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Effectively Selecting a Target Population for a Future
Comparative Study

Lihui ZHAO, Lu TIAN, Tianxi CAI, Brian CLAGGETT, and L. J. WEI

When comparing a new treatment with a control in a randomized clinical study, the treatment effect is generally assessed by evaluating
a summary measure over a specific study population. The success of the trial heavily depends on the choice of such a population. In this
article, we show a systematic, effective way to identify a promising population, for which the new treatment is expected to have a desired
benefit, using the data from a current study involving similar comparator treatments. Specifically, using the existing data, we first create
a parametric scoring system as a function of multiple baseline covariates to estimate subject-specific treatment differences. Based on this
scoring system, we specify a desired level of treatment difference and obtain a subgroup of patients, defined as those whose estimated scores
exceed this threshold. An empirically calibrated threshold-specific treatment difference curve across a range of score values is constructed.
The subpopulation of patients satisfying any given level of treatment benefit can then be identified accordingly. To avoid bias due to
overoptimism, we use a cross-training-evaluation method for implementing the above two-step procedure. We then show how to select the
best scoring system among all competing models. Furthermore, for cases in which only a single prespecified working model is involved,
inference procedures are proposed for the average treatment difference over a range of score values using the entire dataset and are justified
theoretically and numerically. Finally, the proposals are illustrated with the data from two clinical trials in treating HIV and cardiovascular
diseases. Note that if we are not interested in designing a new study for comparing similar treatments, the new procedure can also be
quite useful for the management of future patients, so that treatment may be targeted toward those who would receive nontrivial benefits to
compensate for the risk or cost of the new treatment. Supplementary materials for this article are available online.

KEY WORDS: Cross-training-evaluation; Lasso procedure; Personalized medicine; Prediction; Ridge regression; Stratified medicine;
Subgroup analysis; Variable selection.

1. INTRODUCTION

In comparing a new treatment with a control via a randomized
clinical trial, the assessment of the treatment efficacy is usually
based on an overall summary measure over a specific study
population. To increase the chance of success of the study, it is
important to choose an appropriate study population for which
the new treatment is expected to have nontrivial overall ben-
efits that compensate for its risks and/or costs. In this article,
we are interested in developing strategies that identify such a
patient population using the data from a current study for com-
paring similar treatments. Even when we are not interested in
designing another new study for comparing similar treatments,
the new proposal provides a systematic, efficient procedure for
the management of future patients, so that treatment may be
targeted toward those who would receive nontrivial benefits to
compensate for the risk or cost of the new treatment.

As an example, one of the very first trials to evaluate the added
value of a potent protease inhibitor, indinavir, for HIV patients,
was conducted by the AIDS Clinical Trials Group (ACTG). This
randomized, double-blind study, ACTG 320 (Hammer et al.
1997), compared a three-drug combination (indinavir, zidovu-
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dine, and lamivudine) with the standard two-drug combination
(zidovudine and lamivudine). There were 1156 patients enrolled
in the study. One of the endpoints was the cluster of differentia-
tion 4 (CD4) count, measured 24 weeks after randomization. The
overall estimated mean difference between the new treatment
and control over the entire study population was 81 cells/mm3.
Although the overall efficacy from the three-drug combination
group is highly statistically significant, the new therapy may
not work for all future patients. Moreover, there are nontrivial
toxicities and serious concerns about the development of pro-
tease inhibitor resistance mutations. For instance, suppose that
having an expected treatment benefit representing a week-24
CD4 count increase of 100 cells/mm3 relative to the control
would be sufficient to compensate for the costs and risks of us-
ing the new therapy. The question, then, is how to identify such a
subpopulation efficiently via the patient’s “baseline” covariates.

Various novel quantitative methods have been proposed to
deal with the problem of heterogeneous treatment effects. For
cases with a single covariate, Song and Pepe (2004), assuming a
monotone relationship between the covariate and the treatment
difference, proposed a procedure to obtain an optimal division
of the population for determining which future patients should
receive the treatment or control. Song and Zhou (2011) general-
ized this method for censored event time data. Janes et al. (2011)
gave some practical guidance on using the marker-by-treatment
predictiveness curves for treatment selection. Moreover, Bonetti
and Gelber (2000, 2005) stratified patients using a moving av-
erage procedure to obtain subject-specific nonparametric es-
timates for the treatment difference. For cases with multiple
covariates, Cai et al. (2011) proposed a systematic two-stage
method for personalized treatment selection using a parametric
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scoring system for estimating the subject-specific treatment dif-
ference, followed by a nonparametric smoothing technique at the
second stage. However, it is not clear how to use their procedure
to efficiently identify a group of future patients who would have
a desired overall treatment benefit. Moreover, there are no proce-
dures available in the literature for comparing different scoring
systems for treatment differences with multiple covariates.

Note that if the scoring system is built using data from the
control group only, one may not be able to effectively identify a
target population that has a desirable overall treatment benefit.
For example, high-risk patients may not necessarily experience
the greatest benefit from a new treatment. Thus for the present
problem, even when considering only a single covariate, a first
step is to create a scoring system for estimating the treatment
difference; one can then use such a system to effectively identify
a target population. However, unlike the prediction problem in
the one sample case, none of the existing procedures in the
literature, which use scores for estimating treatment differences,
can be used to directly evaluate the performance of competing
scoring systems. This difficulty arises from the fact that each
study subject was assigned to receive either the new treatment
or control, but not both. That is, the treatment difference is not
observable at an individual level. Therefore, it is not clear how to
compare, at the patient level, the observed treatment difference
to its predicted counterpart.

