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Abstract

Traditional statistical methods attempt to provide objective information

about treatment effects through the use of easily computed P –values. How-

ever, much controversy surrounds the use of P –values, including statistical

vs. clinical significance, artificiality of null hypotheses, 1–tailed vs. 2–tailed

tests, difficulty in interpreting confidence intervals, falsely interpreting non–

informative studies as ”negative”, arbitrariness in testing for equivalence, trad-

ing off type I and type II error, using P –values to quantify evidence, which

statistical test should be used for 2 × 2 frequency tables, α–spending and

adjusting for multiple comparisons, whether to adjust final P –values for the

intention of terminating a trial early even though it completed as planned, com-

plexity of group sequential monitoring procedures, and whether a promising but

statistically insignificant trial can be extended. Bayesian methods allow calcu-

lation of probabilities that are usually of more interest to consumers, e.g. the

probability that treatment A is similar to treatment B or the probability that

treatment A is at least 5% better than treatment B, and these methods are

simpler to use in monitoring ongoing trials. Bayesian methods are controver-

sial in that they require the use of a prior distribution for the treatment effect,

and calculations are more complex in spite of the concepts being simpler. This

talk will discuss advantages of estimation over hypothesis testing, basics of

the Bayesian approach, approaches to choosing the prior distribution and ar-

guments for favoring non–informative priors in order to let the data speak for

themselves, pros and cons of traditional and Bayesian inference, relating the

bootstrap to the Bayesian approach, possible study design criteria, sample size

and power issues, and implications for study design and review. The talk will
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use several examples from clinical trials including GUSTO (t–PA vs. streptoki-

nase for acute MI), a meta–analysis of possible harm from short–acting nifedip-

ine, and interpreting results from an unplanned interim analysis. BUGS code

will be given for these examples. The presentation will show how the Bayesian

approach can solve many common problems such as not having to deal with

how to “spend α” when considering multiple endpoints and sequential analy-

ses. An example clinical trial design that allows for continuous monitoring for

efficacy, safety, and similarity for two endpoints is given.
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Major Topics and Suggested Schedule

• 9:00a – 10:30a

– Overview of Methods for Quantifying and Acting

on Evidence

– Frequentist Statistical Inference

– What’s Wrong with Hypothesis Testing?

– Confidence Intervals

– Overview of Bayesian Approach

– The Standardized Likelihood Function

– Bayesian Inferential Methods

• 10:30a – 11:00a: Break

• 11:00a – 12:30p

– Three Types of Multiplicity

– The Bootstrap

– 2 × 2 Table Example

– Software
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– Examples from Clinical Trials

• 12:30p – 1:30p: Lunch

• 1:30p – 2:15p

– Meta–Analysis Example

– Unplanned Interim Analysis Example

– Example Study Designs

– Power and Sample Size

– Acceptance of Methods by Regulators &

Industry

– Summary

• 2:15p – 3:30p: General discussion
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Outline

• Quantifying Evidence vs. Decision Making

• Frequentist Statistical Inference

– Methods

– Advantages

– Disadvantages and Controversies

• What’s Wrong with Hypothesis Testing?

– The Applied Statistician’s Creed

– Has hypothesis testing hurt science?

• Confidence Intervals

• Bayesian Approach

– Brief Overview of Methods

– Advantages

– Disadvantages and Controversies

• The Standardized Likelihood Function

• Bayesian Inferential Methods
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– Choosing the Prior Distribution

– One–Sample Binomial

– Two–Sample Binomial

– Two–Sample Gaussian

– One–Sample Gaussian

– Deriving Posterior Distributions

– Using Posterior Distributions

• Sequential Testing

• Subgroup Analysis

• Inference for Multiple Endpoints

• The Bootstrap

• 2× 2 Table Example: Traditional, Bayes, Bootstrap

• Software: BUGS and S-PLUS

• Examples from Clinical Trials

• Suggested Design Criteria

• Example Study Design
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• Power and Sample Size

• Implications for Design & Evaluation

• Acceptance of Methods by Regulators & Industry

• Summary
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Overview

• Point estimate for population treatment difference

• Probability of a statistic conditional on an

assumption we hope to gather evidence against

• Binary decision based on this P –value

• Selection of the variable of interest by a stepwise

variable selection algorithm

• Interval estimate: set of all parameter values that if

hypothesized to hold would not be rejected at

1 − α level or

Interval that gives desired coverage probability for

a parameter estimate

• Probability of a parameter (e.g., population

treatment difference) conditional on current data

• Entire probability distribution for the parameter
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• Optimal binary decision given model, prior beliefs,

loss function (e.g., patient utilities), data

• Relative evidence: odds ratio, likelihood ratio,

Bayes factor

E.g.: Whatever my prior belief about the therapy,

after receiving the current data the odds that the

new therapy has positive efficacy is 18 times as

high as it was before these data were available
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Medical Diagnosis Framework

