
Dose–response modelling for bivariate
covariates with and without a spike at zero:
theory and application to binary outcomes

E. Lorenz*

Institute of Public Health, Medical Faculty, University of Heidelberg, Im
Neuenheimer Feld 324, 69120 Heidelberg, Germany

C. Jenkner

IMBI, Freiburg University Medical Center, Stefan-Meier-Str. 26, 79100
Freiburg, Germany

W. Sauerbrei

IMBI, Freiburg University Medical Center, Stefan-Meier-Str. 26, 79100
Freiburg, Germany

H. Becher

Institute of Public Health, Medical Faculty, University of Heidelberg, Im
Neuenheimer Feld 324, 69120 Heidelberg, Germany and Institute of

Medical Biometry and Epidemiology, University Medical Center
Hamburg-Eppendorf, Hamburg, Germany

In epidemiology and clinical research, there is often a proportion of unex-
posed individuals resulting in zero values of exposure, meaning that
some individuals are not exposed and those exposed have somecontin-
uous distribution. Examples are smoking or alcohol consumption. We
will call these variables with a spike at zero (SAZ). In this paper, we per-
formed a systematic investigation on how to model covariates with a
SAZ and derived theoretical odds ratio functions for selected bivariate
distributions. We consider the bivariate normal and bivariate log normal
distribution with a SAZ. Both confounding and effect modification can be
elegantly described by formalizing the covariance matrix given the bi-
nary outcome variable Y. To model the effect of these variables, we
use a procedure based on fractional polynomials first introduced by
Royston and Altman (1994, Applied Statistics 43: 429–467) and modi-
fied for the SAZ situation (Royston and Sauerbrei, 2008, Multivariable
model-building: a pragmatic approach to regression analysis based on
fractional polynomials for modelling continuous variables, Wiley; Becher
et al., 2012, Biometrical Journal 54: 686–700). We aim to contribute to
theory, practical procedures and application in epidemiology and clinical
research to derive multivariable models for variables with a SAZ. As an
example, we use data from a case–control study on lung cancer.
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1 Introduction

A goal in the analysis of epidemiological or clinical data is often the estimation of a
dose–response relationship for risk factors. Some of those risk factors may be
semicontinuous variables, that is, a mixture of a point mass at a certain value and
continuously distributed positive values. Typical examples in cancer or cardiovascu-
lar disease epidemiology are occupational exposures, for example, asbestos exposure
or alcohol and tobacco consumption, where a proportion of individuals may be
completely unexposed while the exposure follows a continuous distribution.
Semicontinuous variables differ from variables that are left censored or truncated in
that the zeros are valid data values rather than proxies for negative or missing re-
sponses. Conceptually, a true zero is different from a censored zero; a true zero typi-
cally represents something not happening, whereas a censored zero only indicates that
its occurrence was below a certain threshold. These types of variables have lately
received more attention; see, for example, Vink et al. (2014) where the authors present
imputation methods for semicontinuous data. Dreassi et al. (2013) introduce a Bayesian
approach using a two-part model where they suggest a gamma model for the skewed
continuous distribution of the continuous variable as a more flexible alternative to the
typical log transformation. Similar concepts of two-part models have been discussed
by Olsen and Schafer (2001). However, in most applications, zero values are observed
in the outcome variables, and many approaches to model it have been developed in eco-
nomic andmedical applications (zero-inflated Poisson regression) (Fletcher et al., 2005).
In the following, we consider the case of a point mass at zero only and denote this

as spike at zero (SAZ). In earlier research, we have derived the correct model for con-
tinuous exposures under some specific assumptions on univariate continuous distribu-
tions (Becher, 1992). Recently, we have expanded this by investigating the correct
dose–response curve for variables with a SAZ, which are univariate normal, log normal
and gamma distributed for the positive values of a continuous covariateX (Becher et al.,
2012). However, in practice, we rarely have only one covariate. In a recent paper, Yang
and Fu (2013) provide the theoretical vector of regression coefficients for a special case
of the bivariate normal distribution within the framework of logistic regression. They
investigate the effect on the coefficient of one variable while ignoring the other variable,
whereas we consider both variables simultaneously, consider their correlation structure
and investigate implications for confounding and interaction.
It has to be emphasized that the model selection procedure in real-data situations is

considerably more complex, because (i) usually a larger number of variables need to
be considered simultaneously and (ii) the distribution of the covariates may only ap-
proximately follow common continuous distributions, for example, normal, log normal
or gamma. Therefore, the theoretical considerations in this paper may serve as a guide-
line in distinguishing which model selection procedures may be useful.
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The standard modelling techniques for the investigation of non-linear relationships
such as the fractional polynomial (FP) approach (Royston and Sauerbrei, 2008) as
well as the spline techniques (De Boer, 2001) do not specifically consider the SAZ sit-
uation. In situations where the unexposed are assumed to be different from the ex-
posed, the functional relationship of the continuous variable on the outcome differs
from the one between the unexposed individuals and the outcome. To allow for var-
iables with a SAZ, the risk may be modelled as a point estimate for the binary expo-
sure status and as an FP function for the continuous part of the variable. This model
might provide more accurate estimates because it fits the distribution more closely.
An FP-based function selection procedure with a binary indicator was suggested by
extending the standard FP modelling (Royston and Sauerbrei, 2008; Royston et al.,
2010) and slightly modified by Becher et al. (2012). It is based on the FP procedure,
which is a method to investigate whether the assumption of a linear effect is accept-
able or whether a non-linear function from the class of FPs improves the data fit se-
verely and is preferable to describe the functional influence of a covariate. This will be
explained in detail in section 4. The extension consists of two stages to select a model.
In the first stage, the best FP model is chosen, while a binary indicator, V, defined as
V=1 if X=0 and V=0 if X> 0, is included in the model. In the second stage, V and
the selected FP function are each tested for removal from the model. For example, in
the case–control study on lung cancer (see section 2 for details) with smoking as a co-
variate with dose X measured as pack-years, we obtain from a regression model with
the linear predictor α+ βx the regression coefficient β=0.034. For variables like
smoking, a certain proportion of individuals are usually unexposed. Thus, in such
an approach, the SAZ was simply ignored. A consequence of this approach is that
the odds ratio (OR) depends only on the difference between two measurements, that
is, OR(X=x+Δ vs x=Δ) =OR(X=x vs X=0)= exp(0.034x), which may not be ap-
propriate. Adding a binary indicator V into the model, the linear predictor is
α+ β0ν+ β1x and yields β0=�0.96 and β1=0.027, and OR(X=x vs X=0)= exp
(0.96+0.027x), and OR(X=x+Δ vs x=Δ), Δ>0=exp(0.027x). So, for example, in
the model with the binary variable V, the estimated OR is exp(0.96+0.027×20)
=4.48 for smoking 20 pack-years versus 0 and exp(0.027×20)=1.72 for smoking
40 pack-years versus 20. In the model without the binary variable, the estimated
OR is exp(0.034×20)=1.97 in both cases.
In practice, modelling of SAZ variables is complicated by the inclusion of more

than one covariate with a SAZ; therefore, we expand our investigations to the bivar-
iate case. Results are an important argument for the proposal of different strategies to
investigate the influence of two SAZ variables.
The structure of the paper is as follows: In section 2, we introduce the data set,

which will be used to illustrate an application. We specifically consider the logistic re-
gression model and investigate the correct ORs for a SAZ situation with selected bi-
variate distributions in section 3. Here, we consider the bivariate normal and bivariate
log normal distribution, both with and without spike, to derive theoretical OR func-
tions. Both confounding and effect modification will be formalized by properties of
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the covariance matrix in diseased and non-diseased individuals. We will investigate
the effect of correlations between the spike proportions as well as the overall correla-
tion numerically. In section 4, we use direct logistic regression as well as a logistic re-
gression that is based on FPs to obtain a bivariate dose–response curve using data
from a case–control study on lung cancer. We describe the modelling approach for
multiple SAZ variables based on FPs, which we have used in the data example. Fi-
nally, in section 5, we conclude the paper with a discussion.