For the case of a single treatment group, Moskowitz and
Pepe (2004) generalized the idea of positive predictive values
(PPV) and negative predictive values to accommodate a sin-
gle continuous covariate and a binary outcome and proposed
a graphical method to summarize predictive accuracy. In this
article, we generalize the notion of PPV to handle the present
problem of treatment selections with multiple baseline covari-
ates. Specifically, we first generate various parametric or semi-
parametric scoring systems for estimating the subject-specific
treatment differences using baseline markers and then select
the “best” one among all the candidate models. Various criteria
used for model selection based on, for example, the concor-
dance between the observed and expected treatment differences
via a cross-validation procedure to avoid overoptimism. We then
show how to define a target patient population, which can be
used to identify future patients who would benefit from the
new treatment for the purpose of designing inclusion/exclusion
criteria for enrollment in future clinical trials. Our procedure
does not require the usage of nonparametric smoothing tech-
niques, which can be quite unstable when the sample size is
not large. Furthermore, when there is only a single prespecified
working model involved, we propose inference procedures af-
ter model fitting for the treatment differences over a range of
score values. Finally, we illustrate our methods using the data
from the above HIV study as well as censored survival time
data from a large cardiovascular trial to compare the efficacy of
Angiotensin-converting-enzyme inhibitors (ACEi) with a con-
ventional therapy for patients with stable coronary heart disease
and preserved left ventricular function (Braunwald et al. 2004).

2. SELECTING THE TARGET SUBPOPULATION VIA
A SCORING SYSTEM

Suppose that each subject in a comparative study was ran-
domly assigned to one of two groups, denoted by G = 0 (con-

trol) or 1 (treatment). Let πk = pr(G = k) for k = 0, 1. Let Z
be the patient’s p-dimensional vector of baseline covariates and
Y(k) be the response variable or a function thereof, if the subject
had been assigned to Group k, k = 0, 1. For each subject, only
Y = GY(1) + (1 − G)Y(0) can potentially be observed. Assume
that a larger Y indicates a better clinical outcome. For the ease
of presentation, we first consider the noncensored case that for
each subject, we can observe the triplet (Y,G, Z) completely.

Now, let μk(Z) = E(Y(k)|Z) be the expected response for
patients in Group k, conditional on Z. Furthermore, let
the treatment difference D(Z) = μ1(Z) − μ0(Z). The data,
{(Yi,Gi, Zi); i = 1, . . . , n}, consist of n independent copies of
(Y,G, Z). Suppose that D̂(Z) is an estimator for D(Z). Let Z0

be the covariate vector for a future patient randomly drawn from
the same population of the current study. Also let Y 0

(k) be the po-
tential response of this patient if assigned to Group k, k = 0, 1.
Consider the subgroup of subjects such that D̂(Z0) ≥ c, where
c is some fixed constant. That is, this subgroup of subjects has
an estimated treatment difference no less than c. Let AD(c) be
the average treatment difference for this subgroup of subjects:

E
((

Y 0
(1) − Y 0

(0)

) |D̂(Z0) ≥ c
)
, (1)

where the expectation is with respect to Y 0
(k) and Z0, and also

{(Yi,Gi, Zi); i = 1, . . . , n}. Note that AD(c) depends on the
sample size n. The AD(c) can be estimated by

ÂD(c) =
∑n

i=1 YiI {D̂(Zi) ≥ c,Gi = 1}∑n
i=1 I {D̂(Zi) ≥ c,Gi = 1}

−
∑n

i=1 YiI {D̂(Zi) ≥ c,Gi = 0}∑n
i=1 I {D̂(Zi) ≥ c,Gi = 0} , (2)

where I (·) is the indicator function. Note that ÂD(c) may not be
stable when c is in the upper tail of the distribution of D̂(Z0).

As a function of c, ÂD(c) can be quite useful for identifying
patients who can expect specific levels of benefit from the new
treatment relative to the control. As an example, consider the
ACTG 320 study discussed in the Introduction. For simplicity,
let Y be the CD4 count at week 24 and Z be a vector consisting of
two baseline covariates, log(CD4) and log10(RNA). These two
measures have been shown to be highly predictive of various
clinical outcomes relevant to HIV disease. One may obtain D̂(Z)
by the difference of two estimates μ̂0(Z) and μ̂1(Z) based on two
separate additive linear regression models, as given in Table 1.
The resulting score for estimating the treatment difference is
given by

D̂(Z) = −120.61 + 12.57 log(CD4) + 29.13 log10(RNA).

Table 1. Estimated (Est) regression coefficients, their standard errors
(SE), and p-values by fitting two separate linear regression models to
the ACTG 320 data with week-24 CD4 as the response and log(CD4)

and log10(RNA) as the baseline covariates

Two-drug Three-drug

Covariates Est SE p-value Est SE p-value

Intercept −17.04 24.13 0.48 −137.66 40.91 <0.01
log(CD4) 43.05 2.31 <0.01 55.62 3.83 <0.01
log10(RNA) −9.98 4.05 0.01 19.16 6.85 0.01

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 1
9:

46
 0

2 
Ju

ly
 2

01
3 



Zhao et al.: Effectively Selecting Target Population 529

Figure 1. Estimated average treatment difference for patients with D̂(Z) ≥ c using the scoring system built with two baseline covariates,
log(CD4) and log10(RNA), for the ACTG 320 data, (a) without cross-validation and (b) with cross-validation (solid: point estimate with
cross-validation; dotted dash: point estimate without cross-validation; dashed: 95% pointwise confidence interval; shaded: 95% simultaneous
confidence interval).