• Traditional (frequentist) approach analogous to

consideration of probabilities of test outcomes |

disease status (sensitivity, specificity)

• Post–test probabilities of disease are much more

useful

• Debate about use of direct probability models (e.g.,

logistic) vs. classification

– Recursive partitioning (CART)

– Discriminant analysis

– Classify based on P̂ from logistic model
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Decisions vs. Simply Quantifying Evidence

• Decision tree to structure options and outcomes

• Uncertainty about each outcome quantified using

probabilities

• Consequences valued on utility scale

• Derive thresholds corresponding to different

actions

• Classic decision–making example: Berry et al.12

– Vaccine trial in children in a Navajo reservation

– Goal: minimize number of cases of

Haemophilus influenzae b cases in the Navajo

Nation
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Problems with “Canned” Decisions

• See Spiegelhalter (1986): Probabilistic prediction

in patient management and clinical trials71

However, such a complete specification and

analysis of the problem, even when

accompanied by elaborate sensitivity

analyses, often does not appear convincing

or transparent to the practising clinician.

Indeed, Feinstein has stated that

‘quantitative decision analysis is

unsatisfactory for the realities of clinical

medicine’, primarily because of the problem

in ascribing an agreed upon measure of

‘utility’ to a health outcome

• In medical diagnosis framework, utilities and

patient preferences are not defined until the patient

is in front of the doctor

• Example: decision re: cardiac cath is based on
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patient age, beyond how age enters into pre–test

prob. of coronary disease

• It is presumptuous for the analyst to make

classifications into “diseased” and “non–diseased”

• The preferred published output of diagnostic

modeling is P̂ (D|X)

• In therapeutic studies, probabilities of efficacy and

of cost are very useful; decisions can be made at

the point of care when utilities are available (and

relevant)
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Methods

• Attempt to demonstrate S assuming S̄ and

showing it’s unlikely

• Treat unknowns as constants

• Choose a test statistic T

• Compute Pr[T as or more impressive as one

observed|H0]

• Probabilities “refer to the frequency with which

different values of statistics (arising from sets of

data other than those which have actually

happened) could occur for some fixed but unknown

values of the parameters”15
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Advantages

• Simple to think of unknown parameter as a

constant

• P –values relatively easy to compute

• Accepted by most of the world

• Prior beliefs not needed at computation time

• Robust nonparametric tests are available without

modeling
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Disadvantages and Controversies

• “Have to decide which ‘reference set’ of groups of

data which have not actually occurred we are going

to contemplate”15; what is “impressive”?

• Conditions on what is unknowable (parameters)

and does not condition on what is already known

(the data)

• H0:no effect is a boring hypothesis that is often not

really of interest. It is more of a mathematical

convenience.

• Do we really think that most treatments have truly

an effect of 0.0 in “negative trials”?

• Does not address clinical significance

• If real effect is mean decrease in BP by 0.2 mmHg,

large enough n will yield P < 0.05

• By some mistake, α = 0.05 is often used as

magic cutoff
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• Controversy surrounding 1–tailed vs. 2–tailed tests

[68, Chapter 12]

• No method for trading off type I and type II error

• No uniquely accepted P –value for 2 × 2 table!

What is “extreme”: of all possible tables or all

tables with same total no. of deaths?

No consensus on the optimum procedure for

obtaining a P –value (e.g., Pearson χ2 vs. Fisher’s

so–called exact test, continuity correction,

likelihood ratio test, new unconditional tests).

