were observed for levels of cumulative 

lifetime working hours with asbestos exposure 1-940, 940-5,280 and more than 5,280 (Table 4, 

method 1). The standard FP approach using the closed test procedure yielded a linear function as 

the best model (Table 4, method 3a) with exp�0.18	 × 10!���	 as the OR function (se(β)= 

7.06× 10!*). The more complex FP1 and FP2 result in different functions, but are not 

significantly better according to the FSP with α=0.05 (Table 4, methods 3b and 3c).  
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The FP-spike approach using the closed test procedure yielded a linear function x without Z as 

the best model (Table 4, method 5a). The resulting function is thus the same as derived by 

standard FP. In the first stage of the selection procedure with Z included by default it was shown 

that there is no significant association of the exposure variable, and the default (linear) function 

for the exposure variable was chosen. The corresponding deviance difference of the best FP2+z 

and the null model was 10.67 (p = 0.06). The second stage, when investigating whether both Z 

and the selected (linear) function of the continuous part are needed for a suitable model, showed 

that Z can be removed and the linear function sufficiently describes the functional relationship.  

The best FP1 and the best FP2 function (Table 4, methods 5b and 5c) had a better model fit than 

the linear function; however, the deviance difference was not significant. In this example, 

therefore, both the FP and the FP-spike procedure yielded the same result. 

 

DISCUSSION 

We described five procedures to model exposure variables with a SAZ and applied these to data 

from three case-control studies. While these datasets do not cover all possible practical data 

situations, they provide substantial insight into some strengths and weaknesses of the methods.   

A natural goal in dose-response analysis is to give the best possible answer how the response 

depends on the exposure variable for a given dose. A categorical analysis is not satisfactory since 

it implies (i) an arbitrary definition of cut-points, (ii) a jump of the risk estimate at these cut-

points which is biologically implausible, and (iii) an arbitrary choice of the number of categories. 

In addition, categorization may introduce residual confounding and results in loss of power (17). 

Nevertheless, we consider categorization with three to five categories as a useful first step in the 

analysis; however, it should not be considered as the final result.  
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All other approaches yield continuous dose-response functions. These are parsimonious functions 

estimated with a parametric approach. The method including a binary indicator has the principal 

property that it may result in a risk function which does not start at one for a dose close to zero. 

We have shown in a theoretical paper that this is a direct consequence under certain distributional 

assumptions (9), however for risk extrapolation to low doses this property is certainly unwanted 

and such a situation requires further research. Common procedures to adjust for confounders can 

be applied. In the examples given, the same variables were included as in the original 

publications. 

 

To illustrate potential applications, we re-analyzed data from three case-control studies in which 

the SAZ variable was categorized in the published analysis. We conclude that alternative 

approaches would have been a better choice; however, it is more difficult to choose the best of 

these.     

 

In the breast cancer study a non-linear FP1 function without a binary indicator was selected with 

the FP-spike procedure. The standard FP method also selected a FP1 function. In both cases the 

log transformation was selected, and both resulted in a similar fit in terms of deviance. The dose-

response curves are very similar for a large range of observed values. Larger differences exist for 

very short duration of use which is the result of the omitted constant added to the variable before 

transformation in the FP-spike procedure. The linear approach, both with and without the binary 

indicator, yield poorer fits, and cannot be recommended for this example. 
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The laryngeal cancer study was considerably smaller, and a very large proportion of 86.38	% in 

cases and 95.19	% in controls had zero exposure for the SAZ variable. This limits the power to 

detect complex dose-response functions and selection of the default (linear) function is often a 

consequence. In the published analysis two exposure groups and the non-exposed baseline group 

were considered, and the ORs were significantly elevated and similar in both exposure groups, 

indicating that the association exists but independent of dose. Not surprisingly, the FP-spike 

procedure selected the model with the binary indicator only as the final result. The standard FP 

procedure selected a FP1. The selected function has a very high slope at low dose and 

approximates a constant OR similar to the FP-spike procedure for higher doses. This is seen in 

the smaller window in Figure 4.  In terms of biological plausibility, the result of the standard FP 

is to be preferred. We acknowledge that these are risk estimates for an unobserved dose range 

only and must be interpreted very carefully.          