Note that a patient with high baseline CD4 and RNA values is
expected to benefit more from the new treatment. Figure 1(a)
provides the estimated ÂD(c) in (2) over a range of values c. As
discussed in the Introduction, the new treatment, a three-drug
combination, demonstrated an impressive overall efficacy ben-
efit with regard to week-24 CD4 count. However, there were
concerns about the cost of the new therapy, as well as the po-
tential for toxicity and/or development of drug resistance. Sup-
pose that, to compensate for such nontrivial risks, one would
like to treat future patients whose anticipated benefit from the
new treatment, relative to the two-drug combination, could be
considered “clinically” significant. For example, a meaningful
benefit may be defined as an overall CD4 count difference, be-
tween the two treatments, of 100 cells/mm3 at week 24. From
Figure 1(a), ÂD(77) = 100, thus this subset of patients would
be composed of patients with Z0 such that D̂(Z0) ≥ 77.

Now, let us consider the case that the response variable
may not be observed completely. For instance, let T be an
event time and Y = I (T ≥ t0), where t0 is a specific time
point of interest. Often T may be censored by a censoring
variable C, which is assumed to be independent of T and
Z given G. For each subject, the observable quantities are
(X,�,G, Z), where X = min(T ,C) and � = I (T ≤ C). The
data, {(Xi,�i,Gi, Zi); i = 1, . . . , n}, consist of n independent
copies of (X,�,G, Z). For this case, the AD(c) can be esti-
mated by the difference in Kaplan–Meier survival probabilities,

that is,

ÂD(c) =
t0∏

t=0

{
1 −

∑n
i=1 dN

(1)
i,c (t)∑n

i=1 Y
(1)
i,c (t)

}

−
t0∏

t=0

{
1 −

∑n
i=1 dN

(0)
i,c (t)∑n

i=1 Y
(0)
i,c (t)

}
, (3)

where N
(k)
i,c (t) = I (Xi ≤ t, D̂(Zi) ≥ c,Gi= k)�i , and Y

(k)
i,c (t)=

I (Xi ≥ t, D̂(Zi) ≥ c,Gi = k), k = 0, 1; i = 1, . . . , n. Note
that

∏
here denotes a product integral operator.

If one is interested in a global treatment contrast measure
rather than t0-year survival rates, the standard hazard ratio es-
timate may be used for building a scoring system. However,
when the proportional hazards assumption is violated, it is not
clear which parameter this model-based estimate would con-
verge to (Kalbfleisch and Prentice 1981; Lin and Wei 1989; Xu
and O’Quigley 2000). The overall mean survival time is gen-
erally difficult to estimate well due to censoring. On the other
hand, one may consider the restricted mean survival time up
to a specific time point (Irwin 1949; Andersen, Hansen, and
Klein 2004), say, τ0, as an overall measure for quantifying sur-
vivorship. Note that this mean value is simply the area under
the corresponding Kaplan–Meier curve, truncated at time τ0. To
this end, for the present problem, we let Y = min(T , τ0). It is
straightforward to show that the corresponding AD(c) can be
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estimated by

ÂD(c) =
∫ τ0

0

[
t∏

s=0

{
1 −

∑n
i=1 dN

(1)
i,c (s)∑n

i=1 Y
(1)
i,c (s)

}]
dt

−
∫ τ0

0

[
t∏

s=0

{
1 −

∑n
i=1 dN

(0)
i,c (s)∑n

i=1 Y
(0)
i,c (s)

}]
dt, (4)

using the fact that E{min(T , τ0)|D̂(Z0) ≥ c} = ∫ τ0

0 pr(T >

t |D̂(Z0) ≥ c)dt .
Given a particular scoring system, a plot like Figure 1(a) is

useful for identifying the target patient population who would
benefit from the new treatment at various levels of interest.
However, it is possible that there are other scoring systems using
baseline variables that could be better than the present one.

3. CREATING SCORING SYSTEM CANDIDATES

In this section, we discuss various models and variable selec-
tion procedures to build models for creating the scoring systems.
We first consider the case that (Y,G, Z) is completely observed.
A general approach for modeling the subject-specific treatment
difference parametrically is to model the mean for each treat-
ment group:

μk(Z) = gk(β ′
kh(Z)), (5)

where h(Z) is a known vector function of Z with the first com-
ponent being 1, βk is an unknown vector of parameters, gk is a
given link function, and k = 0, 1. To estimate βk , one may min-
imize a loss function Lk(β), which may be based on a likelihood
or a residual sum of squares.

An alternative approach is to use a single model for both
treatment groups:

E(Y |Z,G) = g(β ′h(G, Z)), (6)

where h(G, Z) is a known vector function of (G, Z) with the
first component being 1, β is an unknown vector of parameters,
and g is a given link function. Note that h(G, Z) may include
G, Z, and G × Z interaction terms. In the presence of G × Z
interaction terms, the results of variable selection procedures
will depend on the coding of the treatment indicator G. To this
end, we code treatment group 0 and treatment group 1 using
−1 and +1, respectively. Again, one may obtain an estimator
β̂ for β by minimizing a loss function L(β). Under this setting,
D̂(Z) = g(β̂

′
h(1, Z)) − g(β̂

′
h(−1, Z)).

For Model (5) or (6), one may also use an estimation pro-
cedure for β with a built-in variable selection algorithm. For
instance, for (6), let β̂λ be a minimizer of

L(β) + λ ‖ β ‖d , (7)

where L(β) may be the negative log of the likelihood function for
(6) or the residual sum of squares and λ > 0 is the regularization
parameter. Note that for the lasso procedure (Tibshirani 1996),
d = 1 and, for ridge regression (Hoerl and Kennard 1970), d =
2. One may select the regularization parameter λ̂ based on the
standard cross-validation procedure (Tibshirani 1996). With the
resulting β̂ λ̂, let D̂(Z) be the score.

Note that with a procedure using (7), it can be shown that,
when the dimension of the covariate vector p is fixed and
λ̂ = o(n), β̂ λ̂ converges to a constant vector as n → ∞ (Knight

and Fu 2000). This is an important property to guarantee that we
will have a unique, well-defined limiting working model when
repeating the algorithm with different training sets discussed
in the next section. Similarly, we may use the aforementioned
variable selection algorithms with the model described in (5)
separately for each treatment group. Similar to the Ld penal-
ized estimator, the regression parameter estimator based on the
standard stepwise variable selection procedure also has this sta-
bilization property under more rigorous regularity conditions.