• For ECMO trial, 13 P –values have been computed

for the same 2 × 2 table, ranging from 0.001 to 1.0

• P –values very often misinterpreteda

• Must interpret P –values in light of other evidence

since it is a probability for a statistic, not for drug

benefit
aHalf of 24 cardiologists gave the correct response to a 4–choice

question.24
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• Berger and Berry: n = 17 matched pairs,

P = 0.049, the maximum Pr[H0] = 0.79

• P = 0.049 deceptive because it involves

probabilities of more extreme unobserved data8

• In testing a point H0, P = 0.05 “essentially does

not provide any evidence against the null

hypothesis” (Berger et al.9) — Pr[H1|P = 0.05]

will be near 0.5 in many cases if prior probability of

truth of H0 is near 0.5

• Confidence intervals frequently misinterpreted —

consumers act as if “degree of confidence” is

uniform within the interval

• Very hard to directly answer interesting questions

such as Pr[similarity]

• Standard statistical methods use subjective input

from “the producer rather than the consumer of the

data” 8

• P –values can only be used to provide evidence
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against a hypothesis, not to give evidence in favor

of a hypothesis. Schervish67 gives examples where

P –values are incoherent: if one uses a P –value to

gauge the evidence in favor of an interval

hypothesis for a certain dataset, the P –value

based on the same dataset but for a more

restrictive sub–hypothesis (i.e., one specifying a

subset of the interval) actually gives more support

(larger P ).

• Equal P -values do not provide equal evidence

about a hypothesis63

• If use P < 0.05 as a binary event, evidence is

stronger in larger studies63 [68, P. 179-183]

• If use actual P -value, evidence is stronger in

smaller studies63

• Goodman41 showed how P –values can provide

misleading evidence by considering “replication

probability” — prob. of getting a significant result in
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a second study given P –value from first study and

given true treatment effect = observed effect in first

study

Initial Probability of

P –value Replication

.10 .37

.05 .50

.01 .73

.005 .80

.001 .91

• See also Berger & Sellke7

• See 65, 27 for interpretations of P –values under

alternative hypotheses

• Why are P –values still used?

Feinstein33 believes their status “. . . is a lamentable

demonstration of the credulity with which modern scientists

will abandon biologic wisdom in favor of any quantitative

ideology that offers the specious allure of a mathematical

replacement for sensible thought.”
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The Multiplicity Mess

• Much controversy about need for/how to adjust for

multiple comparisons

• Do you want Pr[Reject | this H0 true] = 0.05, or

Pr[Reject | this and other H0s true] = 0.05?

• If the latter, C.L.s must use e.g. 1 − α
k

conf. level

→precision of a parameter estimate depends on

what other parameters were estimated

• Rothman62:“The theoretical basis for advocating a

routine adjustment for multiple comparisons is the

‘universal null hypothesis’ that ‘chance’ serves as the

first–order explanation for observed phenomena. This

hypothesis undermines the basic premises of empirical

research, which holds that nature follows regular laws

that may be studied through observations. A policy of

not making adjustments for multiple comparisons is

preferable because it will lead to fewer errors of

interpretation when the data under evaluation are not
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random numbers but actual observations on nature.

Furthermore, scientists should not be so reluctant to

explore leads that may turn out to be wrong that they

penalize themselves by missing possibly important

findings.”

• Cook and Farewell21: If results are intended to be

interpreted marginally, there may be no need for

controlling experimentwise error rate. See also

[68, P. 142-143].

• Need to distinguish between H0: at least one of

five endpoints is improved by the drug and H0: the

fourth endpoint is improved by the drug

• Many conflicting alternative adjustment methods

• Bonferroni adjustment is consistent with a Bayesian

prior distribution which specifies that the probability

that all null hypotheses is true is a constant (say

0.5) no matter how many hypotheses are tested80

• Even with careful Bonferroni adjustment, a trial with
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20 endpoints could be declared a success if only

one endpoint was “significant” after adjustment;

Bayesian approach allows more sensible

specification of “success”

• Much controversy about need for adjusting for

sequential testing. Frequentist approach is

complicated.

Example: 5 looks at data as trial proceeds

Looks had no effect, trial proceeded to end

Usual P = 0.04, need to adjust upwards for

having looked

Two studies with identical experiments and data but

with investigators with different intentions → one

might claim “significance”, the other not (Berry10)

Example: one investigator may treat an interim

analysis as a final analysis, another may intend to

wait.

• It gets worse — need to adjust “final” point
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estimates for having done interim analyses

• Freedman et al.36 give example where such

adjustment yields 0.95 CI that includes 0.0 even for

data indicating that study should be stopped at the

first interim analysis

• As frequentist methods use intentions (e.g.,

stopping rule), they are not fully objective8

If the investigator died after reporting the

data but before reporting the design of the

experiment, it would be impossible to

calculate a P –value or other standard

measures of evidence.

• Since P –values are probabilities of obtaining a

result as or more extreme than the study’s result

under repeated experimentation, frequentists

interpret results by inferring “what would have

occurred following results that were not observed

at analyses that were never performed” 29.
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What’s Wrong with Hypothesis Testing?

