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ABSTRACT
Detection limits (DLs), where a variable cannot be measured outside of a certain range, are common in
research. DLs may vary across study sites or over time. Most approaches to handling DLs in response
variables implicitly make strong parametric assumptions on the distribution of data outside DLs. We
propose a new approach to deal with multiple DLs based on a widely used ordinal regression model, the
cumulative probability model (CPM). The CPM is a rank-based, semiparametric linear transformation model
that can handle mixed distributions of continuous and discrete outcome variables. These features are key
for analyzing data with DLs because while observations inside DLs are continuous, those outside DLs are
censored and generally put into discrete categories. With a single lower DL, CPMs assign values below the DL
as having the lowest rank. With multiple DLs, the CPM likelihood can be modified to appropriately distribute
probability mass. We demonstrate the use of CPMs with DLs via simulations and a data example. This work is
motivated by a study investigating factors associated with HIV viral load 6 months after starting antiretroviral
therapy in Latin America; 56% of observations are below lower DLs that vary across study sites and over
time. Supplementary materials for this article are available online including a standardized description of
the materials available for reproducing the work.
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1. Introduction

Detection limits (DLs) are not uncommon in biomedical
research and other fields. For example, radiation doses may
only be detected above a certain threshold (Wing et al. 1991),
antibody concentrations may not be measured below certain
levels (Wu et al. 2001), and X-rays may have lower limits of
detection (Pan et al. 2017). In HIV research, viral load can only
be detected above certain levels. To complicate matters, DLs
often vary by assay and may change over time.

As a motivating example, we consider estimating the associa-
tion between patient factors at initiation of antiretroviral therapy
(ART) and viral load 6 months after starting ART among adults
with HIV. Viral load (VL) measures the amount of virus circu-
lating in a person with HIV. A high VL after ART initiation may
indicate nonadherence or an ineffective regimen that should
be switched. We study the association between VL 6 months
after ART initiation and variables measured at ART initiation
(baseline). The data include 5301 adults living with HIV starting
ART at one of 5 study centers in Latin America between 2000
and 2018. The DLs for the outcome VL differed by site and
calendar time. Figure 1 shows the most frequent lower DL values
for each year and at each site. There are five distinct lower DLs in
this database: 20, 40, 50, 80, and 400 copies/mL. A total of 2992
(56%) patients had 6-month VL censored at a DL: 45%, 54%,
52%, 65%, and 57% at study sites in Argentina, Brazil, Chile,
Mexico, and Peru, respectively.

CONTACT Bryan E. Shepherd bryan.shepherd@vanderbilt.edu Department of Biostatistics, Vanderbilt University, Nashville, TN.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

A traditional analysis in the HIV literature would
dichotomize VL as detectable or undetectable and perform
logistic regression (Jiamsakul et al. 2017). There are a few issues
that make this analysis less than ideal. First, all VLs above
the DL (nearly half of all observations) would be collapsed
into a “detectable” category resulting in well-known loss
of information due to dichotomizing continuous variables
(Fedorov, Mannino, and Zhang 2009). Second, because the DL
varies with time and by site, the analyst is forced to dichotomize
at the largest DL (in this case 400 copies/mL) or else perform
an analysis where values above the DL at one site are treated
differently than they would be treated at another site. For
example, a VL of 300 copies/mL measured in Mexico in 2005
would be measured as “<400” that same year in Peru; assigning
this value as “<400” results in lost information but leaving it as
“detectable” would make the outcome variable different across
time and sites.

Another common approach for handling DLs is substitution,
where all nondetects are imputed with a single constant and a
linear regression model is fit. The imputed constant may be,
for example, the DL itself, DL/2, DL/

√
2 (Hornung and Reed

1990; Lubin et al. 2004; Helsel 2011), or the expectation of the
measurement conditional on being outside the DL under some
assumed parametric model (Garland et al. 1993). For example,
DL/2 corresponds to the expectation of a uniform distribution
between 0 and the DL. Although simple, these substitution
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Figure 1. The changes of most frequent DL values every year at each study site over time.

approaches typically result in biased estimation, underestimated
variances, and thus sometimes wrong conclusions (Baccarelli
et al. 2005; Fiévet and Della Vedova 2010). With multiple DLs,
additional questions arise about whether to assign all values
below any DL the same constant or to use the same function of
the DL (e.g., 400/2=200 copies/mL for all values below any DL,
or DL/2); there are obvious problems with either approach.

A more parametric analysis might assume that the VL follow
a specified distribution (e.g., log-normal distribution) and fit the
censored data likelihood or multiply impute values below the DL
from the assumed distribution to obtain estimated regression
coefficients (Baccarelli et al. 2005; Harel, Perkins, and Schis-
terman 2014). However, distributional assumptions for values
below the DL are strong and untestable; goodness of fit of a
parametric model inside DLs does not ensure goodness of fit
outside the DLs. These parametric assumptions may be partic-
ularly dangerous in settings with high rates of censoring such as
our HIV application (Lubin et al. 2004; Zhang et al. 2009).

To avoid strong parametric assumptions, nonparametric
methods such as Kaplan–Meier, score, and rank-based methods
have been proposed in two-sample comparisons (Helsel 2011).
Zhang et al. (2009) explored the use of the Wilcoxon rank sum
test, other weighted rank tests, Gehan and Peto-Peto tests, and
a novel nonparametric method for location-shift inference with
DLs. Although attractive for two-sample tests, these nonpara-
metric methods generally do not permit inclusion of covariates.

In this manuscript, we propose a new approach for analyz-
ing data subject to multiple detection limits. Data with DLs
effectively follow a mixture distribution, where those below a
lower DL can be thought of as belonging to a discrete category,
those above an upper DL belonging to another discrete category,
while those inside the DLs are continuous. Whether discrete
or continuous, the values are orderable. In earlier work, Liu
et al. (2017) showed that continuous response variables can be
modeled using a popular model for ordinal outcomes, namely
the cumulative probability model (CPM), also known as the
‘cumulative link model’ (Agresti 2013). CPMs are a type of semi-
parametric linear transformation model (Zeng and Lin 2007),
in which the continuous response variable after some unspec-
ified monotonic transformation is assumed to follow a linear
model, and the transformation is nonparametrically estimated.
These models are very flexible and can handle a wide variety
of outcomes, including variables with DLs. Importantly, when
fitting CPMs to data with DLs, minimal assumptions are made
on the distribution of the response variable outside the DLs
as these models are based on ranks, and values below/above
DLs are simply the lowest/highest rank values. Because of their

relationship to the Wilcoxon rank sum test (McCullagh 1980),
the CPM can be thought of as a semiparametric extension to
permit covariates to the approaches that Zhang et al. (2009)
found effective for handling DLs in two-sample comparisons.
Finally, as will be shown, because CPMs model the conditional
cumulative distribution function (CDF), it is easy to extract
many different measures of conditional association from a single
fitted model, including conditional quantiles, conditional prob-
abilities, odds ratios, and probabilistic indexes, which permits
flexible and compatible interpretation.