 

In the lung cancer study, a different situation was observed. A problem here is the more severe 

skewness of the distribution of the exposure variable.  When occupational exposure was analyzed 

as a categorical variable in 3 distinct categories, no increased risk was observed for the low 

exposure group, and increased risks, similar and both significant, for the middle and high 

exposure categories. From these results one would expect an S-shaped dose-response curve 

which is difficult to detect. Moreover, the risk estimates given from finer categories show an 

irregular pattern, indicating that the random variation in the data is large. Consequently, both 

standard FP and FP-spike yielded the linear default model. Apparently this function does not 

match with the categorical estimates. The best FP1 and the best FP-spike yield a better fit in 

terms of deviance with a steep slope at low dose, and these functions would possibly have been 

selected if the sample size had been larger. This example also indicates a certain drawback of the 
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FP-spike procedure. The deviance difference in the initial step did not reach statistical 

significance (p=0.06), caused by comparing deviances of the best FP2+z function with the null 

model by using a test with 5 degrees of freedom. For the standard FP procedure it is well-known 

that FSP loses some power if the underlying true function is linear (Royston and Sauerbrei (13), 

chap 4.16). That may be considered as the price to pay if the true function is linear but the analyst 

uses the closed test procedure to investigate whether non-linear functions fit the data better. For a 

correct interpretation of the empirical standard error of the estimates also see (Royston and 

Sauerbrei (13), chap 4.16) 

  

The examples have shown that the analysis of a SAZ variable is complex and that general 

recommendations are difficult to provide since it depends on the main goal of the analysis. If a 

low dose extrapolation is needed where no observations are available, for example to set 

acceptable lower limits of exposure from a study where exposed individuals had high exposure 

levels, then neither the categorical analysis nor the FP-spike procedure can be used since the 

function should continuously go through the origin which is one for dose zero. Then, the standard 

FP method appears appropriate. If the goal is rather to provide a best estimate for, the common 

exposure range, the FP-spike procedure seems appropriate.    
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Figure 1. Distribution of duration of hormone therapy (HT) in cases and controls in exposed 

individuals, MARIE Study, Germany, 2002–2005. 

 

Figure 2. Dose-response curves of hormone therapy duration and postmenopausal breast cancer 

under different modeling procedures as given in Table 2. Circles denote odds ratio (OR) 

estimates for fine categories relative to exposure zero. The size of the circles indicate the number 

of individuals per category. The function resulting from the original analysis is displayed as solid 

black line, from method Linear as dotted black line, from method FP as short dashed black line, 

from method Linear+z as medium dashed black line and from method FP-spike as long dashed 

black line. MARIE Study, Germany, 2002–2005. 

 

Figure 3. Distribution of the continuous part of lifetime exposure to cement dust in cases and 

controls separately, RHEIN-NECKAR-LARYNX Study, Germany, 1998–2000. 

  

Figure 4. Dose-response curves lifetime hours of cement dust exposure and laryngeal cancer 

under different modeling procedures as given in Table 3. For values >15 fractional polynomial 

(FP) result coincides with FP-spike approach. Not visible in the plot. The function resulting from 
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the original analysis is displayed as solid black line, from method FP as short dashed black line 

and from method FP-spike as long dashed black line. In Figure 4A, the dose-response curve is 

plot using a linear scale. In Figure 4B, the low dose range is displayed using a logarithmic scale. 

RHEIN-NECKAR-LARYNX Study, Germany, 1998–2000. 

 

Figure 5. Distribution of the continuous part of the risk factor lifetime hours to asbestos exposure 

in cases and controls separately, Lung Cancer Study, Germany, 1988-1993.  

 

Figure 6. Dose-response curves of lifetime hours of asbestos exposure and lung cancer under 

different modeling procedures as given in Table 4. Circles denote odds ratio (OR) estimates for 

fine categories relative to exposure zero. The size of the circles indicate the number of 

individuals per category. The function resulting from the original analysis is displayed as solid 

black line, from method Linear as dotted black line, best FP1 as short dashed black line, best FP2 

as medium dashed black line, from method Linear+z as long dashed line, best FP1+z as medium 

dashed and dotted line and best FP2+z as long dashed and dotted black line. Lung Cancer Study, 

Germany, 1988-1993. 
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Table 1. Summary of five methods to investigate a continuous covariable with a spike at zero (SAZ variable). 