2 Data

In our example, we use data from a hospital-based case–control study with 1004 lung
cancer cases and 1004 population controls matched for region, sex and age. Here, we
consider the number of years working in a so-called List A job (jobs with likely expo-
sure to carcinogenic substances) and cumulative dose of smoking (pack-years) as con-
tinuous risk factors with a SAZ. For more details on the study, see Jöckel et al. (1998).
The method used for the quantification of exposure to certain carcinogenic agents is
described by Ahrens et al. (1993).
A relatively low number of cases (7.1%) and a higher number of controls (23.5%)

reported zero exposure for smoking dose (X1). Zero exposure in ‘List A’ job work du-
ration (X2) was reported in 54.0% of cases and 66.1% of controls (Table 1).
The positive (x> 0) part of the smoking variable is approximately log normally dis-

tributed in cases and controls; the positive part of ‘List A’ job work duration also has
a right-skewed log normal distribution (Figure 1). The log-transformed positive
values for smoking dose have a mean (standard deviation) of 1.83 (1.29) in cases
and 1.55 (1.37) in controls. For the ‘List A’ job work duration, the corresponding
values are 3.26 (0.87) in cases and 2.65 (1.19) in controls.

3 Theoretical odds ratio functions

In this chapter, we derive the dose–response curve under a specific regression model.
We use logistic regression because this is the pertinent model for the data example.
We assume that the bivariate distribution of two covariates is known and derive the

Table 1. Median values and proportion of spike for smoking and exposure to a ‘List A’ job in the lung
cancer case–control study

Smoking (pack-years) (X1)

0 >0 0 >0 ∑

‘List A’ job (years) (X2) 0 0 >0 >0
Cases N (%) 62 (6.2) 480 (47.8) 9 (0.9) 453 (45.1) 1004

Median (X1) 0 30.75 0 31.70
Median (X2) 0 0 4.00 6.20

Controls N (%) 190 (18.9) 474 (47.2) 46 (4.6) 294 (29.3) 1004
Median (X1) 0 17.40 0 21.40
Median (X2) 0 0 4.00 4.75

∑ (%) 252 (12.6) 954 (47.5) 55 (2.7) 747 (37.2) 2008
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theoretical dose–response curve. Although in practice it is rare that the distribution of
the covariate is known, the theoretical considerations may help obtain a picture of the
underlying process. Here, we consider a bivariate normal and log normal distribution
with a spike in none, one or both covariates.

3.1 Notation and definitions

We consider a binary response variable and logistic regression as the regression
model. Let Y be a binary response variable (usually the disease of interest), and let
X1 and X2 be the covariates of interest that have continuous distributions and possibly
a SAZ. We denote the corresponding spike probabilities, that is, the probability of
taking value zero, with ph,i=P(Xh=0|Y= i), where h denotes the two different vari-
ables (h=1, 2) and i denotes the disease status (i=0, 1). To widen the assumptions
and allow for dependence of the spike proportions, we additionally use the spike
probabilities qk,i with k=1 ,2, 3, 4, which refer to the four different categories in
which the zeros could occur as q1i=P(X1=0, X2= 0|Y= i), q2i=P(X1≠0, X2=0|
Y= i), q3i=P(X1=0, X2≠0|Y= i) and q4i=P(X1≠0, X2≠0|Y= i) = 1� q1i� q2i�q3i
with 0< qki< 1 for k=1, 2, 3, 4 and ∑4

k¼1qki ¼ 1.
The OR function of the general bivariate situation within the logistic regression

model can be formalized as follows:

Fig. 1. Distribution of the continuous part of the risk factors smoking and lifetime exposure to a ‘List A’

job in cases and controls separately, lung cancer case–control study.
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ORx1¼x�1;X2¼x�
2
vs X1¼x10;X2¼x20 ¼

f 1 x�1; x
�
2

� �
f 0 x10; x20ð Þ

f 1 x10; x20ð Þf 0 x�1; x
�
2

� � (1)

where x�1; x
�
2

� �
and (x10, x20) denote arbitrary realizations of the covariate vector (X1,

X2). Depending on the distribution of the covariates of interest, one needs to replace
the functional terms f1 and f0 with the corresponding density functions.
We will now derive the OR function and the corresponding regression coefficients

under the assumption that (X1, X2) have a bivariate normal and log normal distribu-
tion with and without a SAZ. A combined OR of one normal and one log normally
distributed variable is straightforward, and one can easily derive it from the subse-
quent results.

3.2 Bivariate normal distribution without spike

First, we consider the bivariate normal distribution without a probability mass at
zero. Let (X1, X2) be the vector of two covariates of interest, and let the second sub-
script of the realizations denote the case–control status, that is, x10 is a realization of
covariate X1 in a control.
For x1, x2≠0, we have for Y=1

X1eN μ11

μ11

� �
;

σ211 ρ1σ11σ21
ρ1σ11σ21 σ221

 ! !
and for Y=0

X0eN μ10

μ10

� �
;

σ210 ρ0σ10σ20
ρ0σ10σ20 σ220

 ! !

with density functions

f i X1;X2ð Þ ¼
 
2πσ1iσ2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2i

p !�1

exp

 
� 1
2 1� ρ2ið Þ

 
X1 � μ1i

σ1i

� �2

�2ρi
X1 � μ1i

σ1i

� �
X2 � μ2i

σ2i

� �
þ X2 � μ2i

σ2i

� �2
!!