Now, consider the case that Y may not be observed completely
due to censoring of the event time T . A common approach is to
relate the event time to the covariates with a Cox proportional
hazards model (Cox 1972). For example, one may combine the
data from two treatment groups and consider a working model:

pr(T > t |Z,G) = g(log �(t) + β ′h(G, Z)), (8)

where g(x) = e−ex

, h(G, Z) is a known vector function of
(G, Z), �(·) is an unknown baseline cumulative hazard func-
tion, and β is an unknown vector of parameters. Again h(G, Z)
may include G, Z, and G × Z interaction terms. To estimate
β, one may use the partial likelihood estimate. Here the loss
function L(β) is the negative log of the partial likelihood. An
alternative is to use a corresponding (7) to obtain β̂ λ̂. Now, sup-
pose Y = I (T ≥ t0), where t0 is a given time point. Then one
may use (Kalbfleisch and Prentice 2002)

D̂(Z) = g(log �̂(t0) + β̂
′
λ̂h(1, Z))

− g(log �̂(t0) + β̂
′
λ̂h(−1, Z)), (9)

where

�̂(t) =
n∑

i=1

∫ t

0

dNi(s)∑n
j=1 Yj (s)eβ̂

′
λ̂h(Gj ,Zj )

,

with Ni(t) = I (Xi ≤ t)�i and Yi(t) = I (Xi ≥ t), i = 1, . . . , n.
If we are interested in the restricted mean event time, that is,

Y = min(T , τ0), the resulting score from Model (8) is

D̂(Z) =
∫ τ0

0

{
g(log �̂(t) + β̂

′
λ̂h(1, Z)) − g(log �̂(t)

+ β̂
′
λ̂h(−1, Z))

}
dt. (10)

Note that one may also fit a separate Cox model for each treat-
ment group to create D̂(Z).

4. COMPARING DIFFERENT SCORING SYSTEMS

For a reasonably good scoring system, one expects that the
curve ÂD(c) is increasing with c, as in Figure 1(a). In gen-
eral, different scoring systems D̂(·) will group patients differ-
ently. To compare two systems, say D̂1(·) and D̂2(·), we need
to modify the scale of the x-axis for the plot in Figure 1(a).
Specifically, we convert the conditional event D̂(Z0) ≥ c in
(1) to H (D̂(Z0)) ≥ q, where H is the empirical cumulative
distribution function of D̂(Z0). The resulting estimate cor-
responding to (2) is denoted by ÃD(q). Note that ÃD(q) =
ÂD(H−1(q)). Given 0 ≤ q ≤ 1, ÃD(q) is simply an estimated
average treatment difference for the subgroup of subjects with
scores exceeding the qth quantile, representing an approxima-
tion to 100(1 − q)% of the study population. For example, with
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Figure 2. Comparing the two estimated average treatment differ-
ences for patients with largest 100(1 − q)% scores using the systems
built with and without log10(RNA) for the ACTG 320 data. The online
version of this figure is in color.

this new scale for the x-axis, the curve in Figure 1(a) becomes
the solid curve ÃD1(q) in Figure 2. The subgroup of patients
with an average CD4 count treatment difference of 100, as
described in Section 2, represents the patients with scores in
the top 52% of the study population. Now, since RNA is rel-
atively expensive to measure in resource-limited regions, one
question is whether we can use the baseline log(CD4) only
to construct a similarly useful scoring system D̂2(·). By fit-
ting separate linear regression models for each of the two
treatment groups using only log(CD4), the resulting score is
D̂2(Z) = 40.57 + 8.27 log(CD4). Note that this new score in-
dicates that a patient with a large baseline CD4 value tends to
benefit more from the new treatment. The corresponding ÃD2(q)
is given in Figure 2 (dashed curve). This new curve is not an
increasing function. Moreover, this curve is uniformly lower
than ÃD1(q), indicating that if we use ÃD1(q) and ÃD2(q) to
select any given proportion 100(1 − q)% of patients from the
study population, the overall treatment benefit of the selected
subpopulation using ÃD1(·) would be always larger than that
using ÃD2(·). Thus the addition of baseline RNA into the re-
gression models provides substantial improvement in the ability
to select the subgroup of patients with a desirable level of over-
all treatment benefit. In general, the higher the curve ÃD(·) is,
the better is the scoring system. It is interesting to note that
if we were able to use the score D̂(Z) = D(Z), the true treat-
ment difference, the resulting curve ÃD(·) would be uniformly
the largest among all working models for treatment differences
based on Z (see the online supplementary materials Appendix
A for details). Note that the performance of a scoring system
only depends on the ranks of its scores. If any strictly monotone
increasing transformation of the true treatment difference D(Z)
is used as the scoring system, the resulting curve ÃD(·) would
be identical to the one induced by D(Z).