• Hypotheses are often “straw men” that are

imagined by the investigator just to fit into the

traditional statistical framework

• Hypotheses are often inappropriately chosen (e.g.,

H0 : ρ = 0)

• Most phenomena of interest are not all–or–nothing

but represent a continuum

• See 50 for an interesting review



The Applied Statistician’s Creed 24

The Applied Statistician’s Creed

• Nester56:

(a) TREATMENTS — all treatments differ;

(b) FACTORS — all factors interact;

(c) CORRELATIONS — all variables are

correlated;

(d) POPULATIONS — no two populations

are identical in any respect;

(e) NORMALITY — no data are normally

distributed;

(f) VARIANCES — variances are never

equal;

(g) MODELS — all models are wrong;

(h) EQUALITY — no two numbers are the

same;

(i) SIZE — many numbers are very small.
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• →no two treatments actually yield identical patient

outcomes

• →Most hypotheses are irrelevant
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Has Hypothesis Testing Hurt Science?

• Many studies are powered to be able to detect a

huge treatment effect

• →sample size too small →confidence interval too

wide to be able to reliably estimate treatment

effects

• “Positive” study can have C.L. of [.1, .99] for effect

ratio

• “Negative” study can have C.L. of [.1, 10]

• Physicians, patients, payers need to know the

magnitude of a therapeutic effect more than

whether or not it is zero

• “It is incomparably more useful to have a plausible

range for the value of a parameter than to know,

with whatever degree of certitude, what single

value is untenable.” — Oakes58

• Study may yield precise enough estimates of
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relative treatment effects but not of absolute effects

• C.L. for cost–effectiveness ratio may be extremely

wide

• Hypothesis testing usually entails fixing n; many

studies stop with P = 0.06 when adding 20 more

patients could have resulted in a conclusive study

• Many “positive” studies are due to large n and not

to clinically meaningful treatment effects

• Hypothesis testing usually implies inflexibility69
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• Cornfield23:

“Of course a re–examination in the light of results of

the assumptions on which the pre– observational

partition of the sample space was based would be

regarded in some circles as bad statistics. It would,

however, be widely regarded as good science. I do

not believe that anything that is good science can be

bad statistics, and conclude my remarks with the

hope that there are no statisticians so inflexible as to

decline to analyze an honest body of scientific data

simply because it fails to conform to some favored

theoretical scheme. If there are such, however,

clinical trials, in my opinion, are not for them.”

• If H0 is rejected, practitioners often behave as if

point estimate of treatment effect is population

value
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Confidence Intervals

• Misinterpreted twice as often as P –values

• Are one–dimensional: consumers interpret a

confidence interval for OR of [.35, 1.01] as saying

that a 1% increase in mortality is as likely as a

10% decrease

• Confidence plots (with continuously varying 1 − α)

can help13, 28, but their interpretation is complex
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Methods

• Attempt to answer question by computing

probability of the truth of a statement

• Let S denote a statement about the drug effect,

e.g., patients on drug live longer than patients on

placebo

• Want something like Pr[S| data]

• If θ is a parameter of interest (e.g., log odds ratio or

difference in mean blood pressure), need a

probability distribution of θ| data

• Pr[θ|data] ∝ Pr[data|θ] Pr[θ]

• Pr[θ] is the prior distribution for θ

• Assuming θ is an unknown random variable
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Advantages

• “intended for measuring support for hypotheses

when the data are fixed (the true state of affairs

after the data are observed)”67

• “inferences are based on probabilities associated

with different values of parameters which could

have given rise to the fixed set of data which has

actually occurred”15

• Results in a probability most clinicians think they’re

gettinga

• Can compute (posterior) probability of interesting

events, e.g.

Pr[drug is beneficial]

Pr[drug A clinically similar to drug B]

Pr[drug A is > 5% better than drug B]19

aNineteen of 24 cardiologists rated the posterior probability as

the quantity they would most like to know, from among three choices.
24
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Pr[mortality reduction ≥ 0∩ cost reduction > 0]

Pr[mortality reduction ≥ 0 ∪ (mortality reduction

> 0.02∩ cost reduction > −$5000)]

Pr[mortality reduction ≥ 0 ∪ ( cost reduction

> 0∩ morbidity reduction ≥ 0)]

Pr[ICER ≤ $30, 000/ life year saved]

• Provides formal mechanism for using prior

information/bias — Pr[θ]