Methods proposed by Cai and Cheng (2004) and Shen (2011)
could also be used to fit semiparametric linear transformation
models for data with DLs. Specifically, these authors developed
methods to address doubly censored data, of which data subject
to both lower and upper DLs are a special case. Like CPMs, these
methods are robust and powerful approaches. Unfortunately,
implementation of the methods of Cai and Cheng (2004) and
Shen (2011) is rare/nonexistent in practice, perhaps because of
the complexity of fitting these models and a lack of software.
These methods estimate model parameters using estimating
equations. In contrast, the CPM that we present obtains non-
parametric maximum likelihood estimates that are more effi-
cient than those of Cai and Cheng (2004) and Shen (2011) while
making the same assumptions.

In Section 2, we review the CPM, illustrate its use for simple
settings where there is a lower and/or upper DL for all subjects,
and then show how CPMs can be extended to address multiple
DLs. We also propose a new method for estimating the con-
ditional quantile from a CPM. In Section 3, we illustrate and
demonstrate the advantages of the proposed approach applied
to our HIV study with multiple detection limits. In Section 4,
we demonstrate the performance of our method and compare it
to other approaches with simulations. The final section contains
a discussion of the strengths and limitations of our method
and future work. An R package, multipleDL, permits fitting
CPMs in settings with multiple DLs.

2. Methods

2.1. Cumulative Probability Models

Transformation is often needed for the regression of a con-
tinuous outcome variable Y to satisfy model assumptions, but
specifying the correct transformation can be difficult. In a lin-
ear transformation model, the outcome is modeled as Y =
H(βTX + ε), where H(·) is an unknown monotonically increas-
ing transformation, X is a vector of covariates, and ε follows
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a known distribution with CDF Fε . This linear transformation
model can be equivalently expressed in terms of the conditional
CDF,

F(y|X) ≡ Pr(Y ≤ y|X) = Pr[ε ≤ H−1(y) − βTX|X]
= Fε[H−1(y) − βTX].

Let G = F−1
ε and α = H−1; α(·) is monotonically increasing

but otherwise unknown. Then

G[F(y|X)] = α(y) − βTX, (1)

where G serves as a link function and the model becomes a
cumulative probability model (CPM). The intercept function
α(y) is the transformation of the response variable such that
α(Y) = βTX + ε. The β coefficients indicate the associa-
tion between the response variable and covariates: fixing other
covariates, a positive/negative βj means that an increase in Xj is
associated with a stochastic increase/decrease in the distribution
of the response variable.

In the CPM (1), the intercept function α(y) can be nonpara-
metrically estimated with a step function (Zeng and Lin 2007;
Liu et al. 2017). This allows great model flexibility. Consider
an iid dataset {(yi, xi) : i = 1, . . . , n}. The nonparametric
likelihood is

n∏
i=1

[
F(yi|xi) − F(y−

i |xi)
]

, (2)

where F(y−
i |xi) = limt↑yi F(t|xi). In nonparametric maximum

likelihood estimation, the probability mass given any x will be
distributed over the discrete set of observed outcome values.
Thus, we only need to consider functions for α(·) such that
F(y|xi) is a discrete distribution over the observed values. Let
J be the number of distinct outcome values, denoted as a1 <

· · · < aJ . Let S = {a1, . . . , aJ}. These serve as the anchor
points for the nonparametric likelihood. Let αj = α(aj); then
α1 < · · · < αJ . The nonparametric likelihood (2) can be written
as

L(β , α) =
∏

i:yi=a1

Fε(α1 − βTxi) (3)

×
J−1∏
j=2

∏
i:yi=aj

[
Fε(αj − βTxi) − Fε(αj−1 − βTxi)

]

×
∏

i:yi=aJ

[
1 − Fε(αJ−1 − βTxi)

]
.

Maximizing (3), we obtain the nonparametric maximum likeli-
hood estimates (NPMLEs), (β̂ , α̂), where α̂ = (α̂1, . . . , α̂J−1).
Note the multinomial form of the likelihood (3); because the
probabilities in a multinomial likelihood add to one, αJ is not
estimated. Note also that the likelihood in (3) is identical to that
of cumulative link models for ordinal data if the outcome Y is
treated as ordinal with categories {a1, . . . , aJ}. Liu et al. (2017)
and Tian et al. (2020) have shown that CPMs can be fit to and
work well for continuous responses (J = n) and mixed types
of responses. Under mild conditions including boundedness of
the response variable, CPM estimates are consistent and asymp-
totically normal, with variance consistently estimated with the

inverse of the information matrix (Li et al. 2023). The NPMLEs
and their estimated variances can be efficiently computed with
the orm() function in the rms package in R (Harrell 2020),
which takes advantage of the tridiagonal nature of the Hessian
matrix using Cholesky decomposition (Liu et al. 2017).

CPMs have several nice features. Some widely used regres-
sion methods model only one aspect of the conditional distri-
butions (e.g., conditional mean for linear regression and con-
ditional quantile for quantile regression). With the NPMLEs
(β̂ , α̂), we can estimate the conditional CDFs as F̂(y|x) =
Fε(α̂j − β̂Tx) where j is the index such that aj = max{a ∈
S : a ≤ y}; standard errors can be obtained by the delta
method. Since conditional CDFs are directly modeled, other
characteristics of the distribution, such as the conditional quan-
tiles and conditional expectations, can be easily derived (Liu
et al. 2017). Depending on the choice of link function, β may be
interpretable; for example, with the logit link function, exp(β)

is an odds ratio. Probabilistic indexes (De Neve, Thas, and
Gerds 2019), which are defined as Pr(Y1 < Y2|X1, X2), can
also be easily derived; for example, with the logit link, P(Y1 <

Y2|X1, X2) = [
1 + exp

(−(X2 − X1)
Tβ

)]−1. With the transfor-
mation α(·) nonparametrically estimated, CPMs are invariant
to any monotonic transformation of the outcome; therefore, no
pre-transformation is needed. With a single binary covariate
and the logit link function, the score test for the CPM is nearly
identical to the Wilcoxon rank sum test (McCullagh 1980); see
supplementary materials S1.1. Because only the order of the out-
come values but not the specific values matter when estimating β

in the CPM, it can handle any ordinal, continuous, or a mixture
of ordinal and continuous distributions, which can be useful for
analyzing data with DLs.

2.2. Single Detection Limits

In this section, we first present our method for the simple
scenario that there is a single lower DL and/or a single upper
DL. We will describe the general approach for multiple DLs in
the next section.