(2)

with means μ11,μ21 in the diseased and μ10,μ20 in the non-diseased, σhi as standard de-
viation and correlation coefficient

ρi X1;X2 Y ¼ ijð Þ ¼ cov X1;X2 Y ¼ ijð Þ
σ1iσ2i

(3)

The following can be derived for general variances, but for a simpler presentation,
we assume equal variances σ2hi ¼ 1. The density function is then
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f i X1;X2ð Þ ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2i

p� ��1
exp � 1

2 1� ρ2ið Þ X1 � μ1ið Þ2 � 2ρi X1 � μ1ið Þ X2 � μ2ið Þ þ X2 � μ2ið Þ2
� �� �

(4)

In the numerical analysis (section 3.6), we also consider more general cases. Alge-
braic calculations show that the OR given in (1) can be expressed as

exp β1 x�1 � x10
� �þ β2 x�2 � x20

� �þ β3 x*21 � x210 þ x*22 � x220

� �
þ β4 x�1x

�
2 � x10x20

� �h i
(5)

with

β1 ¼
μ11

1� ρ21
� �� μ10

1� ρ20
� �þ μ20ρ0

1� ρ20
� �� μ21ρ1

1� ρ21
� �

β2 ¼
μ21

1� ρ21
� �� μ20

1� ρ20
� �þ μ10ρ0

1� ρ20
� �� μ11ρ1

1� ρ21
� �

β3 ¼
1

2 1� ρ20
� �� 1

2 1� ρ21
� �

β4 ¼
ρ1

1� ρ21
� �� ρ0

1� ρ20
� �

(6)

Note that we summarized the coefficient for X1 and X2 squared to one joint coeffi-
cient β3, which is only possible when σ2hi ¼ 1. Then the coefficient only depends on the
correlation and therefore is independent of the mean values.
From this, we can derive some properties given in the previously defined

assumptions:

1. The correct model to express this OR requires X1 and X2 untransformed, X1

and X2 squared and the multiplicative term X1X2.
2. For ρ0= ρ1=0, we obtain the same results for the regression coefficients as in

the univariate case (Becher et al., 2012).
3. If ρ0= ρ1= ρ, we have β3= β4=0, and the correct model simplifies to

logit P Y ¼ 1 X1 ¼ x1;X2j ¼ x2ð Þ ¼ αþ β1x1 þ β2x2

with

β1 ¼
1

1� ρ2ð Þ μ11 � μ10 þ ρ μ20 � μ21ð Þð Þ

β2 ¼
1

1� ρ2ð Þ μ21 � μ20 þ ρ μ10 � μ11ð Þð Þ
(7)

Thus, it defines the condition for confounding, but no interaction. There is a corre-
lation between the two variables, and this correlation does not depend on the disease
status.
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4. If ρ0≠ ρ1, the correct model requires X1 and X2 squared and the multiplicative
term X1X2. The latter is known as an interaction term.

5. ρ0=0 implies that the variables are not correlated in the controls, and thus,
there is no confounding. Therefore, ρ0=0 and ρ1≠ 0 would be the natural
conditions for interaction without confounding. It is easily seen that the re-
gression coefficients β1 and β2 however change (Equation (6)) unless
μ11=μ21=0. For this case, we obtain β1=�μ10, β2=�μ20, β3 ¼ 1=2ð Þ �
1=2 1� ρ21
� �	 


and β4 ¼ ρ1= 1� ρ21
� �

. The corresponding OR function in
the case of ρ0= 0 is

ORX1¼x�1;X2¼x�2 vs X1¼x10;X2¼x20 ¼

¼ exp

"
� μ10 x�1 � x10

� �� μ20 x�2 � x20
� �þ 1

2
� 1

2 1� ρ21
� � !

x*21 � x210 þ x*22 � x220

� �

þ ρ1
1� ρ21
� � !

x�1x
�
2 � x10x20

� �# (8)

In Figure 2, we illustrate the OR function for a few parameter combinations. We
use ρ0= 0, ρ1=0, 0.2, 0.4, σ2hi ¼ 1, μ0 ¼ �0:4

�0:2

� �
, μ1 ¼ 0

0

� �
and x10=0.5. We keep the sec-

ond variable constant with x�2 ¼ 0:5.The OR function ORX1¼x�1;X2¼x�2 vs X10¼0:5;X2¼x�2
then

becomes

�μ10 x�1 � 0:5
� �þ 1

2
� 1

2 1� ρ21
� � !

1� 0:52
� �þ ρ1

1� ρ21
� � x�1 � 0:5

� � !& ’
In Figure 2, we show that the OR function increases more strongly if the correla-

tion between X1 and X2 becomes larger.

Fig. 2. Dose–response curve for X1 for two variables with normal distribution and different correlation
coefficients.
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Table 2 gives some numerical examples of the regression coefficients for differ-
ent values of ρ0 and ρ1 with σ2hi ¼ 1 and means (A) μ0 ¼ �1:0

�0:5

� �
, μ1 ¼ 0

0

� �
and (B)

μ0 ¼ 0
0:5

� �
, μ1 ¼ 1

1

� �
, as well as the resulting ORs for both cases (A)

ORX1¼0;X2¼0 vs X1¼�1;X2¼�0:5 and (B) ORX1¼1;X2¼1 vs X1¼�0;X2¼�0:5 . The mean values

in A and B are chosen such that the mean differences in cases and controls re-
main the same, that is, 0� (�1)= 1�0 for X1 and 0� (�0.5) = 0.5� 0 for X2. This
is to show the situation for which the ORs are independent of the reference value.
Case (i) in Table 2 is the simple case without correlation, that is, no confounding

between the two variables. The regression coefficients are calculated as the difference
of means in the diseased and non-diseased. Cases (ii), (iii), (iv), (v) and (vi) show nu-
merically that positive confounding without interaction yields reduced regression co-
efficients. The absolute and relative reduction is smaller for the stronger risk factor
X1. Cases (vii) and (viii) show the relevance of the interaction term. While in the first
six cases, the ORs are identical for A and B, that is, here, ORs do not depend on the
baseline value, we have a different situation here. If a positive interaction is present,
the ORs become larger with increasing reference value (3.34 vs 3.82 and 3.09 vs
3.45, respectively).

3.3 Bivariate normal distribution with spike in one covariate

We now extend the bivariate normal distribution, again with σhi=1, by a SAZ in co-
variate X2 and define the following density function

f s;i x1; x2ð Þ ¼
(
p2i f i x1ð Þ
1� p2ið Þf i x1; x2ð Þ if

x1 ≠ 0; x2 ¼ 0

x1 ≠ 0; x2 ¼ 0
(9)

where p2i=P(X1≠ 0, X2= 0|Y= i). Here, fi(x1, x2) is the bivariate density function as
before, and fi(x1) is the density function of the marginal distribution, which is a nor-
mal distribution with mean μ1i.
The calculation of the theoretical OR function becomes more complicated

because different cases have to be considered as given in (a)–(d) in the

Table 2. Theoretical regression coefficients for two normally distributed variables and ORs for selected
parameter combinations

ρ0 ρ1 β1 β2 β3 β4 OR (A) OR (B)

(i) 0.0 0.0 1.00 0.50 0.000 0.00 3.49 3.49
(ii) 0.1 0.1 0.96 0.40 0.000 0.00 3.20 3.20
(iii) 0.2 0.2 0.94 0.31 0.000 0.00 2.99 2.99
(iv) 0.3 0.3 0.93 0.22 0.000 0.00 2.84 2.84
(v) 0.4 0.4 0.95 0.12 0.000 0.00 2.75 2.75
(vi) 0.5 0.5 1.00 0.00 0.000 0.00 2.72 2.72
(vii) 0.0 0.1 1.00 0.50 �0.005 0.10 3.34 3.82
(viii) 0.1 0.2 0.96 0.40 �0.016 0.11 3.09 3.45