• Places emphasis on estimation and graphical

presentation rather than hypothesis testing

• Avoids 1–tailed/2–tailed issue

• Posterior (Berry prefers “current”) probabilities can

be interpreted out of context better than P –values

• If Pr[drug B is better than drug A] = 0.92, this is

true whether drug C was compared to drug D or not

• Avoids many of complexities of sequential

monitoring —
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P –value adjustment is needed for frequentist

methods because repeatedly computed test

statistics no longer have a χ2 or normal

distribution;

A posterior probability is still a probability → Can

monitor continuously

• Allows accumulating information (from this as well

as other trials) to be used as trial proceeds

• No need for sufficient statistics
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Controversies

• Posterior probabilities may be hard to compute

(often have to use numerical methods)

• How does one choose a prior distribution Pr[θ]?49

– Biased prior – expert opinion

difficult, can be manipulated, medical experts

often wrong, whose opinion do you use?34

– Skeptical prior (often useful in sequential

monitoring)

– Unbiased (flat, non–informative) prior

– Truncated prior — allows one to pre–specify

e.g. there is no chance the odds ratio could be

outside [ 1
10 , 10]

• For monitoring, Spiegelhalter et al.74 suggest using

“community of priors” (see 22 for pros and cons):

– Skeptical prior with mean 0 against which judge

early stopping for efficacy
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– Enthusiastic prior with mean δA (hypothesized

effect) against which judge early stopping for no

difference

• Rank–based analyses need to use models:

Wilcoxon →proportional odds ordinal logistic

model

logrank →Cox PH model
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Invalid Bayesian Analyses

• Choosing an improper model for the data (can be

remedied by adding e.g. non–normality parameter

with its own prior15)

• Sampling to a foregone conclusion if a continuous

prior is used but the investigators and the

consumers were convinced that prob. of treatment

effect is exactly zero > 0a

aThis is easily solved by using a prior with a lump of probability

at zero.
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• Suppression of the latest data by an unscrupulous

investigator:

Current results using 200 patients nearly

conclusive in favor of drug

Decide to accrue 50 more patients to draw firm

conclusion

Results of 50 less favorable to drug

Based final analysis on 200 patientsa

aNote the martingale property of posterior probs.: E[Pr(θ1 >

θ2| data, data′)] = Pr(θ1 > θ2| data).
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The Standardized Likelihood Function

• Unknown parameter θ, data vector y

• Let likelihood function be l(θ|y)

• Standardized likelihood:

p(θ|y) =
l(θ|y)

∫

l(θ|y)dθ
(1)

• Don’t need to choose a prior if willing to take the

normalized likelihood as a basis for calculating

probabilities of interest (Fisher’s fiducial

distributions)
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One–Sample Binomial

• Y1, Y2, . . . , Yn ∼ Bernoulli(θ)

• s = number of “successes”

• l(θ|y) = θs(1 − θ)n−s

•
∫

l(θ|y)dθ = β(s + 1, n − s + 1)

• p(θ|y) = θs(1−θ)n−s

β(s+1,n−s+1)

• Solving for θ so that tail areas of p(θ|y) = α
2

gives exact 1 − α C.L. for 1–sample binomial
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Basis

• p(θ|y) ∝ l(θ|y)p(θ)

• l(θ|y) = likelihood function

• Function through which data y modifies the prior

knowledge of θ15

• Has the information about θ that comes from the

data
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Choosing the Prior Distribution

• Stylized or “automatic” priors34, 49

• Data quickly overwhelm all but the most skeptical

priors, especially in clinical applications

• In scientific inference, let data speak for themselves

• →A priori relative ignorance, draw inference

appropriate for an unpredudiced observer15

• Scientific studies usually not undertaken if precise

estimates already known. Also, problems with

informed consent.

• Even when researcher has strong prior beliefs,

more convincing to analyze data using a reference

prior dominated by likelihood15

• Box and Tiao15 advocate locally uniform priors —

considers local behavior of prior in region where

the likelihood is appreciable, prior assumed not

large outside that range
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→posterior ≈ standardized likelihood

• Choice of metric φ for uniformity of prior:

Such that likelihood for φ(θ) completely

determined except for location (≈ variance

stabilizing transformation) — likelihood is data

translated

“Then to say we know little a priori relative to

what the data is going to tell us, may be

expressed by saying that we are almost equally

willing to accept one value of φ(θ) as another.”15

→Highest likelihood intervals symmetric in φ(θ)

• Example: Gaussian dist.→φ(σ) = log(σ), or if

use σ, prior ∝ σ−1
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Consumer Specification of Prior

