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This talk will begin with an overview of the proportional
odds (PO) and continuation ratio (CR) ordinal logistic
models. Then it will outline how assumptions of these
two models are checked. It will also compare the two
models in the context of developing a clinical predic-
tion model for diagnhostic outcomes of bacterial infec-
tions in young infants enrolled in a World Health Orga-
nization/ARI Programme study in developing countries.
Residual plots will be presented for assessing linearity
and distributional assumptions. The ease with which
the CR model can be relaxed to allow for X by Y inter-
action will be exploited to allow flexibility in the model.
An example will be given where penalized maximum like-
lihood estimation is used to keep the more flexible model
from overfitting. Sample S—PLUS code and a list of ref-
erences for PO and CR models will be provided.
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Outline

Ordinal Response variable Y

Proportional odds (PO) and continuation
ratio (CR) models

Score residuals for checking PO assump-
tion

Partial residuals for checking PO model

Partial residuals for checking CR model

Example: WHO/ARI Multicentre Young
Infant Study



Ordinal Response Variable Y

e Only rank ordering matters (spacing irrel-
evant)

e Examples: severity of pain, quality of life,
severity of clinical endpoint

e Y coded 0,1,...,k



PO Model

e Special case: Wilcoxon test
1

B P TR )

i=1,2,... k.

e Fixed j5: binary logistic model for Y > 3



CR Model

e Categorical Cox model

: : 1
Pr(Y =jlY 25, X) =

1 + exp[—(0; + Xv)]
logit(Y = 0|X)

logit(Y = 0|Y > 0, X)

= 0o+ X~
ogit(Y = 1|V > 1,X) = 61 + X~
logit(Y = k — 1|
Y>k—1,X) = 6,1+ X~.

e Fixed j: binary logistic model for
Y =3Y >



Score Residuals for Checking PO

Compute first derivative of log—likelihood
with respect to each parameter, compute
mean stratifying on Y

Analogous to Schoenfeld residual in Cox
model

Plots U—shaped if PO holds

Instead use fitted PO model to predict se-
ries of events ¥ > 4,9 =1,2,...,k

Compute score residuals from binary logis-
tic model

Uim = Xim ([Y; > 7] — pz])

Get mean and CL for each column of U

5



Partial Residuals for PO Model

Again use residuals for binary model, for
each cutoff 3y and the m’'th predictor

[Y; > 4] — P

Pii(1 - Py)

Tem — Bszm +

Smooth, e.gd. lowess

Check for parallelism across j

Also check linearity in the logit



Partial Residuals for CR Model

e Again use binary logistic model partial resid-
uals

e Separately fit sequence of binary models
with applicable (increasingly small) subsets
of subjects

e Parallelism = constant slope assumption
OK



Example: WHO/ARI Multicentre Study of
Clinical Signs and Etiological Agents of
Pneumonia, Sepsis, and Meningitis in Youngd
Infants

e Goal: Improve diagnosis/treatment of in-
fants < 3 mos. old in developing countries

e Diseases of interest: Serious bacterial in-
fection (sepsis, meningitis, pneumonia)

e n = 4552 4 countries

e 14 symptom/sign summary scores, 4 vital
signs



Response Variable

Y Definition Frequency

O Neither 3551

1 Mild hypoxemia or 490
Pneumonia by X—ray

2 Severe hypoxemia or 511

-+ Bacterial blood culture or
+ Cerebrospinal culture




e Binary

bul.conv

reffort

Checking PO Assumption
(Assuming Linearity)

model score residuals
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Checking Transformations and PO
Assumption

Series of binary model smoothed
residual plots

partial
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What is Effect of Non-PQO?7

e Fit separate binary model for Prob(Y = 2)

e Compare with predictions from PO model
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Checking Transformations and CR
Assumptions

e Series of binary model smoothed partial
residual plots

e Each one for Prob(Y = j|Y > j)

13
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Extended CR Model

Some or all of the X's can have different
regression coefficients for some or all of the
Y cutoffs

: : 1
Priy =4Y >4, X) =

1+ exp[—(8; + Xv;)]

Flexibility to fit any ordinal or polytomous
model

Best to state model as having main effects
plus terms interacting with Y ()

Formal test for equal slopes assumption

Can overfit, causes model’'s predictions to

not be well calibrated
14



e Use penalized maximum likelihood estima-
tion, penalizing primarily on the interaction
terms (Gray, Verweij et al.)

e Allow for unequal slopes only as far as the
information content in the data will sup-
port
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Final Model: Prob(Y > 0) Portion
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Summary

Smooth partial residual plots are useful for
checking both linearity and constant slope
assumptions

Neither PO nor CR model fit the WHO /ARI
dataset

CR model easier to generalize

Use differential penalization of X xY inter-
actions to achieve parsimony while fitting
the data

17






“all” refers to prediction of Y =0, and "Y >= 1" refers to the prediction of Y =1 cond. onY > 1.