Note: OR, odds ratio.
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following list. In the first case, the baseline value is a positive value for both var-
iables X1 and X2. The second case describes the OR for X2 ¼ x�2 versus zero expo-
sure to variable X2. The third case describes the OR for X1 ¼ x�1 versus X1 = x10
given zero value for X2. We have to consider OR functions as follows:

(a) ORX1¼x�1;X2¼x�2 vs X1¼x10;X2¼x20

(b) ORX1¼x�1;X2¼x�2 vs X1¼x�1;X2¼0

(c) ORX1¼x�1;X2¼0 vs X1¼x10;X2¼0

(d) ORX1¼x�1;X2¼x20 vs X1¼x10;X2¼x20

which are

(a) ORX1¼x�1;X2¼x�2 vs X1¼x10;X2¼x20
¼ 1� p21ð Þ 1� p20ð Þf 1 x�1; x

�
2

� �
f 0 x10; x20ð Þ

1� p21ð Þ 1� p20ð Þf 1 x�10; x
�
20

� �
f 0 x�1; x

�
2

� �
This is the OR function for the bivariate case without a spike as given in (5) and (6).
For

(b) ORX1¼x�1;X2¼x�2 vs X1¼x10;X2¼0 ¼
1� p21ð Þ p20ð Þf 1 x�1; x

�
2

� �
f 0 x10ð Þ

p21ð Þ 1� p20ð Þf 1 x10ð Þf 0 x�1; x
�
2

� �
we obtainORX1¼x�1;X2¼x�2 vs X1¼x10;X2¼0 ¼ exp β02 þ β1x1 þ β2x2 þ β3 x21 þ x22

� �� þβ4 x1x2ð ÞÞ
with

β02 ¼ ln
1� p21ð Þ p20ð Þ
p21ð Þ 1� p20ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p20
1� p21

s !

þ�μ2
11 þ 2p1μ11μ21 � μ2

21 þ μ2
21 1� ρ21
� �

2 1� ρ21
� �

þ�μ2
10 þ 2p0μ10μ20 þ μ2

20 � μ2
20 1� ρ20
� �

2 1� ρ20
� �

β1 ¼
μ11

1� ρ21
� �� μ10

1� ρ20
� �þ μ20ρ0

1� ρ20
� �� μ21ρ1

1� ρ21
� �þ μ10 � μ11

β2 ¼
μ21

1� ρ21
� �� μ20

1� ρ20
� �þ μ10ρ0

1� ρ20
� �� μ11ρ1

1� ρ21
� �

β3 ¼
1

2 1� ρ20
� �� 1

2 1� ρ21
� �

β4 ¼
ρ1

1� ρ21
� �� ρ0

1� ρ20
� �

(10)
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For the third case,

(c) ORX1¼x�1;X2¼0 vs X1¼x10;X2¼0 ¼
p21ð Þ p20ð Þf 1 x�1

� �
f 0 x10ð Þ

p21ð Þ p20ð Þf 1 x10ð Þf 0 x�1
� �

we obtain ORX1¼x�1;X2¼0 vs X1¼x10;X2¼0 ¼ exp β1x1 þ β2x
2
1

� �
with

β1 ¼
μ11

1� ρ21
� �� μ10

1� ρ20

β2 ¼
1

2 1� ρ20
� �� 1

2 1� ρ21
� �

and the coefficients for X2 and x22 both cancel out.
For the fourth case,

(d) ORX1¼x�1;X2¼x20 vs X1¼x10;X2¼x20
¼ 1� p21ð Þ 1� p20ð Þf 1 x�1; x20

� �
f 0 x10; x20ð Þ

1� p21ð Þ 1� p20ð Þf 1 x10; x20ð Þf 0 x�1; x20
� �

we obtain ORX1¼x�1;X2¼x20 vs X1¼x10;X2¼x20
¼ exp β1x1 þ β2x

2
1 þ β3x1x2

� �
with coefficients

β1 and β2 equal to the results from the third case earlier and an additional interaction
term with the following coefficient:

β3 ¼
ρ1

1� ρ21
� �� ρ0

1� ρ20
� �

The only difference between the third and fourth cases is the additional interaction
term, which cancels out if ρ0= ρ1= ρ.

3.4 Bivariate normal distribution with spike in both covariates

We now extend the bivariate normal distribution, again with σhi=1, by a SAZ in both
covariates and define the following density function:

f s;i x1; x2ð Þ ¼

q1i
q2i f i x1ð Þ
q3i f i x2ð Þ if

q4i f i x1; x2ð Þ

x1 ¼ 0; x2 ¼ 0

x1 ≠ 0; x2 ¼ 0

x1 ¼ 0; x2 ≠ 0

x1 ≠ 0; x2 ≠ 0

8>>>>><>>>>>:
(11)

where fi(x1, x2) is defined as before and we have now spike probabilities qki with
q1i=P(X1=0, X2=0|Y= i), q2i=P(X1≠ 0, X2=0|Y= i), q3i=P(X1=0, X2≠0|Y= i)
and q4i=P(X1≠0, X2≠0|Y= i) = 1� q1i� q2i�q3i with 0<qki<1 for k=1, 2, 3, 4
and∑4

k¼1qki ¼ 1. The joint distribution of the SAZ in both variables can be expressed
with these four probabilities, of which the fourth is one minus the other three, and we
call this four-cell distribution (4CD) in the following.
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Here fi(x1) and fi(x2) are the marginal distributions, which are normal distributions
with means μ1i and μ2i, respectively. If X2=0, we assume that the conditional distri-
bution of X1i|X2i=0 is a normal distribution with mean μ1i. The equivalent holds
for the distribution of X2i|X1i=0. If the spikes are independent, we can express the
bivariate spike probabilities with the parameters p1i, p2i as q1i= p1ip2i, q2i= p2i
(1� p1i), q3i= p1i(1� p2i) and q4i= (1�p1i)(1� p2i) with the following density
function:

f s;i x1; x2ð Þ ¼

p1ip2i
p2i 1� p1ið Þf i x1ð Þ
p1i 1� p2ið Þf i x2ð Þ if

1� p1ið Þ 1� p21ð Þf i x1; x2ð Þ

x1 ¼ 0; x2 ¼ 0

x1 ≠ 0; x2 ¼ 0

x1 ¼ 0; x2 ≠ 0

x1 ≠ 0; x2 ≠ 0

8>>>>><>>>>>:
(12)

From (11) and (12), it can be seen that it is not straightforward to describe the co-
variance matrix of (X1, X2). There are two different levels of correlation, between the
binary indicators and between the continuous components. This has to be considered
in deriving the correct OR functions and will be shown in the succeeding text.
Figure 3 gives the empirical density function for a bivariate normally distributed

variable when simulating 100000 random values, which are distributed according
to (Equation 12) with p1=0.2, p2=0.3, μ1=4, μ2=4 and ρ=0.3 between X1 and X2.