Consider a dataset with a lower DL, l, and an upper DL, u. The
outcome Y is observed if it is inside the DLs (i.e., l ≤ Y ≤ u)
or censored if it is outside the DLs. The J distinct values of the
observed outcomes are denoted as l ≤ a1 < · · · < aJ ≤ u.
When there are no observations outside the DLs, these values are
treated as ordered categories in CPMs and they are the anchor
points in the nonparametric likelihood (3), and correspondingly
there are J − 1 alpha parameters, α1 < · · · < αJ−1. With
observations outside the DLs, the likelihood (3) needs to be
modified accordingly.

When there are observations below the lower DL, we do not
know their values except that they are < l. As there is no way
to distinguish them, we treat them as a single category, denoted
as a0. Note that a0 is not a value but a symbol for the additional
category below a1. The nonparametric likelihood for a subject
outcome censored at the lower DL l is

Pr(Yi < l|Xi = xi) = Fε(α0 − βTxi),

where α0 is the extra alpha parameter corresponding to category
a0 such that α0 < α1. Because a1, the previously lowest category,
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now has a category below it, the nonparametric likelihood for a
subject with yi = a1 becomes

Fε(α1 − βTxi) − Fε(α0 − βTxi).

Similarly, when there are observations above the upper DL,
they are also treated as a single category, denoted as aJ+1, which
is a symbol for the additional category above aJ . The nonpara-
metric likelihood for a subject censored at the upper DL u is

Pr(Yi > u|Xi = xi) = 1 − Fε(αJ − βTxi).

Because aJ is no longer the highest category, αJ will need to be
estimated, and the likelihood for a subject with yi = aJ is now

Fε(αJ − βTxi) − Fε(αJ−1 − βTxi).

Put together, with observed data subject to a single lower DL
and a single upper DL, the CPM likelihood is

L(β , α) =
∏

i:yi=a0

Fε(α0 − βTxi) (4)

×
J∏

j=1

∏
i:yi=aj

[
Fε(αj − βTxi) − Fε(αj−1 − βTxi)

]

×
∏

i:yi=aJ+1

[
1 − Fε(αJ − βTxi)

]
,

which is equivalent to (3) except with two new anchor points, a0
and aJ+1. Therefore, (4) is maximized in an identical manner to
(3), with outcomes below the lower DL and outcomes above the
upper DL simply assigned to categories a0 and aJ+1, respectively.

In summary, when there are data censored below the lower
DL, we add a new anchor point a0 < a1 and a new parameter
α0; when there are data censored above the upper DL, we add a
new anchor point aJ+1 > aJ and a new parameter αJ . The alpha
parameters to be estimated are (α1, . . . , αJ−1) when there are no
DLs or no data censored at DLs, (α0, α1, . . . , αJ−1, αJ) when both
categories a0 and aJ+1 are added, (α0, α1, . . . , αJ−1) when only
a0 is added, and (α1, . . . , αJ−1, αJ) when only aJ+1 is added.

In practice, one can fit the NPMLE in these settings using
the orm() function by setting outcomes below the lower DL to
some arbitrary number < l and outcomes above the upper DL to
some arbitrary number > u. Note that unlike single imputation
approaches for dealing with DLs, the CPM estimation procedure
is invariant to the choice of these numbers assigned to values
outside the DLs. The CPM (1) assumes that after some unspec-
ified transformation, the outcome follows a linear model both
within and outside the DLs. In contrast, parametric approaches
to deal with DLs assume the full distribution of the outcome
conditional on covariates is known, both within and outside
DLs. Hence, CPMs make much weaker assumptions than fully
parametric approaches.

2.3. Multiple Detection Limits

We now consider the general situation where data may be col-
lected from multiple study sites. A site may have no DL, only one
DL, or both lower and upper DLs. Each site may have different
lower DLs and different upper DLs, which may change over time.

Every subject has a vector X of covariates and three underly-
ing random variables (Y , CL, CU), where Y is the true outcome
and CL < CU are the lower and upper DLs. When there is no
upper DL, CU = ∞, and when there is no lower DL, CL = −∞.
CL and CU are assumed to be independent of Y conditional on
X; the vector X may contain variables for study sites or calendar
time. This non-informative censoring assumption is typically
plausible as DLs are determined by available equipment/assays.

We assume the CPM (1) holds for all subjects. Due to DLs,
we may not always observe Y . Instead, we only observe (Z, �),
where Z = max(min(Y , CU), CL) and � is a variable indicating
whether Y is observed or censored at a DL: � = 1 and Z = Y if
Y is observed, � = L and Z = CL if Y < CL, and � = U and
Z = CU if Y > CU .

Given a dataset {(zi, δi; xi)} (i = 1, . . . , n), we first determine
how many anchor points are needed to support the nonparamet-
ric likelihood of the CPM. Let J be the number of distinct values
of zi among those with δi = 1; they are denoted as a1 < · · · < aJ .
For data without any DLs, these points are the anchor points for
the nonparametric likelihood, and they are effectively treated as
ordered categories in a CPM. Let S = {a1, . . . , aJ} be the set
of these values. When there are data with δi = L, let l be the
smallest zi with δi = L. Similarly, when there are data with
δi = U, let u be the largest zi with δi = U. If l ≤ a1, we add
a category into S below a1, denoted as a0; note that it is not a
value but a symbol for the additional category in S below a1.
Similarly, if u ≥ aJ , we add aJ+1 into S, which is a symbol for
the additional category above aJ . Depending on the data, the
number of ordered categories can be J, J + 1, or J + 2.

Consider the situation where both a0 and aJ+1 have been
added to S (i.e., S = {a0, a1, . . . , aJ , aJ+1}). When δi = 1, the
nonparametric likelihood for (zi, 1) is

Fε(αj − βTxi) − Fε(αj−1 − βTxi), (5)

where j is the index such that aj = zi. When δi = L, the
nonparametric likelihood for (zi, L) is

Pr(Y < zi|xi) =
{

Fε(α0 − βTxi), (zi = l)
Fε(αj − βTxi), (zi 	= l) (6)

where j is the index such that aj = max{a ∈ S : a < zi} when
zi 	= l. When δi = U, the nonparametric likelihood for (zi, U) is

Pr(Y > zi|xi) =
{

1 − Fε(αJ − βTxi), (zi = u)

1 − Fε(αj−1 − βTxi), (zi 	= u)
(7)

where j is the index such that aj = min{a ∈ S : a > zi} when
zi 	= u. The overall nonparametric likelihood is the product of
these individual likelihoods over all subjects. Note that if there
are no uncensored observations between two lower (or upper)
DLs, the two DLs are effectively treated as the same DL. A toy
example to illustrate our definition is provided in supplementary
materials Table S1.