When the dimension of Z is greater than 1, it is difficult, if
not impossible, to estimate D(Z) well nonparametrically. Thus
it is likely that the treatment difference curve ÃD(·) resulting
from one model may not dominate that from another model over
the entire interval of interest. If we are interested in identify-
ing a subpopulation with a specific treatment difference, one
may choose a scoring system that gives us the largest subset of
patients satisfying this criteria among all candidate models. If
there is no specific proportion of study population or specific
level of treatment difference that is of particular clinical inter-
est, one may use a summary measure of the curve to select the
“best” model. For example, a possible metric is the area under
the curve (AUC) of ÃD(·). Suppose D̂(Z0) converges in proba-
bility to a deterministic quantity, say D̄(Z0), uniformly in Z0, as
n → ∞. Note that D̄(Z0) could be different from D(Z0) when
the model is misspecified. Let H̄ (·) denote the cumulative distri-
bution function of D̄(Z0). In the online supplementary materials
Appendix B, we show that the AUC is a consistent estimator for

E(D(Z0) log{[1 − H̄ (D̄(Z0))]−1}), (11)

which is the expected value of the product of the true subject-
specific treatment difference D(Z0), given the individual pa-
tient’s covariate vector Z0, and a strictly increasing transfor-
mation of the rank of the patient’s limiting score D̄(Z0). The
quantity (11) is a measure of the concordance between the true
treatment difference and its empirical counterpart. Therefore, a
higher AUC indicates a better fit of the working model. Fur-
thermore, the area between the curves (ABC) of ÃD(·) and the
horizontal line y = ÃD(0) estimates the corresponding covari-
ance of two random quantities in (11). Note that this covariance
is ρσ0, where ρ is the correlation of the two terms in (11) and
σ0 is an unknown constant that does not depend on any specific
scoring system. It follows that to compare two scoring systems,
one may use the ratio of two ABCs to examine the relative
improvement from one model to the other.

Since the upper tail of the curve ÃD(·) may not be stable, one
may use a partial AUC (by integrating the curve up to a specific
constant η) as a metric for model evaluation and comparison. For
the two models in Figure 2, with η = 0.90, the aforementioned
AUCs are 97.8 and 75.4 for the models with and without baseline
RNA, respectively. The corresponding ABCs are 17.3 and −5.1,
respectively. Note that the ABC using the scoring system with
baseline log(CD4) alone is negative, indicating that the overall
performance of this scoring system is worse than a scoring
system that groups the patients at random.

Now, if one considers the area under a weighted version of
the curve, (1 − q)ÃD(q), this quantity consistently estimates

E(D(Z0)H̄ (D̄(Z0))). (12)

The expected value given in (12) directly measures the con-
cordance of the subject-specific true treatment difference and
the rank of the limiting score. This quantity may be easier to
interpret heuristically than (11). Moreover, the corresponding
area between this curve and the straight line y = (1 − q)ÃD(0)
is the covariance associated with the quantities given in (12)
(see the supplementary materials Appendix B for details). Also
note that there are no existing procedures in the literature that
can estimate such concordance measures at the patient level.
Furthermore, if we could use the true treatment difference D(Z)
as the score, each of these concordance scores would attain its
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maximum value among all possible models derived from Z (see
the supplementary materials Appendix A for details).

When the dimension of the covariate vector Z is not small,
it may not be appropriate to use the same dataset to build a
score via a complex variable selection algorithm and then use
the same set to obtain ÃD(·) for model evaluation. Rather, one
may randomly divide the dataset into two independent pieces,
the training and the evaluation sets, to avoid potential bias due
to overoptimism in assessing the adequacy of the model. When
the dataset is not large, an alternative approach is to use a ran-
dom cross-validation procedure. Specifically, consider a class of
models for the response Y and covariate vector Z. For each vari-
able selection and estimation algorithm for this class of models,
we randomly split the dataset into two pieces, use the training
set to obtain the scoring system D̂(Z), and construct the corre-
sponding estimate ÂD(·) using the evaluation set. Here the sizes
of both the training and evaluation sets are of order n. We repeat
this process M times.

Now, for the mth iteration, m = 1, . . . , M , let D̂m(Z),
ÂDm(c) and Hm(c) be the corresponding aforementioned D̂(Z),
ÂD(c) and H (c), respectively. Let D̂a(Z) = 1

M

∑M
m=1 D̂m(Z),

ÂDa(c) = 1
M

∑M
m=1 ÂDm(c), and Ha(c) = 1

M

∑M
m=1 Hm(c).

Then ÃDa(q) = ÂDa(H−1
a (q)). The comparisons among all

the candidate models can be made via ÃDa(q). We then use
the corresponding ÂDa(c) of the best model to select the desir-
able subpopulation. Note that the score of a future subject with
the covariate vector Z0 is D̂a(Z0). This cross-training-evaluation
averaging process is similar to bagging (Breiman 1996).

If for each of the model selection algorithms, its D̂(Z0) con-
verges in probability to a deterministic quantity, say D̄(Z0),
uniformly in Z0, as n → ∞, then in the online supplementary
materials Appendix C, we show that ÂDa(·) is uniformly con-
sistent in the sense that

sup
c∈(−∞,c0)

|ÂDa(c) − AD(c)| = op(1),

for any c0 such that pr(D̄(Z0) ≥ c0) > 0. For most algorithms,
the resulting D̂(Z0) would be stabilized, for example, using
lasso or ridge regression procedures discussed in the previous
section. However, with an extensive search for the best scor-
ing system, it is not clear how to make further inference about
AD(c) with the same dataset. On the other hand, if there is
only a single prespecified working model in our analysis, we
show in the online supplementary materials Appendix D that
Wa(c) = n1/2{ÂDa(c) − AD(c)} converges weakly to a mean
zero Gaussian process. Furthermore, in the online supplemen-
tary materials Appendix E, we present a novel perturbation
resampling method to obtain such an approximation in practice.
We also conducted an extensive numerical study to examine
the appropriateness of such a distribution approximation. The
details of the results of this simulation study is given in the Re-
marks section. As an example, in Figure 1(b), for the HIV data
with baseline CD4 count and RNA value, we used 500 random
cross-validations with 4/5 of the data as the training set to obtain
the estimate ÂDa(c), which is presented by the solid line. The
dashed lines and the shaded region in Figure 1(b) are the point-
wise and simultaneous 95% confidence intervals, respectively.
These interval estimates are quite useful to decision making on
the choice of “c” beyond using point estimates only.