Fig. 3. Empirical density function of a bivariate normally distributed set x= (x1, x2). The joint bivariate
distribution is displayed in the centre of the graph, the marginal distributions of X1 and X2 are displayed on

the x and y axes, respectively, and the zero proportion is displayed in the origin.
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The calculation of the theoretical OR function becomes more complicated because
different cases have to be considered.
In the first case, the baseline value is the non-exposure to both variables X1 and X2

and in the second case only to one of both. This has implications for the regression
coefficients, as shown in the succeeding text.
In the first case, allowing the spikes to be dependent as defined in (11), we

obtain

(a) ORX1¼x�1;X2¼x�2 vs X1¼0;X2¼0 ¼
f s;1 x�1; x

�
2

� �
f s;0 0; 0ð Þ

f s;1 0; 0ð Þf s;0 x�1; x
�
2

� �
¼ q10q41f 1 x�1; x

�
2

� �
q40q11f 0 x�1; x

�
2

� � (13)

and in the second case, we obtain

(b) ORX1¼x�1;X2¼x�2 vs X1¼x10;X2¼0 ¼
f s;1 x�1; x

�
2

� �
f s;0 x10; 0ð Þ

f s;1 x10; 0ð Þf s;0 x�1; x
�
2

� �
¼ q20q41f 1 x�1; x

�
2

� �
f 0 x10ð Þ

q40q21f 1 x10ð Þf 0 x�1; x
�
2

� � (14)

3.4.1 Theoretical odds ratio when baseline value is zero exposure to both variables X1

and X2

The first case describes the OR for X1 ¼ x�1 and X2 ¼ x�2 versus zero value for X1

and X2.
Algebraic calculations give the OR function for case (a) as follows:

ORX1¼x�1;X2¼x�2 vs X10¼0;X20¼0 ¼ exp β01 þ β1x1 þ β2x2 þ β3 x21 þ x22
� �þ β4x1x2

� �
(15)

with

β01 ¼ ln
q10q41
q40q11

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ20
1� ρ21

s !
þ�μ2

11 þ 2ρ1μ11μ21 � μ2
21

2 1� ρ21
� � þ�μ2

10 þ 2ρ0μ10μ20 � μ2
20

2 1� ρ20
� �

(16)

and β1, β2, β3 and β4 as before in the case without a spike (6).
If ρ0= ρ1= ρ, the correct model simplifies to logit P(Y=1|X1=x1, X2=x2) = β01

+ β1x1+ β2x2 with
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β01 ¼ ln
q10q41
q40q11

� �
þ�μ2

11 þ 2ρμ11μ21 � μ2
21 þ μ2

10 � 2ρμ10μ20 þ μ2
10

2 1� ρ2ð Þ
β1 ¼

1
1� ρ2ð Þ μ11 � μ10 þ μ20ρ ¼ �μ21ρð Þ

β2 ¼
1

1� ρ2ð Þ μ21 � μ20 þ μ10ρ ¼ �μ11ρð Þ

(17)

3.4.2 Theoretical odds ratio when baseline value is the non-exposure to only one
variable

The second case describes the OR for X1 ¼ x�1 and X2 ¼ x�2 versus X1=x10 given zero
value for X2. From algebraic calculations on case (b), we obtain
ORX1¼x�1;X2¼x�2 vs X1¼x10;X2¼0 ¼ exp β02 þ β1x1 þ β2x2 þ β3 x21 þ x22

� �þ β4 x1x2ð Þ� �
with co-

efficients β1, β2, β3 and β4 as in (10), and for β02, we obtain

β02 ¼ ln
q20q41
q40q21

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ20
1� ρ21

s !

þ�μ2
11 þ 2ρ1μ11μ21 � μ2

21 � μ2
21 þ μ2

21 1� ρ21
� �

2 1� ρ21
� �

þ�μ2
10 � 2ρ0μ10μ20 þ μ2

20 � μ2
20 � μ2

20 1� ρ20
� �

2 1� ρ20
� �

(18)

If ρ0= ρ1= ρ, the correct OR function simplifies further to
ORX1¼x�1;X2¼x�2 vs X1¼x10;X2¼0 ¼ exp β02 þ β1x1 þ β2x2ð Þ with

β02 ¼ ln
q20q41
q40q21

� ��μ2
11 þ 2ρμ11μ21 þ μ2

21ρ
2 þ μ2

10 � 2ρμ10μ20 � μ2
20ρ

2

2 1� ρ21
� �

β1 ¼
1

1� ρ2ð Þ μ11 � μ10 þ μ20ρ� μ21ρð Þ

β2 ¼
1

1� ρ2ð Þ μ21 � μ20 þ μ10ρ� μ11ρð Þ

(19)

For the symmetric case (c), we obtain ORX1¼x�1;X2¼x�2 vs X1¼0;X2¼x20
¼

exp β03 þ β1x1 þ β2x2 þ β3 x21 þ x22
� �þ β4x1x2

� �
with

β03 ¼ ln
q30q41
q40q31

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ20
1� ρ21

s !

þ�μ2
11 þ 2ρ1μ11μ21 � μ2

21 þ μ2
21 þ μ2

11 1� ρ21
� �

2 1� ρ21
� �

þ�μ2
10 � 2ρ0μ10μ20 þ μ2

20 � μ2
20 � μ2

10 1� ρ20
� �

2 1� ρ20
� �
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It is of interest to consider the coefficients β0j, with j=1, 2, 3, further. They depend
on both the spike probabilities and the means and correlation coefficients. In fitting a
model, different spike variables need to be included for X1 and X2. These spike vari-
ables are defined as follows:

logit Y X1j X2ð Þ ¼ αþ β01Z1 þ β02Z2 þ β03Z3 þ β1X1 þ β2X2

with Z1 ¼ 1 if X1 ≠ 0;X2 ≠ 0; 0 otherwise

and Z2 ¼ 1 if X1 ¼ 0;X2 ≠ 0; 0 otherwise

and Z3 ¼ 1 if X1 ≠ 0;X2 ≠ 0; 0 otherwise

(20)

It may be sufficient in practice to use the model with a different parameterization of
the spike, which is also theoretically correct in the special case for ρ0= ρ1=0

logit Y X1j X2ð Þ ¼ αþ γ01V1 þ γ02V2 þ β1X1 þ β2X2

with V1 ¼ 1 if X2 ≠ 0; 0 otherwise

and V2 ¼ 1 if X1 ≠ 0; 0 otherwise

(21)

All three indicators Z1, Z2 and Z3 describe distinct proportions of the population,
which might differ in their correlation structure and therefore need to be included.
The relation between Zi and Vi is given as V1=Z1+Z2 and V2=Z1+Z3.
A further property is of interest here. If there is a risk associated with the exposure,

however independent of its level, we have from Equations (13) and (14) f0(x1, x2) =
f1(x1, x2) and f0(xi) = f1(xi), respectively. The resulting OR functions reduce to

ORX1¼x�1;X2¼x�2 vs X1¼0;X2¼0 ¼
q10q41
q40q11

and

ORX1¼x�1;X2¼x�2 vs X1¼x10X2¼0 ¼
q20q41
q40q21

that is, the OR depends on the spike probabilities only. These results correspond to
the univariate situation given by Becher et al. (2012).
If the spike proportions are not independent, as in the general definition of the bi-

variate normal distribution with a spike, we have confounding of the two binary var-
iables, which indicate the zero/non-zero status, and if this differs in the diseased and
non-diseased, then interaction is present as well. In the real world, one can expect con-
founding and interaction of the binary indicators V1 and V2 and on the level of the
positive continuous part of the variables. Therefore, proper modelling in the multivar-
iable situation with spike variables is rather challenging.
As a result, from this section, we can state that in the case of two normally distrib-

uted variables with a spike in both, the correct model for the most general case (spikes
are not independent, and the continuous parts have unequal variances and are
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correlated) requires three binary variables Z1, Z2 and Z3, the continuous variables X1

and X2 untransformed, X1 and X2 squared and the multiplicative term X1X2.