Slight modifications will be applied when no or only one
additional category is added to S. When there is no need to add
a0 to S (i.e., when l > a1 or there are no lower DLs), only the
second row in the likelihood (6) for (zi, L) will be employed, and
the likelihood for (zi, 1) with zi = a1 is Fε(α1 − βTxi). When
there is no need to add aJ+1 to S (i.e., when u < aJ or there are no
upper DLs), only the second row in the likelihood (7) for (zi, U)
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will be employed, and the likelihood for (zi, 1) with zi = aJ is
1 − Fε(αJ−1 − βTxi).

Similar to the likelihood of CPM for data without DLs, the
individual likelihoods presented above involve either one alpha
parameter or two adjacent alpha parameters. As a result, the
Hessian matrix continues to be tridiagonal, allowing us to use
Cholesky decomposition to solve for the NPMLEs and efficiently
estimate their variances using asymptotic approximations from
which p-values and confidence intervals (CIs) can be computed.
We have developed an R package, multipleDL available on
the Comprehensive R Archive Network (CRAN), which uses the
optimizing() function in the rstan package to maximize
the likelihood (Stan Development Team 2020).

As mentioned in the Introduction, there are other exist-
ing techniques for fitting semiparametric linear transformation
models with doubly censored data (Cai and Cheng 2004; Shen
2011). Similar to our proposed CPMs, both of these methods
assume a model of the form of (1) with known CL and CU , and
with α(y) nonparametrically estimated using a step function.
These two methods rely on estimating equations expressed with
counting process notation. Both methods consistently estimate
β and α(y) under the same assumptions as the CPM, but they
are less efficient than our NPMLE, which attains the semipara-
metric efficiency bound (Li et al. 2023). The method of Shen
(2011) treats the left-censored data below lower detection limits
as left-truncated, thus, discarding information. The approach
of Cai and Cheng (2004) also loses efficiency as individuals
only contribute information for times between CL and CU ; for
example, if an observation is observed between CL and CU ,
when estimating α(y) for y < CL, this observation is not used
even though it is known that it was above the lower detection
limit. Details are given in supplementary materials S1.3, and
simulations comparing CPMs to these approaches are presented
in Section 4.

2.4. Interpretable Quantities and Conditional Quantiles

Interpretation of results after fitting CPMs to outcomes with
DLs is similar to settings without DLs. Depending on the link
function, β may be directly interpretable. The conditional CDF,
probabilistic indexes, and conditional quantiles are also easily
derived. Note, however, that without additional assumptions
on the distribution of the outcome outside DLs, conditional
expectations cannot be estimated.

We now describe how to infer conditional quantiles from a
CPM fitted on data with DLs. The conditional CDF from a CPM
for a given x can be computed as F̂(y|x) = Fε(α̂j−β̂Tx) where j is
the index such that aj = max{a ∈ S : a ≤ y}; if there is no a ∈ S
such that a ≤ y, then F̂(y|x) = 0. For ease of presentation, we fix
x and let Pj = F̂(aj|x) (j = 0, 1, . . . , J, J +1); for convenience, let
P−1 = 0. Our goal is to define a quantile function Q̂(p), where
0 < p < 1, for the conditional distribution given x.

The quantile function for a CDF F(·) is typically defined as
Q(p) = inf{z : F(z) ≥ p}. A plug-in estimator for an estimated
CDF, F̂, is Q̂0(p) = inf{z : F̂(z) ≥ p}. When applied to our
setting, Q̂0(p) = aj when Pj−1 < p ≤ Pj. This estimator may
not be suitable for CPMs because F̂(·) is a step function and
therefore Q̂0(p) only takes values at the anchor points, which can

Figure 2. Illustration of three approaches for conditional quantiles. The dataset has
a lower DL 0.5, an upper DL 2, and five observed values of y: 0.7, 0.86, 1, 1.5, 1.8. Thus,
S = {‘<0.5’, 0.7, 0.86, 1, 1.5, 1.8, ‘>2’}. The dashed lines are for Q̂1(p), the dotted
lines are for Q̂2(p), the solid black lines are for Q̂(p), and the solid gray lines are for
the empirical CDF. Here, Q̂(p) = Q̂1(p) = ‘<0.5’ when p < F̂(0.5|x), and Q̂(p) =
Q̂2(p) = ‘>2’ when p > F̂(2|x).

be undesirable for continuous outcomes, especially when there
is a large gap between adjacent anchor points.

Liu et al. (2017) proposed to estimate quantiles for CPMs with
linear interpolation. Specifically, given a fixed p, let j = j(p) be
the index such that Pj−1 < p ≤ Pj. When p > P0, j ≥ 1 and
define Q̂1(p) = aj−1+(p−Pj−1)/(Pj−Pj−1)×(aj−aj−1), which
is a linear interpolation between aj−1 and aj. When p ≤ P0,
Q̂1(p) is set to be a0. Recall that a0 is not a value but a symbol for
being below the lower DL, l; we thus relabel it as “<l”, so when
p ≤ P0, Q̂1(p) = “<l”. For the linear interpolation between
a0 and a1, we set a0 to be l. Similarly, aJ+1 is labeled “>u”
and assigned the value u for the linear interpolation between
aJ and aJ+1. Q̂1(p) is illustrated as the dashed line in Figure 2.
An alternative definition is to interpolate between aj and aj+1:
Q̂2(p) = aj + (p − Pj−1)/(Pj − Pj−1)× (aj+1 − aj) when p < PJ
and Q̂2(p) = aJ+1 = “>u” when p ≥ PJ . Q̂2(p) is illustrated
as the dotted lines in Figure 2. For continuous data without
DLs, Q̂1(p) and Q̂2(p) converge as the sample size increases.
However, they are problematic for continuous data with DLs
because Q̂1(p) < aJ+1 for all p < 1 and Q̂2(p) > a0 for all
p > 0 even though there are nonzero estimated probabilities at
the lower DL a0 and upper DL aJ+1.

We propose a new quantile estimator as a weighted average
between Q̂1(p) and Q̂2(p),

Q̂(p) = (1 − w)Q̂1(p) + wQ̂2(p), (8)

where w = w(p) = (p − P0)/(PJ − P0) when P0 < p < PJ , 0
when p ≤ P0, and 1 when p ≥ PJ . This definition is shown as
the black curve in Figure 2. Note that Q̂(p) equals Q̂1(p) = “<l”
when p ≤ P0, and equals Q̂2(p) = “>u” when p ≥ PJ . It can be
shown that similar to Q̂1(p) and Q̂2(p), Q̂(p) is also piecewise
linear with transition points at Pj (j = 0, 1, . . . , J). Note that
with multiple DLs, the definition seamlessly applies with l and
u being the smallest lower and largest upper DLs, respectively.
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Table 1. The β coefficients in CPMs can be interpreted as log odds ratios.