 

Model Method Description  Properties 

1 Categorization SAZ variable modeled in 

categories of groups of exposure 

values 

yields simple final models, robust to outliers, 

easy to apply, natural baseline exists in case of SAZ 

variables 

yields a step-function for the risk, arbitrary choice of 

cut-points and number of categories, loss of power,  

prone to residual confounding 

2 Linear SAZ variable modeled 

continuously and 

untransformed 

uses full information of a continuously measured 

variable 

linearity of the log odds ratio may be an invalid 

assumption, spike is ignored 

3 FP SAZ variable modeled using the 

FP method 

uses full information of a continuously measured 

variable, wide range for shape of dose-response 

functions,  low-dose extrapolation possible 

spike is ignored, arbitrary constant needs to be added 

before FP transformations 

4 Linear+z SAZ variable modeled 

continuously and 

untransformed including a 

binary indicator for the SAZ  

enables modeling variables whose distribution has a 

discrete and a continuous component, uses full 

information of a continuously measured variable 

linearity of the log odds ratio may be an invalid 

assumption, limited option for low dose extrapolation 

5 FP-spike SAZ variable modeled using the 

FP method, including a binary 

indicator for the SAZ 

enables modeling variables whose distribution has a 

discrete and a continuous component, uses full 

information of a continuously measured variable, wide 

range for shape of dose-response functions 

limited option for low dose extrapolation 

Abbreviations: FP, fractional polynomial; SAZ, spike at zero 
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Table 2. Comparison of Dose-Response Analyses for Duration of Continuous Combined HT and Postmenopausal Breast Cancer Risk, MARIE Study, Germany, 2002–2005. 

 

Model Method dose-response function  

OR(X=x vs X=0) 

Deviance Dev. diff.  

to null model 

Dev. diff. to best FP2/ 

1st stage model 

d.f. P 
a
 

0 Null model b  12254.19 0    

1 Categorization 

(original analysis)  

exp +0.099	,-∊��,����� + 0.59	,-∊[�,������ +

0.61	,-∊[��,������ + 0.55	,-2�����3  

12129.84 124.35  4 <0.001 

2 Linear exp	�0.042	x	�  12149.10 105.09  1 <0.001 

 standard FP       

3a Linear (default)  exp	�0.042	x	�  12149.10  18.14 1 <0.001 

3b FP1c exp	50.22	5log�� + 1�6	6  12136.40  5.44 2 0.66 

3c FP2 exp51.80	��� + 1�!� − 1�		− 	2.58	��� +
1�!� − 1�6  

12130.96 123.23  4 <0.001 

4 Linear+z exp	�0.15	 + 	0.03	�	�  12145.09 109.10  2 <0.001 

 FP-spike       

 First stage       

5a Linear+z (default) exp	�0.15	 + 	0.03	�	�  12145.09  16.42 2 0.001 

5b FP1+z c exp	5−0.0054	 + 0.24		log���6  12132.67  4.00 3 0.136 

5c FP2+z exp	5−0.29	 + 	0.25	�	– 	0.069	�	log���	6  12128.48 125.52  5 <0.001 

 Second stage       

5d  FP (dropping z) c exp	�0.24	log���	�  12132.67  0.006 1 0.95 

    z (dropping FP) exp �0.38� 12162.16  29.49 1 <0.001 

Abbreviations: d.f., degrees of freedom; Dev. diff., Deviance difference; FP1, first degree fractional polynomial; FP2, second degree fractional polynomial; HT, hormone therapy; OR, 

odds ratio.  
a 
P value referring to the given deviance difference from the previous columns  

b Deviance of the model without X  but including all other covariates.  
c Results of the function selection procedure of the FP resp. FP-spike method  
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Table 3. Comparison of Dose-Response Analyses for Cement Dust Exposure and Laryngeal Cancer Risk, RHEIN-NECKAR-LARYNX Study, Germany, 1998–2000. 