• Place statistics describing study results on web

page

Posterior computed and displayed using Java

applet (Lehmann & Nguyen 53)

• Highly flexible approximate approach: store 1000

bootstrap θ̂, can quickly take a weighted sample

from these to apply a non–uniform prior 57
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One–Sample Binomial, Continued

• θ̂ = ȳ (proportion)

• sin−1
√

θ̂ →nearly data–translated likelihood and

locally uniform prior is nearly noninformative15

• Nearly noninformative prior on original scale

∝ [θ(1 − θ)]−
1

2

• Posterior using this prior is

p(θ|y) = θ
s− 1

2 (1−θ)n−s− 1

2

β(s+ 1

2
,n−s+ 1

2
)
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Two–Sample Binomial

• Posterior using locally uniform priors on

data–translated scale:

p(θ1, θ2|y) =

θ
s1−

1

2

1
(1−θ1)n1−s1−

1

2 θ
s2−

1

2

2
(1−θ2)n2−s2−

1

2

β(s1+
1

2
,n1−s1+

1

2
)β(s2+ 1

2
,n2−s2+ 1

2
)

• Can integrate to get posterior distribution of any

quantity of interest, e.g., θ1

1−θ1

1−θ2

θ2

• See Hashemi et al.44 for much more information

about posterior distributions of ORs and other

effect measures

• See Howard45 for a discussion of the need to use

priors that require θ1 and θ2 to be dependent.
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Two–Sample Gaussian15

• Y1 ∼ N(µ1, σ
2) ind. of Y2 ∼ N(µ2, σ

2)

• µ1, µ2, log σ ∼ constant independentlya

• ν = n1 + n2 − 2

• νs2 =
∑

(y1i − ȳ1)
2 +

∑

(y2i − ȳ2)
2

• δ = µ2 − µ1, δ̂ = ȳ2 − ȳ1

• p(δ, σ2|y) = p(σ2|s2)p(δ|σ2, δ̂)

• νs2/σ2 ∼ χ2
ν

p(δ|σ2, δ̂) = N(δ̂, σ2(1/n1 + 1/n2))

• Integrate out σ2 to get marginal posterior dist. of

δ ∼ tν [δ̂, s
2(1/n1 + 1/n2)]

aThe prior for σ ∝ σ
−1.
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One–Sample Gaussian

• Y ∼ N(µ, σ2), σ known

• µ ∼ N(µ0, σ
2
0)

• µ|y ∼ N(µ′, σ′2)

• µ′ = w0µ0+wy
w0+w

• σ′2 = 1
w0+w

• w0 = σ−2
0 , w = σ−2

• σ0 → ∞ : µ ∼ N(y, σ2)
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Deriving Posterior Distribution

• Analytic integration sometimes possible

• Numerical integration/simulation methods, e.g.,

Gibbs sampler20

• Gibbs Markov Chain Monte Carlo method can

handle huge number of parameters

• Simulated parameter values have correct

marginal and joint distributions

• Uses a “burn–in” of say 1000 iterations which are

discarded

• In some strange problems the realizations may not

converge properly
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Using Posterior Distribution

• Quantities such as Pr[OR < .9]

• Credible (highest posterior density) intervals

• Posterior odds

• If posterior represented analytically (and especially

if the CDF is), can compute any probability of

interest quickly

• Simulation of realizations from the posterior makes

for easy programming

• Example: Generate 5,000 ORs, compute fraction

of ORs < .9, mean OR, median OR, credible

interval (using sample quantiles)

• Kernel density estimate based on 5,000

realizations for graphical depiction

• Compute mode
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Sequential Testing

• Frequentist approach to deciding when to quit

watching a football game:

Of all games which ended in a tie or with your team

losing, what proportion had your team leading by

10 points with 12m to go in 4th quarter?

Must consider sample space

• Bayesian approach: at each moment can estimate

the probability that your team will ultimately win

based on the time left and the point spread

• No problem with estimating this probability every

second

• Distribution of unknown parameters updated at any

time10

• Evidence from experiment to date taken at face

value10

• No need for independent increments
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• No need for equal information time

• No scheduling

• No adjustment of point estimates, C.L. for

monitoring strategy

• Determining number of “looks” (k) that minimizes

expected sample size — frequentist: plot of avg.

sample size vs. k is U–shapeda; Bayesian: the

larger k the better10

• Example (Freireich et al. 1963): Patients treated in

pairs to see which patient had better time to

remission of leukemia10

• θ = Pr[A better than B],H0 : θ = 1
2

• Continuous monitoring →α = 0.05 corresponds

with P = 0.0075

• Uniform prior for θ

aBecause of α–adjustment
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Patient Preferred Current