Predictor Odds ratio (95% CI) p-value

Age (per 10 years) 0.98 (0.93, 1.03) 0.418
Sex 0.201
Male (reference) 1
Female 0.90 (0.76, 1.06)
Study center <0.001
Peru (reference) 1
Argentina 1.26 (0.98, 1.61)
Brazil 1.07 (0.91, 1.26)
Chile 1.07 (0.90, 1.26)
Mexico 0.59 (0.49, 0.70)
Route of infection 0.408
Homosexual/Bisexual (reference) 1
Heterosexual 0.96 (0.83, 1.10)
Other/unknown 0.79 (0.62, 1.01)
Prior AIDS event 0.001
No (reference) 1
Yes 1.24 (1.09, 1.41)
Baseline CD4 (per 1 square root cells/μL) 1.09 (1.08, 1.10) <0.001
Baseline VL (per 1 log10 copies/mL) 1.44 (1.34, 1.54) <0.001
ART regimen 0.007
NNRTI-based (reference) 1
INSTI-based 0.55 (0.40, 0.75)
PI-based 1.10 (0.95, 1.29)
Other 2.57 (1.28, 5.16)
Months to VL measure 0.95 (0.92, 0.98) 0.002
Calendar year 0.89 (0.88, 0.91) <0.001

NOTE: We show the odds ratio (95% confidence interval) and p-value for the predic-
tors included in the model.

In situations where there is only a lower DL or an upper DL, our
definition of Q̂(p) is similar. Confidence intervals for conditional
quantiles can be estimated by applying a weighted linear inter-
polation to the confidence intervals of the conditional CDF in a
similar manner (Liu et al. 2017).

3. Application

We fit a CPM to study factors associated with viral load 6 months
after starting ART in Latin America among 5301 adults with
HIV, as described in the Introduction. Our CPM included age,
sex, study center, probable route of HIV infection, the indicator
that the patient had an AIDS event prior to ART initiation, their
CD4 count and viral load at ART initiation (baseline), the ART
regimen that they started, the calendar year of ART initiation,
and the time between their baseline VL and the 6-month VL
measurement. (The baseline VL was the measurement closest to
ART initiation within a window of −180 to 30 days; the 6-month
VL was the measurement closest to 180 days within a window
of ±90 days.) Baseline CD4 was square-root transformed and
baseline VL was log10 transformed. The CPM used a logit link
function. The response variable, 6-month VL, had J = 1283
distinct observed values.

Results are shown in Table 1. With the logit link, the β param-
eters can be interpreted as log odds ratios and are presented as
odds ratios along with 95% CIs. p-values are likelihood ratio test
p-values. The results suggest that study center, route of infection,
prior AIDS event, baseline CD4, baseline VL, ART regimen,
months to VL measurement, and calendar year are all associated
with VL at 6 months. For example, holding other variables
constant, a 10-fold increase in VL at baseline is associated with a
44% increase in the odds of having a higher VL at 6 months (95%
CI 34%–54%). Initiating a more modern ART regimen based on

integrase strand transfer inhibitors (INSTIs) resulted in a 45%
decreased odds of having a higher 6-month VL (95% CI 25%–
60% decreased odds) compared with regimens based on older
non-nucleoside reverse transcriptase inhibitors (NNRTIs). This
result was seen after fixing all other variables, including calendar
year of ART initiation. In addition, holding all other variables
constant, a person starting ART one calendar year later had an
estimated 11% lower odds of having a higher 6-month VL (95%
CI 9%–12%).

Quantiles and cumulative probabilities are also easily
extracted from the CPM. The first row of Figure 3 shows the
estimated conditional 50th and 90th percentiles of 6-month VL
and the conditional probabilities for 6-month VL being greater
than 1000 and 20 copies/mL as functions of age. The plots show
that VL at 6 months is fairly similar across age after fixing
the other covariates. The second row of Figure 3 contains the
estimated conditional quantiles and probabilities as functions
of whether a patient had an AIDS event prior to starting ART.
People with a prior AIDS event (36%) tended to have a higher
VL at 6 months. The third row of Figure 3 are the estimated
conditional quantiles and probabilities as functions of baseline
VL. People with a higher baseline VL tended to have a higher
VL at 6 months. The smallest DL is 20 copies/mL, and all VL
values less than this DL belong to the smallest ordered category,
which we label as “<20”. The flat line at “< 20” in the lower
left plot suggests that for those with a baseline VL < 10,000
copies/mL, the estimated median 6-month VL, as well as its 95%
confidence interval, is < 20 copies/mL. Note that our analyses
make no attempt to estimate the specific values below the lower
DL because the data contain no information on values below 20
copies/mL.

Figures S1 and S2 of the supplementary materials show
diagnostic plots examining model fit using probability-scale
residuals (Shepherd, Li, and Liu 2016). From QQ-plots, the
logit link function appears reasonable and yields a higher log-
likelihood than other link functions considered (probit, loglog,
and cloglog). Residual-by-predictor plots show no strong rela-
tionship between residuals and continuous predictor variables,
suggesting model fit may be adequate. Supplementary materials
Table S2 and Figure S3 show results from a similar CPM, except
with continuous covariates expanded using restricted cubic
splines to relax linearity assumptions as a sensitivity analysis.
The results are fairly similar.

From Table 1, we note that 6-month VL was similar across
all study centers except for the center in Mexico. In sensitivity
analyses, we repeated the analyses of Table 1 comparing results
using data only from Mexico (n = 1030) versus using data
pooled across the other four sites (n = 4271). Results are in
Table S3 in supplementary materials. The only association that
substantially differed between Mexico and the other sites was
the association with initial ART regimen. In Mexico, patients
starting an INSTI- versus an NNRTI-based regimen tended to
have similar 6-month viral loads (OR=1.0, 95% CI 0.51–1.93),
whereas at the other sites, those starting an INSTI- versus an
NNRTI-based regimen tended to have lower 6-month viral loads
(OR=0.50, 95% CI 0.36–0.71). Interestingly, among patients
starting an INSTI-based regimen, most at our Mexican site used
a different drug (bictegravir) than those at the other four sites
(dolutegravir). Because the study covers nearly 20 years, as an
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Figure 3. The estimated conditional 50th and 90th percentiles of 6-month VL and the conditional probability of 6-month VL being greater than 1000 and 20 as functions
of age (top row), prior AIDS events (middle row), and baseline VL (bottom row) while keeping other covariates at their medians (for continuous variables) or modes (for
categorical variables) based on our method.

additional sensitivity analysis we compared estimates among
those starting ART from 2000 to 2009 (n = 1372) versus those
starting ART from 2010 to 2018 (n = 3929). Results are in Table
S4 in supplementary materials. Estimated odds ratios were fairly
similar between the time periods with two exceptions: First, the
odds ratio for our Chilean site changed quite a bit, with starting
ART in Chile pre-2010 associated with higher viral loads (OR
for Chile vs. Peru = 2.34, 95% CI 1.45–3.77) whereas after 2010
associated with lower viral loads (OR = 0.87, 95% CI 0.72–1.05).
Second, the odds ratio for INSTI-based regimens appeared to
differ pre- versus post-2010 (OR for INSTI- vs. NNRTI-based
ART=1.75, 95% CI 0.46–6.65 pre-2010; OR=0.57, 95% CI 0.41–
0.78 post-2010). Pre-2010, use of INSTI-based regimens was
rare (hence, the wide confidence interval) and likely among
people with worse health as a sort of experimental salvage drug.