3.5 Log normal distribution

Becher et al. (2012) showed for the univariate case that the log transformation is re-
quired if the covariate is log normally distributed. Algebraic calculations show that
this also holds if two covariates have a bivariate log normal distribution. In the case
of equal variances, the correct model requires the terms in ln x�1

� �
; ln x�2
� �

, the quadratic

log-transformed part of both variables ln x�1
� �2

; ln x�2
� �2

and a product of the log-

transformed positive part ln x�1
� �

; ln x�2
� �

to consider the interaction, and three binary
indicators for the distinct spike proportions.
If X1 is normally distributed and X2 is log normally distributed, the correct

model is obtained with similar algebraic calculations, using formula (1). Note that
(X1, lnX2) then has a bivariate normal distribution. It requires the terms in

ln x�1
� �

; ln x�2
� �

, the quadratic part of both variables ln x�1
� �2

; ln x�2
� �2

and a product

of both x�1 ln x�2
� �

to consider the interaction, and three binary indicators for the dis-
tinct spike proportions.

3.6 Numerical analysis of the variation of regression coefficients with varying
correlations

We have shown under the bivariate normal distribution for the continuous parts that
the correct model requires a binary exposure indicator for each of the three distinct
spike proportions, and the corresponding formula for the spike regression coefficients
β0j is given in the previous section in Equations (16–19). However, in this section, we
investigate numerically the difference between the correct modelling of the spike with
binary indicator variables Z1, Z2 and Z3 and the simpler indicator variables V1 and
V2. Modelling with three binary indicators enables one to consider possible correla-
tion between covariates. The latter indicators model the data under the strong as-
sumption of independent covariates. They are however more straightforwardly
modelled and may therefore be preferable.
For numerical illustration, we consider the parameters from Table 2, that is, σ2hi ¼ 1

and μ0 ¼ �1
�0:5

� �
;μ1 ¼ 0

0

� �
, with additional spike probabilities as follows: p01=0.2,

p02= 0.2, p11=0.1 and p12=0.1. Table 3 shows the regression coefficients of three spe-
cial cases with independent spike proportions for illustration.
It is seen that the spike coefficients β02 and β03 add up to the overall theoretical

spike β01 for ρ0= ρ1=0. If ρ0= ρ1>0, the coefficients β02 and β03 do not add up to
the overall theoretical spike β01, although the difference is not very large. For model
fitting with FPs, it is therefore important to investigate numerically the difference.
The OR functions (here for the second case) are
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ORX1¼x�1;X2¼x�2 vs X1¼0;X2¼0 ¼ exp 2:19þ 1:26x�1 þ 0:88x�2
� �

ORX1¼x�1;X2¼x�2 vs X1¼x�1X2¼0 ¼ exp 0:88þ 0:4x�2
� �

ORX1¼x�1;X2¼x�2 vs X1¼0;X2¼x�2
¼ exp 1:26þ 0:96x�1

� �
We generated a very large data set with 500 000 cases and 500000 controls to min-

imize sampling variation and compare the coefficients of the spike indicators when
using the two different definitions from (20) and (21) in section 3.4.2. Spike probabil-
ities in cases and controls were chosen as aforementioned.
We first assume the spikes to be independent with q11=0.01, q21=0.09, q31=0.09,

q41=0.81 and q10=0.04, q20=0.16, q30=0.16, q40=0.64. The correct model is logit
(Y|X1, X2) = β01Z1+ β02Z2+ β03Z3+ β1X1+ β2X2, which yields regression coefficients
as given in Table 4 for different values of ρ0, ρ1 and σ2. In this case, the coefficients β02
and β03 are almost the same as γ01 and γ02, and each pair sums up to β01 (columns β01,
(β02+ β03) and (γ01+ γ02)). Hence, it would already be sufficient to use the parameter-
ization as given in (20). Note that β1 and β2 are identical for each parameterization
(Tables 4 and 5).
Second, we assume that the spikes are not independent (Table 6). There is now an

increased amount of observations in the intersection denoting zeros in both variables
and a reduced number of observations with value zero in only one variable. This gives
an OR of 2.2 in cases and 2.6 in controls and leads to following regression coefficients
shown in Table 5. Here, the coefficients β02 and β03 are not the same as γ01 and γ02,
and neither of these pairs sums up to β01 (columns β01, (β02+ β03) and (γ01+ γ02)).
As a result, we can state that as soon as the spike proportions of both variables X1

and X2 are correlated, those coefficients for the binary indicators that consider both

Table 3. Theoretical regression coefficients of two normally distributed variables for selected parameter
combinations with three binary indicators

ρ0 ρ1 β01 β02 β03 β1 β2

0.0 0.0 2.25 1.31 0.94 1.00 0.50
0.1 0.1 2.19 1.26 0.88 0.96 0.40
0.2 0.2 2.13 1.19 0.81 0.94 0.31

Table 4. Regression coefficients of two normally distributed variables for selected parameter combinations
(Table 3) to compare spike coefficients of independent spike proportions defined as given in (20) and (21)

ρ0 ρ1 σ2 β01 β02 β03 γ01 γ02 (β02 + β03) (γ01 + γ02) β1 β2

0.0 0.0 1 2.23 1.31 0.94 1.31 0.93 2.25 2.24 1.00 0.50
0.1 0.1 1 2.19 1.29 0.91 1.29 0.91 2.20 2.20 0.96 0.42
0.2 0.2 1 2.16 1.28 0.90 1.27 0.89 2.18 2.16 0.94 0.34
0.5 0.5 1 2.10 1.28 0.83 1.28 0.83 2.11 2.11 0.96 0.10
0.0 0.0 2 1.91 1.06 0.87 1.06 0.87 1.93 1.93 0.50 0.25
0.1 0.1 2 1.90 1.05 0.86 1.05 0.86 1.91 1.91 0.48 0.21
0.2 0.2 2 1.88 1.04 0.85 1.04 0.85 1.89 1.89 0.47 0.17
0.0 0.0 3 1.81 0.98 0.85 0.97 0.85 1.83 1.82 0.33 0.17
0.1 0.1 3 1.79 0.97 0.84 0.97 0.84 1.81 1.81 0.32 0.14
0.2 0.2 3 1.79 0.96 0.84 0.96 0.83 1.80 1.79 0.31 0.11
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continuous variables simultaneously differ from the ones defined as given in (Equation 21).
Thus, in order to take a possible correlation between the spike proportions into
account, the correct model requires all three binary indicators. If the difference of
β02 + β03 and β01 is relatively small, an FP procedure with two binary indicators
can be used. We demonstrate this with data from the aforementioned study.