Pair Treatment nA − nB 2P Pr[B > A]
1 A 1 1.0 0.25

2 B 0 1.0 0.50

3 A 1 1.0 0.31

4 A 2 0.63 0.19

5 A 3 0.38 0.11

6 B 2 0.69 0.23

7 A 3 0.45 0.14

8 A 4 0.29 0.090

9 A 5 0.18 0.055

10 A 6 0.11 0.033

11 A 7 0.065 0.019

12 A 8 0.039 0.011

13 A 9 0.022 0.0065

14 B 8 0.057 0.018

15 A 9 0.035 0.011

16 A 10 0.021 0.0064

17 A 11 0.013 0.0038

18 A 12 0.0075 0.0022

19 A 13 0.0044 0.0013

21 A 14 0.0026 0.0008

21 A 15 0.0015 0.0005
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Figure 1: Sequentially monitoring a clinical trial39. v is the log hazard ratio.
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Simulation Experiment

• Two–sample binomial

• Four replications of experiments with

θ1 = θ2 = 0.2

• Four replications with θ1 = 0.2, θ2 = 0.3

• Non–informative prior on probs. using

variance–stabilized scale

• Compute various posterior probs. by drawing

10,000 odds ratios from the posterior distribution

• Monitor results at n = 20, 40, . . . , 400,

500, 1000, 1500, . . . , 8000, 16000

• S-PLUS Code (File sim.s)

store() ## in Hmisc library in Statlib ->

## diverts objects to temporary storage

for(type in c(’null’,’non-null’)) {

if(type==’null’) {

p1 <- .2

p2 <- .2
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ps.slide(’nullsim’,type=3,hor=F)

## ps.slide in Hmisc in Statlib

## (pretty defaults for postscript)

set.seed(171)

} else {

p1 <- .2

p2 <- .3

ps.slide(’nnullsim’,type=3,hor=F)

set.seed(2193)

}

n.experiments <- 4

n.total <- 16000

k <- n.total/2

n.beta <- 10000

par(mfrow=c(2,2))

for(kx in 1:n.experiments) {

## Generate Bernoulli observations

y1 <- sample(0:1,k,T,prob=c(1-p1,p1))

y2 <- sample(0:1,k,T,prob=c(1-p2,p2))

## At any possible time of analysis,

## compute total # events

s1 <- cumsum(y1)

s2 <- cumsum(y2)
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n1 <- n2 <- 1:k

ii <- c(seq(10,200,by=10),seq(250,4000,by=250),k)

phi <- plow <- peq <- peff <- single(length(ii))

j <- 0

for(i in ii) {

cat(i,’’)

j <- j+1

ss1 <- s1[i]

ss2 <- s2[i]

nn1 <- n1[i]

nn2 <- n2[i]

## Get 10000 draws from posterior distribution of prob. of

## event for each of the two groups, using prior that is

## noninformative on the variance-stabilized scale

## (arcsin sqrt(p)).

p1.u <- rbeta(n.beta,ss1+.5,nn1-ss1+.5)

p2.u <- rbeta(n.beta,ss2+.5,nn2-ss2+.5)

or <- p2.u/(1-p2.u)/ (p1.u/(1-p1.u))

peff[j] <- mean(or < 1)

plow[j] <- mean(or < .85)

phi[j] <- mean(or > 1/.85)

peq[j] <- mean(or >= .85 & or <= 1/.85)
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}

x <- log(2*ii,2)

labcurve(list(’OR < 1’ =list(x,peff),

’OR < .85’ =list(x,plow),

’OR > 1/.85’ =list(x,phi),

’OR [.85,1/.85]’ =list(x,peq)),

xlab=’log2(N)’, ylab=’Posterior Probability’,

ylim=c(0,1), keys=1:4, pl=T)

}

dev.off()

}
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Figure 2: Simulation of 4 sequentially monitored experiments each with n =

16000, for the null case where θ1 = θ2 = 0.2.
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Figure 3: Simulation of 4 sequentially monitored experiments, each with

n = 16000, for the case where θ1 = 0.2, θ2 = 0.3.
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Subgroup Analysis

• Even with “significant” treatment effect in subgroup,

point estimates of effects will be greatly

exaggerated

• →Need to get away from hypothesis testing within

subgroups

• Shrinkage methods needed

• Example: Represent differential treatment effects

as random effects, shrinking them down to achieve

optimal prediction25, 26, 66, 3

• If prior distribution for each parameter of interest is

well- calibrated, posterior probabilities need no

adjustment for the number of subgroups tested 80
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Inference for Multiple Endpoints

• Success criteria using the clinical and not the

randomness scale

• Example: 3 endpoints

• Target Z1: Population mean blood pressure ↓ ≥ 5

mmHg

• Target Z2: Population exercise time ↑ ≥ 1 min.