For comparison, we also analyzed the data using compet-
ing approaches for addressing DLs described earlier. First, we
fit logistic regression to 6-month VL values dichotomized as
<400 versus ≥400 copies/mL, corresponding to the highest
DL. Results are in Table S5 of supplementary materials. The
β coefficients in the CPM and the logistic regression model
represent identical quantities on the latent logistic distribu-
tion scale, the location shift due to covariates (Agresti 2013).
Whereas the logistic regression estimates arise from a single
dichotomization of the outcome variable, the CPM estimates can
be thought of as weighted averages of log odds ratio estimates for
all possible orderable dichotimizations of the observed response
values (Foresi and Peracchi 1995). In our HIV application, the
CPM and the logistic regression model tended to give similar

estimates of the β coefficients, although there were some dif-
ferences and 95% CIs from the CPM tended to be narrower,
as expected. For example, the odds ratios for the cumulative
probability and logistic regression models for prior AIDS were
1.24 and 1.27, respectively. However, the 95% confidence inter-
val (on the log odds ratio scale) was 29% narrower with the CPM
than with the logistic regression model. The odds ratios for an
INSTI- versus NNRTI-based regimen were 0.55 and 0.44 for the
CPM and the logistic regression model, respectively, whereas the
width of the 95% CI (log odds ratio scale) for the CPM was 36%
narrower.

We also fit a full likelihood-based model assuming the out-
come variable was normally distributed after log10(·) transfor-
mation (supplementary materials Table S6). Note that even the
log-transformed 6-month VL was still quite skewed (supple-
mentary materials Figure S4), and hence the assumptions of
this fully parametric approach are questionable. The param-
eters in this approach and those from the CPM with the
logit link are not directly comparable because they are on
different scales; however, the directions of associations were
similar.

4. Simulations

Extensive simulations of CPMs with continuous data have been
reported elsewhere (Liu et al. 2017; Tian et al. 2020). Here we
present a limited set of simulations investigating the perfor-
mance of CPMs with data subject to multiple DLs.
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Data were generated for sample sizes of n = 150 and n = 900
such that the outcome Y followed a normal linear model after
log-transformation in the following manner:

Y = exp(Y∗), where Y∗ = Xβ + ε, β = 1, X ∼ N(μx, 1),
and ε ∼ N(0, 1).

Data were simulated to mimic a setting with three equal-sized
sites, where the DL of Y and the mean of X, μx, could vary by
site. We considered the following five scenarios:

1. No DL, μx = 0 for all sites.
2. Lower DLs 0.16, 0.30, and 0.50 for the three sites (about 17%,

20%, and 20% censored), and μx = −0.5, 0, and 0.5 for site
1, 2, and 3, respectively.

3. Upper DLs 0.16, 0.30, and 0.50 for the three sites (about 90%,
80%, and 70% censored), and μx = 0 for all sites.

4. Lower DLs 0.2, 0.3, and −∞ (13%, 20%, and 0% censored)
and upper DLs at ∞, 4, and 3.5 (0%, 19%, and 16% censored)
for the three sites, and μx = 0 for all sites.

5. Lower DLs 0.4, 1.0, and 2.5 (38%, 50%, and 62% censored),
and μx = −0.5, 0, and 0.5 for site 1, 2, and 3, respectively.

Additional simulations considered scenario 2 with (i) β =
0 to evaluate Type I error; (ii) link function misspecification;
(iii) misspecification of the functional form of the model; (iv)
comparison with other methods for handling DLs.

CPMs were fit to the observed data {X, Y} without using any
knowledge of the correct transformation or Y∗. We simulated
10,000 replications under each scenario. Bias, root mean squared
error (RMSE), and coverage of 95% CIs were estimated with
respect to β , conditional quantiles for X = {0, 1}, and condi-
tional CDFs for X = {0, 1}. The choice of quantile and CDF
levels varied based on the simulation scenario to ensure that we
were estimating a quantity that could be well-estimated based on
the scenario-specific detection limits. Specifically, in scenarios
2 and 5, because of the high censoring rates, we estimated the
quantiles at p = 0.03 and 0.9 (i.e., the 3rd and 90th percentiles)
and CDFs at y = 0.10 and 3.0, respectively.

Table 2 shows results under correctly specified models (i.e.,
probit link function and X correctly included). CPMs resulted in
nearly unbiased estimation and good CI coverage for β , condi-
tional quantiles Q(·|X = x), and conditional CDFs F(·)|X = x)

for all five scenarios. As the sample size increased, both the bias
and RMSE decreased. The RMSE for β tended to be higher
in scenarios with substantial censoring (e.g., scenario 5), as
expected. In a simulation under scenario 2 with β set to zero,
the Type I error rate was preserved with both n = 150 and
n = 900 (coverage of 95% confidence intervals of 0.948 and
0.947, respectively, and approximately uniformly distributed p-
values, supplementary materials Figure S5).

Supplementary materials Table S7 shows the performance of
CPMs for the data generated in scenario 2 under moderate and
severe link function misspecification. Link function misspeci-
fication is equivalent to misspecification of the distribution of
ε because Fε = G−1. Specifically, we fit CPMs with logit and
loglog link functions. Compared to the correct probit link, the
logit is moderate misspecification (similar shape and skewness
as the true distribution of ε), while the loglog represents severe
misspecification (very different shape and skewness from the

Table 2. Simulation results for multiple DLs.