3.7 Note on other distributions

The earlier calculations can be carried out with arbitrary density functions, although
depending on the complexity of the density function, this must be performed numer-
ically. For the univariate case, this has been carried out for several other distributions,
and one can show that different transformations of the covariates yield the correct
model. However, for practical applications, it is preferable to select the model with
a procedure based on a goodness-of-fit statistics rather than to identify a distribution
that comes closest to the observed data. One option is kernel density estimation,
which attempts to estimate the density directly from the data without assuming a par-
ticular form for the underlying distribution and to obtain the OR function with a ker-
nel density estimator. However, the resulting functions are rather wiggly and non-
linear depending on the chosen bandwidth, which makes it difficult to interpret it at
specific positions.
Here, the FP procedure has been shown to be useful (Royston and Sauerbrei,

2008), also in the presence of a spike (Royston et al., 2010; Becher et al., 2012). In

Table 6. A 2 × 2 table of the spike probabilities qki

Cases Controls

X1 X1

0 >0 0 >0

X2 0 0.02 0.085 0.105 0.08 0.14 0.22
>0 0.085 0.81 0.895 0.14 0.64 0.78

0.105 0.895 1 0.22 0.78 1

Note: Numerical example for dependent spike proportions.

Table 5. Regression coefficients of two normally distributed variables for selected parameter combinations
(Table 3) to compare spike coefficients of dependent spike proportions defined as given in (20) and (21)

ρ0 ρ1 σ2 β01 β02 β03 γ01 γ02 (β02 + β03) (γ01 + γ02) β1 β2

0.0 0.0 1 2.24 1.23 0.86 1.26 0.90 2.09 2.16 1.00 0.50
0.1 0.1 1 2.20 1.21 0.84 1.24 0.88 2.05 2.12 0.96 0.42
0.2 0.2 1 2.17 1.20 0.82 1.23 0.86 2.02 2.09 0.94 0.34
0.5 0.5 1 2.12 1.21 0.76 1.24 0.80 1.97 2.04 0.96 0.09
0.0 0.0 2 1.92 0.98 0.80 1.01 0.83 1.78 1.84 0.50 0.25
0.1 0.1 2 1.90 0.97 0.79 1.00 0.82 1.76 1.82 0.48 0.21
0.2 0.2 2 1.89 0.96 0.78 1.00 0.81 1.74 1.81 0.47 0.17
0.0 0.0 3 1.82 0.90 0.78 0.93 0.81 1.68 1.74 0.33 0.17
0.1 0.1 3 1.81 0.89 0.77 0.92 0.80 1.66 1.72 0.32 0.14
0.2 0.2 3 1.80 0.89 0.76 0.92 0.80 1.65 1.72 0.31 0.11
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the following, we illustrate model-fitting procedures with a real-data example. In a
first attempt, we consider the distribution of the covariates and fit a model according
to the model specification, which theoretically emerges from the assumed distribu-
tions. In a second attempt, we use the FP procedure to obtain a bivariate dose–
response model.

4 Data example and model-fitting aspects

We present results on the analysis of the data from the case–control study on lung
cancer. The variables of interest, smoking and number of years exposed to a ‘List
A’ job (jobs with likely exposure to carcinogenic substances), are slightly correlated.
Among those exposed to both variables, the Spearman correlation coefficient is
0.09, and between both variables including zeros, it is 0.20. While medians of both
variables are different in cases and controls (Figure 1), the variances (after log trans-
formation) seem rather similar. The correlation between both variables appears to be
slightly higher in controls than in cases, indicating a small negative interaction.
We fit a model under the assumption that the distribution of the exposure variables

is a log normal distribution with equal variances in cases and controls, possibly differ-
ent correlations between the positive parts of the variable in cases and controls and an
unknown relationship between the spike proportions. Here, we have in controls (q10
+ q30)= 0.05, (q10+ q20) =0.61 and q10=0.035, which is close to the product of the
marginal probabilities 0.031, and positive parts were only slightly correlated. Based
on the results in section 3, the correct model would include two or three binary indi-
cators, the two log-transformed exposure variables and possibly the interaction term.
These models were fitted for both variables separately in univariate analyses and
jointly in multivariable analyses. The results are given in Table 7 and will be discussed
together with the results of the following model-fitting procedure in section 4.2.

4.1 Modelling continuous covariates using fractional polynomials

The common procedures for model fitting are however different, because covariates
rarely follow exactly a given distribution. When modelling continuous variables, it
is often preferable to model the relationship allowing non-linear functions using
FPs. The functional form of an FP1 is defined as β1x

p1 with p1 taken from the set
S={�2, �1, �0.5, 0, 0.5, 1, 2, 3}, where p=0 denotes ln(x). The functional form
of the more complex and flexible FP2 function is defined as β1xp1+ β2xp2. If p1= p2,
the functional form with so-called repeated powers is defined as β1xp+ β2xp log(x)
(Royston and Sauerbrei, 2008). An FP2 allows more flexible non-monotone dose–
response functions.
The FP procedure to model one continuous variable with a SAZ was described

in a modified version by Becher et al. (2012). We will refer to this modified
version as ‘FP-spike’ throughout our manuscript. In a SAZ situation, we have
an additional coefficient β0, which refers to the binary indicator V. The indicator
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distinguishes individuals withX=0 from those whereX>0. The unexposed individuals
are defined as a distinct subpopulation, for which it is necessary to model the outcome
explicitly. The rest of the distribution is modelled as a positive continuous variable
(X> 0) using FPs. Including the binary variable V, the model is

φ x; ßð Þ ¼ ß0vþ ß1f xð Þ þ αð Þ 1� vð Þ

where φ represents the outcome depending on the type of regression model.
Theoretical justifications for the univariate situation and results of a simulation

study are shown by Becher et al. (2012).
Building on these results, we extended the theoretical investigations for specific

bivariate situations described in section 3. In real data, there are different situations
concerning the correlation structures of spike variables and their influence on the out-
come. To handle such situations, we propose different options to deal with the SAZ.
In the easiest case, one can assume independence of the spike variables and use the
univariate approach separately for each variable with some slight modifications.
Further ideas are to use combinations of dummy variables, which vary the influence
of observations that are positive in one variable and zero in the other one.

4.2 Comparison of direct logistic regression and fractional polynomial modelling
results

We now use the FP-spike procedure to search the most appropriate model and com-
pare the results with the direct approach.
Table 7 shows the results of the logistic regression analysis for different models.