We have conducted an extensive simulation study to examine
the performance of the above cross-training-evaluation process.
We find that under various practical settings, for each fitted
model to create the scoring system, the empirical average of
ÂDa(·) is nearly identical to AD(·). Moreover, the average score
D̂a(Z0) to be used for the selection of future study subjects gives
us, for example, almost the same average treatment difference
E((Y 0

(1) − Y 0
(0))|D̂a(Z0) ≥ c) as AD(c). Thus D̂(Z0) obtained by

applying the variable selection algorithm to the whole dataset
can also be used as the score for a future patient with covariate
vector Z0. More details of our numerical study results are given
in the Remarks section.

5. EXAMPLES

First, we illustrate our proposal using the data from the ACTG
320 HIV study described in the Introduction, using the nine base-
line covariates listed in Table 1 of Hammer et al. (1997). This set
of covariates includes the baseline CD4 and RNA values. There
are 870 patients who had complete information with respect to
these 9 covariates. Again, we used week-24 CD4 value as the
response variable Y , as in Section 2. Here, we consider two
classes of models to construct various scoring systems. The first
one, as in (5), uses an additive linear model for each treatment
group with all nine of the covariates. The second one, as in (6),
uses a single model with main covariate effects and interactions
between the treatment indicator and other covariates. For each
of the two classes of models, we used four variable selection
procedures to build candidate scoring systems. For the first pro-
cedure, we used the full model with all the baseline covariates.
For the second one, we used a stepwise variable selection based
on Akaike information criterion (AIC) (Akaike 1973). We then
used lasso and ridge regression as the third and fourth variable
selection procedures, respectively. The tuning parameters were
selected by the standard cross-validation procedure built in the
R package glmnet. For comparison, we also considered the sim-
ple two-variable model, discussed in Section 2, which uses only
baseline CD4 and RNA.

Figure 3 summarizes the treatment difference curves ÃDa(·)
based on the averages over M = 500 replications of a cross-
validation procedure, where each replication resulted from the
random selection of 4/5 of the data as the training set. The results
from these two classes of models are quite similar, except when
using the lasso variable selection procedure. The model using
only CD4 and RNA without variable selection performs well. On
the other hand, the scoring systems using 9 covariates with the
standard variable selection algorithms do not perform as well.

Now, if one wants to identify a subpopulation with an average
CD4 count treatment difference of 100 cells/mm3, then clearly
the scoring system built with CD4 and RNA, which gives us
the largest target subset of patients among all the candidate
models, is the most favorable. In fact, using the two-variable
model, 52% of the patients meet this criteria, while no more than
30% of the patient population is identified via any of the other
candidate models. If this specific level of treatment difference
is not of particular clinical interest, one may use the AUC and
ABC discussed in Section 3 to compare the scoring systems.
For example, with two separate models and η = 0.90, the ABC
for the scoring system built using nine covariates with the lasso
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Figure 3. Comparing the estimated average treatment difference curves using various scoring systems based on 500 replicates of cross-
validation for the ACTG 320 data (left panel: two separate models; right panel: a single interaction model). The online version of this figure is
in color.

procedure is 9.1, compared with 17.3 for the simple model built
using only CD4 and RNA.

As a second example, we considered a recent clinical trial
“Prevention of Events with Angiotensin Converting Enzyme
Inhibition” (PEACE) to study whether the ACEi are effective
for reducing certain future cardiovascular-related events for pa-
tients with stable coronary artery disease and normal or slightly
reduced left ventricular function (Braunwald et al. 2004). In
this study, 4158 and 4132 patients were randomly assigned to
the ACEi treatment and placebo arms, respectively. The median
follow-up time was 4.8 years. One main endpoint for the study
was the patient’s survival time. By the end of the study, 334
and 299 deaths occurred in the control and treatment arms, re-
spectively. Under a proportional hazards model, the estimated
hazard ratio is 0.89 with a 0.95 confidence interval of (0.76,
1.04) and a p-value of 0.13. Based on the results of this study,
it is not clear whether the ACEi therapy would help the overall
patient population with respect to mortality. However, with fur-
ther analysis of the PEACE survival data, Solomon et al. (2006)
reported that ACEi might significantly prolong survival for the

subset of patients whose kidney functions at the study entry time
were not normal (e.g., those with estimated glomerular filtration
rate, eGFR, < 60). This finding could be quite useful in practice.
On the other hand, such a subgroup analysis has to be executed
properly and the results of such analysis have to be interpreted
cautiously (Rothwell 2005; Pfeffer and Jarcho 2006; Wang et al.
2007).

For this example, we considered the time-to-event endpoint,
T , the time to all-cause mortality. To build a candidate scoring
system, we first used the 7 covariates previously identified as
statistically and clinically important predictors of the overall
mortality in the literature (Solomon et al. 2006). These covari-
ates are eGFR, age, gender, left ventricular ejection fraction
(lveejf), history of hypertension, diabetes, and history of my-
ocardial infarction. For comparison, we also used two scoring
systems built using eGFR alone and lveejf alone, which are two
conventional predictive markers for cardiovascular diseases. In
addition, we considered the scoring systems built with various
variable selection procedures using the baseline covariates listed
in table 2 of Braunwald et al. (2004). However, we did not use
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Figure 4. Comparing the estimated average treatment difference curves using different scoring systems with respect to 72-month survival
rate, based on 500 replicates of cross-validation for the PEACE data (left panel: two separate models; right panel: a single interaction model).
The online version of this figure is in color.

three of the variables listed: race, country, and serum creatinine,
which were not available in our database from the U.S. National
Institutes of Health. Moreover, we omitted four binary variables
due to lack of variability (i.e., over 95% of patients exhibited the
same covariate value). These excluded variable are use of Digi-
talis, use of antiarrhythmic agent, use of anticoagulant, and use
of insulin. On the other hand, an extra variable eGFR, which is
a function of age, gender, race, and serum creatinine, was avail-
able in our database. To this end, we considered the remaining
20 variables from table 2 of Braunwald et al. (2004) in addition
to eGFR, resulting in a total of 21 covariates. In our analysis, we
included all patients (n = 7460) who had complete information
concerning these 21 covariates. To estimate the score for the
treatment differences, we considered two classes of models: a
separate Cox model for each of the two treatment groups and
a single Cox model, which includes treatment–covariate inter-
action terms. For each of the two classes of models, we used
the same four variable selection procedures as in the previous
example to build candidate scoring systems.