n = 150 n = 900

Parameter Bias RMSE Coverage Bias RMSE Coverage

Scenario 1
β 0.018 0.106 0.945 0.004 0.041 0.947
Q(0.5|X = 0) −0.005 0.115 0.956 −0.002 0.046 0.947
Q(0.5|X = 1) 0.032 0.396 0.955 0.003 0.163 0.941
F(1.5|X = 0) 0.002 0.044 0.951 0.000 0.018 0.954
F(1.5|X = 1) −0.003 0.049 0.953 −0.002 0.020 0.944
Scenario 2
β 0.019 0.106 0.958 0.003 0.041 0.962
Q(0.5|X = 0) −0.002 0.117 0.964 −0.001 0.047 0.969
Q(0.5|X = 1) 0.026 0.395 0.950 0.001 0.160 0.949
F(1.5|X = 0) 0.002 0.045 0.963 0.001 0.017 0.962
F(1.5|X = 1) −0.003 0.050 0.948 −0.001 0.020 0.955
Scenario 3
β 0.037 0.186 0.948 0.005 0.068 0.954
Q(0.03|X = 0) 0.305 0.307 0.953 0.000 0.014 0.952
Q(0.03|X = 1) −0.008 0.036 0.953 0.007 0.046 0.955
F(0.10|X = 0) 0.000 0.000 0.933 0.000 0.000 0.952
F(0.10|X = 1) 0.000 0.000 0.945 0.000 0.000 0.947
Scenario 4
β 0.018 0.110 0.957 0.005 0.044 0.953
Q(0.5|X = 0) −0.004 0.115 0.958 −0.002 0.046 0.947
Q(0.5|X = 1) 0.036 0.410 0.972 0.005 0.166 0.955
F(1.5|X = 0) 0.002 0.045 0.945 0.000 0.018 0.947
F(1.5|X = 1) −0.002 0.050 0.970 −0.002 0.021 0.947
Scenario 5
β 0.023 0.123 0.930 0.005 0.047 0.934
Q(0.9|X = 0) −0.010 0.555 0.940 −0.010 0.224 0.946
Q(0.9|X = 1) 0.312 1.985 0.964 0.115 0.792 0.952
F(3.0|X = 0) −0.001 0.031 0.941 −0.001 0.013 0.929
F(3.0|X = 1) −0.001 0.059 0.956 0.002 0.025 0.954

true distribution of ε). The performance of CPMs was reason-
able with moderate link function misspecification with bias for
the conditional median and the conditional CDF F(1.5|X = x)

under 6% and coverage of 95% CI generally close to 0.95 with
n = 150, although as low as 0.85 with n = 900. With severe
link function misspecification, the performance of CPMs was
noticeably worse, with bias as high as 8% and coverage as low
as 0.46 for the conditional median at X = 1. CPMs, like other
regression models, were not very robust to model misspecifi-
cation due to leaving out a variable (details in supplementary
materials Table S8).

Table 3 shows results under scenario 2 with n = 900 com-
paring CPMs with some widely used approaches for handling
DLs, specifically single imputation with l/2, single imputation
with l/

√
2, multiple imputation, and fully parametric maximum

likelihood estimation (MLE). For all non-CPM approaches, we
first correctly assumed that the outcome variable followed a log-
normal distribution. With the imputation approaches, unob-
served values were imputed, then a linear regression model was
fit on the log-transformed outcome to obtain the β estimate, and
median regression was used to estimate conditional medians.
In multiple imputation, the correct tail distribution was used
for imputing data and 10 iterations were performed for each
dataset. For the MLE approach, the medians were computed
using the estimated parameters of the fully parametric model.
As expected, the MLE performed the best with the lowest bias
and RMSE, and highest efficiency because the distributional
assumptions matched the true distribution. The performance
of multiple imputation was similar to that of the MLE, but
with higher RMSE. As a semiparametric method, the CPM
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Table 3. Comparison of CPM with common approaches for addressing DLs under
with the unknown transformation correctly and incorrectly specified.

Method Truth Bias(%) Empirical SE RMSE Coverage

Correct transformation
CPM
β 1 0.428 0.040 0.041 0.941
Q(0.5|X = 0) 1 −0.115 0.046 0.045 0.963
Q(0.5|X = 1) 2.718 0.092 0.165 0.165 0.937
Single imputation with dl/

√
2

β 1 −14.501 0.027 0.147 0.000
Q(0.5|X = 0) 1 8.431 0.041 0.094 0.461
Q(0.5|X = 1) 2.718 −5.825 0.148 0.217 0.804
Single imputation with dl/2
β 1 −8.003 0.028 0.085 0.233
Q(0.5|X = 0) 1 3.122 0.041 0.051 0.905
Q(0.5|X = 1) 2.718 −3.650 0.149 0.179 0.901
Multiple imputation
β 1 0.071 0.034 0.034 0.958
Q(0.5|X = 0) 1 −0.060 0.035 0.035 0.957
Q(0.5|X = 1) 2.718 0.059 0.127 0.127 0.949
MLE
β 1 0.859 0.034 0.035 0.965
Q(0.5|X = 0) 1 1.254 0.041 0.043 0.959
Q(0.5|X = 1) 2.718 −0.062 0.151 0.154 0.947

Incorrect transformation
CPM
β 1 0.483 0.040 0.041 0.941
Q(0.5|X = 0) 4.354 −0.119 0.067 0.067 0.960
Q(0.5|X = 1) 5.976 −0.004 0.109 0.109 0.935
Single imputation with dl/

√
2

β 1 −69.388 0.009 0.694 0.000
Q(0.5|X = 0) 4.354 −1.482 0.058 0.087 0.813
Q(0.5|X = 1) 5.976 −1.870 0.101 0.151 0.812
Single imputation with dl/2
β 1 −62.696 0.011 0.627 0.000
Q(0.5|X = 0) 4.354 −6.560 0.073 0.295 0.028
Q(0.5|X = 1) 5.976 −0.842 0.107 0.118 0.919
Multiple imputation
β 1 −68.150 0.011 0.682 0.000
Q(0.5|X = 0) 4.354 −2.206 0.049 0.108 0.506
Q(0.5|X = 1) 5.976 −2.028 0.082 0.146 0.711
MLE
β 1 −66.964 0.011 0.670 0.000
Q(0.5|X = 0) 4.354 −1.677 0.059 0.094 0.807
Q(0.5|X = 1) 5.976 0.926 0.099 0.113 0.912

also resulted in minimal bias and correct coverage, but had
slightly larger variance and RMSE. In contrast, the single impu-
tation estimators were biased and tended to have poor coverage,
especially for estimating β . We also evaluated the approaches
under misspecification of the transformation. Specifically, we
generated data in a manner similar to scenario 2 except using
a different transformation, Y = Inv-χ2 (�(Y∗/2), 5), where
� is the probability density function of the standard normal
distribution, and Inv-χ2(·, 5) is the inverse of the CDF for a Chi-
square distribution with degrees of freedom equal to 5. Lower
DLs were set to be 2, 3, and 4 (corresponding to approximately
14%, 23%, and 30% censored) for sites 1, 2, and 3, respectively.
The non-CPM approaches assumed a normal linear model after
an incorrectly specified log-transformation. As shown in the
lower half of Table 3, only the CPM resulted in unbiased esti-
mates, because it is the only approach that does not require pre-
transformation or strict distributional assumptions.