Model Method dose-response function  

OR(X=x vs X=0) 

Deviance Dev. diff.  

to null model 

Dev. diff. to best FP2/ 

1st stage model 

d.f. P
a
 

0 Null model b  1086.77 0    

1 Categorization 

(original analysis)  

exp +	1.13	,-∊��,����]��� + 1.15	,-9�������3  1066.69 20.08  2 0.001 

2 Linear exp�0.85	 × 10!�	��  1076.66 10.11  1 0.003 

 standard FP       

3a Linear (default) exp�0.85	 × 10!�	��  1076.66  11.93 2 0.008 

3b FP1 c exp�−1.14	��� + 1�!� − 1��  1066.70  1.97 2 0.374 

3c FP2 exp�−1.043	��� + 1�!� − 1�� + 5.63 ×
10!����� + 1�� − 1���  

1064.73 22.04  4 <0.001 

4 Linear+z exp�1.030 + 	0.19 ×	10!���  1066.33 20.44  2 <0.001 

 FP-spike       

 First stage       

5a Linear+z (default) c exp�1.030 + 	0.19 ×	10!���  1066.33  3.37 2 0.339 

5b FP1+z exp�1.043 + 5.63 × 10!��		���  1064.73  1.76 3 0.414 

5c FP2+z exp�1.25 − 9.58 × 10!:		�� 	+ 4.26 ×
10!��	���	  

1062.97 23.81  5 <0.001 

 Second stage       

5d  Linear (dropping z) exp�0.	85	×	10!��� 1076.66  10.33 1 0.001 

    z (dropping Linear) c exp�1.14�	 1066.70  0.37 1 0.55 

Abbreviations: d.f., degrees of freedom; Dev. diff., Deviance difference; FP1, first degree fractional polynomial; FP2, second degree fractional polynomial; HT, hormone therapy; OR, 

odds ratio.  
a 
P value referring to the given deviance difference from the previous columns  

b Deviance of the model without X  but including all other covariates.  
c Results of the function selection procedure of the FP resp. FP-spike method  
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Table 4. Comparison of Dose-Response Analyses for Lifetime Hours of Asbestos Exposure and Lung Cancer Risk, Lung Cancer Study, Germany, 1988-1993. 

Model Method dose-response function  

OR(X=x vs X=0) 

Deviance Dev. diff.  

to null model 

Dev. diff. to best FP2/ 

1st stage model 

d.f. P
a
 

0 Null model b  951.94 0    

1 Categorization 

(original analysis)  

exp +−0.025	,-∊��,:��]��� +

0.36	,-∊�:��,��;�]��� + 0.38	,-9��;����3  

943.52 8.42  3 0.038 

2 Linear exp�0.18	 × 10!���	  945.20 6.74  1 0.012 

 standard FP       

3a Linear (default) c exp�0.18	 × 10!���	  945.20  2.83 1 0.42 

3b FP1 exp�0.0037	��� + 1��.� − 1�	�  943.03  0.66 2 0.719 

3c FP2 exp+0.0044��� + 1��.� − 1� − 	1.71	 ×

10!��	��� + 1�� − 1�3  

942.37 9.57  4 0.048 

4 Linear+z exp�0.14 + 	0.14	 × 10!�	��  944.03 7.91  2 0.019 

 FP-spike       

 First stage       

5a Linear+z (default) c exp�0.14 + 	0.14	 × 10!�	��  944.03  2.752 2 0.43 

5b FP1+z exp�0.014 + 0.0036	��.��  943.01  1.74 3 0.42 

5c FP2+z exp�0.032 − 1.12	�!� + 0.0035	��.��  941.27 10.67  5 0.06 

 Second stage       

5d  Linear (dropping z) c exp�0.18	 × 10!���	  945.20  1.17 1 0.28 

    z (dropping Linear) exp(0.23) 947.82  3.60 1 0.058 

Abbreviations: d.f., degrees of freedom; Dev. diff., Deviance difference; FP1, first degree fractional polynomial; FP2, second degree fractional polynomial; HT, hormone therapy; OR, 

odds ratio.  
a 
P value referring to the given deviance difference from the previous columns  

b Deviance of the model without X  but including all other covariates.  
c Results of the function selection procedure of the FP resp. FP-spike method  
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