First, suppose that one is interested in survival probability
at month 72. We let Y = I (T ≥ 72). Figure 4 summarizes the
treatment difference curves for various scoring systems based
on 500 random cross-validations with 4/5 of the data as the
training set. The treatment difference curve with the 7 clinically
meaningful covariates and the one with eGFR alone are similar.
Both perform uniformly better than any of the scoring systems
which use all 21 covariates. When using two separate models,
as shown in the left panel of Figure 4, the performance of the
scoring systems constructed via variable selection procedures
appears similar to the full model. Using a single interaction
model (right panel), the stepwise and lasso variable selection
procedures appear inferior to the one with all 21 covariates. It
is interesting to note that the scoring system based on lveejf
alone performs quite poorly, indicating that this conventional
marker for cardiovascular diseases by itself is not helpful in
identifying patients who would benefit from ACEi. To further
quantify the relative performance among the candidate scoring
systems, one may use the AUC and ABC discussed in Section
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Figure 5. Comparing the estimated average treatment difference curves using different scoring systems with respect to restricted mean survival
time up to 72 months, based on 500 replicates of cross-validation for the PEACE data (left panel: two separate models; right panel: a single
interaction model). The online version of this figure is in color.

3. For example, with two separate models and η = 0.90, the
ABC for the scoring system built with 7 covariates is 0.015,
which is the largest among all candidates. The estimated ratio
of correlations between the true treatment difference D(Z0)
and log{[1 − H̄ (D̄(Z0))]−1} using this scoring system is 1.21
relative to that using eGFR alone, 1.65 relative to the one using
all 21 covariates, and 4.11 relative to that using lveejf alone.

Next, suppose that one is interested in the restricted mean
event time up to month 72. To this end, we let Y = min(T , 72).
Figure 5 presents the results based on 500 random cross-
validations with 4/5 of the data as the training set. The scoring
system built with the 7 covariates appears to outperform the oth-
ers. Again it appears that the scoring systems created using the
variable selection procedures with 21 covariates perform simi-
larly or inferior to the one with the full model, and the system
based on lveejf only performs poorly. It is interesting to note
that the model with eGFR alone does not perform particularly
well for this endpoint.

Based on the partial AUC and ABC, the scoring system us-
ing two separate models with 7 covariates is the best among

the candidate models for the survival probability at month 72.
This model also gives the best scoring system among the can-
didate models for the restricted mean event time up to month
72. Figure 6 provides the estimated average treatment differ-
ences ÂDa(c) over a range of values c for both endpoints.
From this figure, one can easily identify the subgroup of pa-
tients with any desired level of treatment benefit. For example,
if we desire a 72-month survival rate benefit of 0.05, since
ÂD(0.038) = 0.05, we can identify the subset of patients with
Z0 such that D̂(Z0) ≥ 0.038. If we desire a treatment benefit of
1.5 months for the restricted mean event time up to month 72,
the corresponding subset would consist of patients with Z0 such
that D̂(Z0) ≥ 2.23.

6. REMARKS

Note that the typical subgroup analysis strategy, which tries
to identify a target population for future study by dichotomizing
one or more baseline variables, may not be efficient, especially
when the dimension of the covariate vector Z is large. That is,
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Figure 6. Estimated average treatment difference for patients with D̂(Z) ≥ c using the scoring system built with two separate models and 7
covariates for the PEACE data (left panel: 72-month survival rate; right panel: restricted mean survival time up to 72 months).

the resulting population selected by this strategy can be quite
small, which is not practically useful. Our proposed procedure
attempts to select the largest population whose subjects would
have a desired overall treatment benefit, among all candidate
scoring systems.

We conducted an extensive numerical study to examine the
performance of the new proposal under various practical set-
tings. We find that the estimator ÂDa(c) via the random cross-
validation procedure is practically unbiased for its theoretical
counterpart AD(c) in (1) when c is not very large (the upper tail
of ÂDa(·) may not be stable). On the other hand, if we use the
entire dataset to fit a model for creating a scoring system, and
use the same dataset to estimate AD(c), the resulting estimator
ÂD(·) can be substantially overly optimistic. As an example, in
our study, we mimicked the HIV example to generate the data
from a single linear model with response Y being the week-
24 CD4 count and independent variables being the treatment
indicator, the nine baseline covariates discussed in Section 5,
and the treatment–covariate interactions. The error of the model
was assumed to be normal with mean zero. We fitted the HIV
study data using this model and then used this model to gen-
erate responses repeatedly. To simulate a dataset with sample
size n = 870, we first sampled 870 vectors of the discrete co-
variates from their empirical joint distribution from the original

study database. We then sampled 870 vectors of the continuous
covariates from a multivariate normal distribution with mean
and covariance equal to the empirical mean and covariance
matrix from the original data. Then we generated a week-24
CD4 count using the above “true” model. For each simulated
dataset of n = 870 patients, we fitted two separate linear models
(one each for the control and treatment groups) using the above
9 covariates additively and used the resulting parameter esti-
mates to construct a scoring system D̂(Z). We then generated
100,000 new independent observations (Y,G, Z) from the same
distribution described above and used these fresh samples to
estimate the mean value of the treatment difference Y 0