Finally, we compared our method with two existing meth-
ods for fitting semiparametric linear transformation models to
doubly censored data (Cai and Cheng 2004; Shen 2011). The
efficiency gains of our method over these other approaches are

Table 4. Simulation results for multiple DLs comparing CPMs with the methods
proposed by Cai and Cheng (2004) (labeled Cai) and Shen (2011) (labeled Shen).

n = 150 n = 900

CPM Cai Shen CPM Cai Shen

Scenario 1
Bias(%) 4.386 3.271 3.098 0.316 0.398 0.482
Empirical SE 0.149 0.173 0.153 0.056 0.067 0.060
RMSE 0.155 0.176 0.156 0.056 0.067 0.060
Scenario 2
Bias(%) 2.287 2.021 0.906 −0.320 0.223 0.245
Empirical SE 0.111 0.136 0.132 0.040 0.054 0.051
RMSE 0.113 0.137 0.132 0.041 0.054 0.051
Scenario 3
Bias(%) 3.553 3.497 −6.132 0.613 0.535 −1.527
Empirical SE 0.223 0.249 0.191 0.085 0.093 0.082
RMSE 0.225 0.251 0.200 0.085 0.094 0.083
Scenario 4
Bias(%) 2.079 1.014 1.307 0.508 0.318 0.333
Empirical SE 0.117 0.137 0.135 0.045 0.056 0.051
RMSE 0.119 0.138 0.136 0.045 0.056 0.051
Scenario 5
Bias(%) 2.817 3.495 1.457 −0.319 0.276 0.288
Empirical SE 0.122 0.180 0.194 0.044 0.069 0.069
RMSE 0.125 0.184 0.195 0.045 0.069 0.069

seen in Table 4, which compares estimates of β with data gen-
erated under a proportional hazards model under various levels
of censoring similar to those in scenarios 2–5. (Details are in
the supplementary materials S3.1.) For scenario 1 (no censoring)
and scenarios 2, 4, and 5 (all have some left-censoring), the bias
of the CPM was similar to that of the other two approaches,
but the empirical standard error and RMSE was lower for the
CPM. The improved efficiency was particularly notable as the
proportion of censored observations increased. For example, in
scenario 2 (approximately 20% left-censored) with n = 900, the
empirical SE for our estimator of β was 0.040 compared to 0.054
and 0.051 for the estimators of Cai and Cheng (2004) and Shen
(2011), respectively. Under scenario 5 (approximately 50% left-
censored) with n = 900, the empirical SE for our estimator was
0.044 compared to 0.069 for both of the other estimators. Under
scenario 3 (approximately 80% right-censored), the empirical SE
and RMSE for β were smaller for the method of Shen (2011) with
n = 150 but they were approximately the same between our
method and that of Shen (2011) with n = 900. This finding is
similar to that observed by Liu et al. (2017) with uncensored data
generated under a proportional hazards model, where with small
sample sizes Cox regression had lower RMSE for estimating β

than CPM, but similar RMSE as the sample size increased. Under
scenario 3, the RMSE for the estimator of Cai and Cheng (2004)
was higher than the other two methods.

5. Discussion

In this article, we have described an approach to address mul-
tiple detection limits in response variables using CPMs. We
illustrated the method with a study looking at factors associ-
ated with HIV viral load after antiretroviral therapy initiation,
where a large percentage of people had measurements below
lower detection limits, which varied over time and by study
site. CPMs have several advantages over commonly employed
approaches for addressing DLs. They make minimal distribu-
tional assumptions, they yield interpretable parameters, and
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they are invariant to the value assigned to measures outside DLs.
Any values outside the lowest/highest DLs are simply assigned to
the lowest/highest ordinal categories, and estimation proceeds
naturally. From simulation studies we saw that CPMs performed
well, even with high censoring rates and relatively small sample
sizes, and that they were more generally more efficient than
previously proposed methods for fitting semiparametric trans-
formation models to censored data.

Our focus has been on addressing settings with multiple
detection limits. However, as highlighted in Section 2.2, CPMs
are an effective analysis approach that can also be easily applied
to address response data subject to a single detection limit. The
supplementary materials contain an example analysis using HIV
data subject to a single detection limit (Section S2.2) and a set of
simulations demonstrating the excellent performance of CPMs
in settings with a single detection limit (Section S3.2).

CPMs have some limitations. Because we do not make dis-
tributional assumptions outside DLs, we are not able to estimate
conditional expectations after fitting a CPM; however, with DLs,
conditional quantiles are probably more reasonable statistics
to report anyway. Although CPMs do not make distributional
assumptions on the response variable, the link function must
still be specified, which corresponds to making an assumption
on the distribution of the response variable after an unspecified
transformation. Performance can be poor with severe link func-
tion misspecification; however, CPMs appear to be fairly robust
to moderate misspecification. Note that the latent variable is typ-
ically assumed to follow a standard distribution (e.g., standard
normal or standard logistic). If in our model, for example, after
an unspecified transformation the data are assumed to follow a
normal distribution with variance σ 2, then the transformation
is simply a rescaling of what it would be if the latent variable
distribution had variance 1. Specifically, if H−1(Y) = βTX + ε

with ε ∼ N(0, 1), and H−1
1 (Y) = γ TX + δ with δ ∼ N(0, σ 2),

then H−1(y) = H−1
1 (y)/σ and β = γ /σ . Similarly, if the

model had an intercept term, for example, H−1
2 (Y) = γ0 +

γ TX + δ with δ ∼ N(0, σ 2), the intercept term would also be
absorbed by the transformation: H−1(y) = [

H−1
2 (y) − γ0

]
/σ .

Notice that γ0 and σ are not identifiable in these latent variable
models where we leave H(·) unspecified. By assuming the latent
variable follows a standard distribution, the β coefficient is more
interpretable than it would be otherwise. For example, suppose
we assumed that H−1

1 (Y) = γ TX + δ with δ ∼ logistic(0, 2).
Then exp(γ /2) (not exp(γ )) would have the usual odds ratio
interpretation for a 1-unit increase in X.

Further research could consider extensions of CPMs to han-
dle clustered or longitudinal data with DLs. The website, https://
github.com/YuqiTian35/DetectionLimitCode, contains code for
our application examples and simulations. The website also
contains a synthetic dataset similar to the original dataset on
which our application analysis code can be run. Our R pack-
age, multipleDL, currently handles probit, logit, loglog, and
cloglog link functions.

Supplementary Materials

Supplementary materials include details about the relationship between
CPMs and the Wilcoxon test, a demonstration of the likelihood in a toy
example with multiple detection limits, extended descriptions of other

approaches for fitting semiparametric transformation models with censor-
ing, additional results for the HIV viral load study, additional simulation
results, and a second application in a setting with a single detection limit.
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