Models 1, 3, 5 and 6 result from distributional assumptions of the covariates. The
graphical analysis in Figure 1 suggests that both variables might be log normally dis-
tributed. This implies that the positive values must be log-transformed before includ-
ing them in the model. Both variables have a similar variance in cases and controls,
indicating that a squared term is not needed, and are positively correlated, indicating
confounding. However, the correlation appears a little smaller in cases than in con-
trols, indicating little negative interaction. The spikes also seem to be independent, in-
dicating that modelling with two spike variables V1 and V2 might be sufficient rather
than using three spike variables Z1, Z2 and Z3.
In comparison with the null model, both X1 and X2, and V1 and V2 signifi-

cantly improve the model fit when included separately (models 1 and 2, Table 7).
This would be the correct model for both variables with neither confounding nor
interaction. In model 5a, both variables and the two spike indicators V1 and V2

are included. This would be the correct model with confounding, without interac-
tion. The resulting OR function estimates are ORX1¼x�1;X2¼x�2 vs X1¼0;X2¼0 ¼
exp 0:22� 0:35þ 0:62 log x�1

� �þ 0:10 log x�2
� �� �

and ORX1¼x�1;X2¼x�2 vs X1¼x10;X2¼0 ¼
exp �0:35þ 0:62 log x�1

� �� log x10ð Þ	 
þ 0:10 log x�2
� �� �

. The regression coefficient
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estimates β1 and β2 become slightly smaller in model 5 compared with models 1
and 3, respectively, indicating moderate positive confounding. In model 6a, the
three spike indicators Z1, Z2 and Z3 are included, which leads to the same con-
clusion concerning confounding as obtained from model 5a. The model fit is
slightly better. Models 5b and 6b additionally include the common interaction
term, that is, by multiplying both variables. These interaction terms are clearly
non-significant.
When applying the FP-spike procedure for the original variables smoking and life-

time exposure to a ‘List A’ job separately, we obtain the result from models 2 and 4.
Smoking is entered as an FP of second degree with powers (1, 1) without the binary
indicator. The corresponding OR function is OR(X1=x1 vs X1=0)= exp
(0.18X1�0.03X1log(X1)). Lifetime exposure to a ‘List A’ job enters the model linearly
with the binary indicator. The corresponding OR function for any dose x>0 is OR
(X1=x vs X1=0)= exp(�0.42+0.01X2).
The best-fitting models are obtained in models 2, 5a, 5b, 6a and 7. Although the de-

viances are almost the same, models 2 and 7 would be preferably chosen because of
the lower degree of freedom. Furthermore, it needs to be considered that the degrees
of freedom between the FP models and the models chosen by regular logistic regres-
sion are not directly comparable as we already log-transformed the continuous vari-
ables before applying logistic regression. Therefore, the difference between the
degrees of freedom of both methods is rather conservative. In models 2 and 7, we
did not pretransform the covariates as obtained from a given distributional assump-
tion. The transformed data have only an approximate normal distribution with a
right tail of the data, which usually is too long. In the iterative approach (model 7),
we kept the result from the FP fitting procedure with one variable (model 2 or 4) while
fitting the best FP model for the other variables. Here, the improvement of fit was
small, and the occupational exposure variable was not selected in the procedure.
Starting with either variable, the result is identical in this example. The advantage
of FP modelling is that the initial value is modelled directly without the restrictions
of a distributional assumption. For illustration purposes, we also fitted model 8
wherein the selected transformations from model 4 were added into the final model
7. The deviance difference of this model was 293.48. The corresponding regression co-
efficients are �0.46 (V2) and 0.01 (X2). When testing both separately for removal, nei-
ther test is significant. When testing both for removal simultaneously, occupational
exposure has a significant independent effect.
In Figure 4a, we display the dose–response functions for smoking as given in

Table 7. Model 5a is a model from a multivariable fit where smoking was adjusted
for lifetime exposure to a ‘List A’ job. In model 2, the spike was dropped from the
final model because of deviance criteria. The diamond represents the coefficient for
the binary indicator, that is, the non-smokers, in model 5a. The bubbles represent
the categorized OR per group of 3 pack-years to the reference of zero. The size of
the bubbles varies depending on the number of individuals per category and ap-
proximates the original data. The results of the second risk factor, lifetime
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exposure to a ‘List A’ job, are displayed in Figure 4b. Model 5a is the same model
from a multivariable fit as used in Figure 4a where we plot lifetime exposure to a
‘List A’ job adjusted for smoking. In models 4 and 5a, the binary indicator and X2

were kept in the final model. In model 5a, neither the binary indicator nor the log-
transformed X2 was significant. In the univariate model 4, both variables were sig-
nificant. The upper diamond represents the coefficient for the binary indicator, that
is, the non-smokers, in model 5a. The lower diamond represents the coefficient for
the binary indicator, that is, the non-smokers, in model 4. The bubbles represent
the categorized OR per group of 5 years of lifetime occupational exposure to the
reference of zero. The size of the bubbles varies depending on the number of indi-
viduals per category.

5 Discussion

This paper provided a contribution towards a joint dose–response modelling of covar-
iates with a SAZ. We have presented some theoretical results on the OR functions for
a binary response variable within the logistic regression model for two normally dis-
tributed variables with and without spikes at zero. Furthermore, we have compared
the performance of two modelling approaches in a practical data example from a lung
cancer case–control study.
The results have shown that even the presumably simple case of two bivariate nor-

mally distributed cases with two variables with SAZ poses some methodological
challenges.
An important part of modelling SAZ variables is the frequency of zeros and its re-

lation to other covariates. One particular problem is that the joint distribution of the
zero cells (4CD) of two SAZ variables has effects on two levels, the correlation be-
tween the positive values of the continuous variables and the OR between binary in-
dicators. Another issue is the correct way to combine variables for investigating an
interaction. Depending on the 4CD, it may be necessary to include up to three binary
indicators into the model, as zero observations in one, the other and both SAZ

Fig. 4. Lung cancer case–control study: visual comparison of dose–response functions as given in Table 7
for (a) smoking (models 5a and 2) and (b) lifetime years of occupational exposure (models 5a and 4).
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variables. For more than two SAZ variables, the situation becomes even more com-
plicated. A practical issue, however, is whether for real data such a complicated
model, even theoretically justified, is required or whether a simpler model is sufficient
to describe the data.
The data example shows that it is difficult to derive a suitable dose–response curve

based on assumptions of the distribution, which were made in advance. Observed data
usually do not exactly follow common continuous distributions. Our approach allows
modelling in the class of FP functions and uses a function selection procedure to deter-
mine a function, which fits the data best within the flexible class of FP functions. In our
data example, we have a distribution that is close but certainly not exactly a log normal
distribution. The model that is based on this distributional assumption did not give a
fit as good as the one derived without prespecified distributional assumptions. The FP-
spike procedure, on the other hand, selected a model that gave a better fit, as seen, for
example, from the deviance in model 1 in comparison with model 2.
Summing up, modelling unexposed individuals as a separate risk group has been

shown to be useful and preferable to modelling semicontinuous variables without
considering binary indicators. The developed methods are consistent with the theoret-
ical solution when method-specific assumptions hold. Further work is underway to
investigate the performance of the FP-spike procedure in the bivariate situation in dif-
ferent regression models with simulation.
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