(1) − Y 0
(0),

given D̂(Z) > c. We repeated this process 1000 times and used
the empirical average to approximate AD(c). The resulting
curve (solid) is given in Figure 7(a). Now, to obtain an em-
pirical average of ÂDa(c), we used the above 1000 simulated
datasets with sample size n. The random cross-validation proce-
dures were repeated 500 times for each simulated dataset. The
dashed curve in Figure 7(a) is the resulting empirical average
of ÂDa(c) with a 4:1 ratio of training and evaluation samples.
The dotted curve in Figure 7(a) is the corresponding empiri-
cal average of ÂD(·), where the same dataset is used for both
training and evaluation. Note that the dotted curve is markedly
higher than the solid one, indicating that the procedure using
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Figure 7. Comparisons between the estimation procedures with and without cross-validation with n = 870; (a) and (b) are based on simulation
with the 9 covariates mimicking the HIV example; (c) and (d) are based on simulation with the 9 covariates plus 50 noise variables. The (a) and
(c) present the average treatment difference curves, the solid curve is the “truth,” the dashed curve is the empirical average using cross-validation
procedure with a 4:1 ratio of training and evaluation samples, and the dotted curve is the empirical average without using cross-validation. In (b)
and (d), the solid and dashed lines are the coverage probabilities of the 95% confidence intervals without and with cross-validation, respectively.
The online version of this figure is in color.

the entire dataset for model building and evaluation can be quite
misleading.

We repeated the above simulation procedure with the same
true model for the response variable, but this time added 50 ran-
dom standard normal covariates to our analysis, representing
pure noise. We used all the 59 covariate to fit the models and
constructed the scoring systems. In Figure 7(c), the empirical
average of the naive ÂD(·) is dramatically higher than its true
counterpart, while the empirical average of ÂDa(·) obtained via

cross-validation is still quite close to the truth. From our ex-
tensive numerical study, we find that the estimation procedure
for AD(·) performs well with a random K-fold cross-validation
when 5 ≤ K ≤ 10 (i.e., repeatedly using K − 1 subsets as train-
ing data and 1 as evaluation data).

As indicated in Section 4, when an extensive model selection
process is involved, it is difficult, if not impossible, to make
further inference about the average treatment difference curve
AD(·) associated with the final scoring system using the same
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data from which it was constructed. If there is an independent
dataset generated from a similar population, the techniques for
analyzing standard empirical processes may be used for con-
structing the interval estimates by treating the scores as being
fixed (Song and Pepe 2004; Song and Zhou 2011). On the other
hand, if there is only a single prespecified working model in our
analysis, one may be able to construct interval estimates with the
same dataset after model fitting. Based on our extensive numeri-
cal study with the aforementioned simulation setup, we find that
the coverage levels of such interval estimators (pointwise and
simultaneous) based on ÂDa(·) are quite close to their nominal
values. For example, Figures 7(b) and 7(d) present the empirical
coverage probabilities of the pointwise 95% confidence interval
estimator for AD(c) under the above two simulation settings.
The dashed and solid lines are based on ÂDa(c) and ÂD(c),
respectively. The empirical pointwise coverage probabilities are
very close to 0.95 for the interval estimators based on ÂDa(c).
Moreover, the 95% simultaneous confidence interval estima-
tors based on ÂDa(c) have empirical coverage probabilities of
98.4% and 97.6% under the two simulation settings.

In Cai et al. (2011), under a single prespecified model for
creating a scoring system, a nonparametric smooth functional
estimator for the treatment difference is provided for any fixed
score D̂(Z). Their procedure can be quite useful at the individual
level for the treatment selection. However, the nonparametric
estimator can be unstable even with data from a moderately
sized study. The approach taken for the management of future
patients, as discussed in this article, is similar to the approaches
proposed by Song and Pepe (2004) and Song and Zhou (2011)
in which the score was simply a univariate biomarker. Such
a cumulative stratification strategy can be quite useful for the
treatment selection with a utility function defined at a population
level.

The average treatment difference curve AD(c) is defined con-
ditionally on the study patient population. For the patient man-
agement of a general patient population, one needs to general-
ize the scoring system from the study population to the general
population. If the score is derived from a single true regression
model for both populations, then a weighted scheme based on
the density functions of the covariate vectors for the two treat-
ment groups may be utilized to make such an adjustment of the
score from the study population to the general population (in
practice, this is very difficult for the case with high-dimensional
covariate vectors). The general issues have been discussed, for
example, by Frangakis (2009) and Cole and Stuart (2010).

The average treatment difference curve AD(c) is related to
the tail-oriented (STEPP, subpopulation treatment effect pattern
plot; Bonetti and Gelber 2000), which is based on a single
covariate U. Similar to the tail-oriented STEPP that considered
both subgroups with U ≥ u and U < u, one may construct a
corresponding plot for our proposal with the score D̂(Z) less
than c for selecting the study population. Note that this plot can
also be constructed with the score in the “>” direction by using
a new scoring system −D̂(Z).

From a risk-benefit perspective for evaluating the new treat-
ment, one may additionally collect toxicity information and
then construct a set of corresponding treatment contrast mea-
sures using the same efficacy score D̂(Z). The resulting two
sets of curves can be quite useful for selecting a proper tar-

get population who may be expected to experience relatively
large treatment benefits without excessive toxicity. For compar-
ing multiple treatment arms with a control, we may construct
pairwise treatment–control difference curves ÃDa(·). It follows
from our proposal that the treatment with the highest treatment
difference curve or a function thereof may be selected to be the
candidate for the future studies.

SUPPLEMENTARY MATERIALS

Appendix: Technical details.

[Received August 2011. Revised August 2012.]
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