• Target Z3: Population mean angina score ↓ ≥ 1

point

• Posterior Pr[Z1] = 0.97

• Posterior Pr[Z2] = 0.94

• Posterior Pr[Z3] = 0.6

• Pr[Z1 ∪ Z2 ∪ Z3] ≥ 0.97

• Pr[Z̄1 ∩ Z̄2 ∩ Z̄3] ≤ 0.03

• Pr[#Zi ≥ 2] = 0.95 for example
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• To demonstrate that a drug improves at least one

endpoint, study many endpoints!

• May want to show that at least 1
2 of the endpoints

are improved with high probability

• Alternative: Panel of experts rate importance of

outcomes, e.g., Z1 = 1, Z2 = 2, Z3 = 3

• Target could be ≥ 3 points

• Here Pr[Z3 ∪ (Z1 ∩ Z2)] ≥ 0.95

• Simply count number of samples from posterior

satisfying Z3 ∪ (Z1 ∩ Z2)

• Another way to summarize results: Estimate

E[#Zi] = 0.97 + 0.94 + 0.6 = 2.51 out of 3

• If all endpoints are binary, a kind of random effects

model for the endpoints may be useful52

• If prior distribution for each parameter of interest is

well- calibrated, posterior probabilities need no

adjustment for the number of responses tested 80
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• See Thall and Sung76 for formal Bayesian

approaches to multiple endpoints in clinical trials

• See Berry 11 for a Bayesian perspective on

data–generated hypothesis testing
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The Bootstrap

• Distribution–free C.L.: Take e.g. 1000 samples with

replacement from original sample

→θ̂1, . . . , θ̂1000

• Sort, [θ̂25, θ̂975]

• Bootstrap can be used to form a posterior

distribution when a somewhat odd reference prior

putting mass only on observed values is used
64, 57, 28, 70, 2

• Can use kernel density estimator based on

θ̂1, . . . , θ̂1000
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Figure 4: Bootstrap distribution of the x = 5 : x = 1 log odds ratio

from a quadratic logistic model with highly skewed x. The solid curve is a ker-

nel density estimate, and the dashed curve is a normal density with the same

mean and standard deviation as the bootstrapped values. Vertical lines indi-

cate asymmetric 0.9, 0.95, and 0.99 two–sided confidence limits for the log

odds ratio based on quantiles of the bootstrap values. The upper 0.99 confi-

dence limit of 18.99 is not shown with a line. Triangles indicates corresponding

symmetric confidence limits obtained assuming normality of estimates but us-

ing the bootstrap estimate of the standard error. The left limits for these are

off the scale because of the high variance of the bootstrap estimates. Circles

indicate confidence limits based on the usual normal theory–information matrix

method.
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Two–Sample Binomial Example

• Advantageous to specify prior for OR instead of for

the two probabilities of response θ1, θ2
74

Consider this later

• For now consider priors for θ1, θ2:

– Flat

– ∝ [θ(1 − θ)]−
1

2

• Data: Treatment A 30
200

Treatment B 18
200

• OR = 0.56; 2P = 0.064 (LR), 0.068 (Wald);

1P = 0.034 (Wald)

0.95 C.L. [.304, 1.042] (Wald based on normality

of log OR)
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• S-PLUS Code (File betaboot.s)

store() ## store is in Hmisc library in statlib

## it causes objects to go into a temporary area

library(Design,T) ## Design library is in statlib

## Set number of events and number of trials for 2 groups

s1 <- 30; n1 <- 200

s2 <- 18; n2 <- 200

or <- s2/(n2-s2) / (s1/(n1-s1))

or

## Get 50000 draws from posterior distribution of prob. of

## event for each of the two groups, using flat prior

## (standardized likelihood)

nsim <- 50000

set.seed(179) # not used in notes

p1 <- rbeta(nsim,s1+1,n1-s1+1) ## Generates 50000 Betas

p2 <- rbeta(nsim,s2+1,n2-s2+1)

## Use instead a prior that is noninformative on the

## variance-stabilized scale (arcsin sqrt(p)).

## The prior is 1/sqrt[p*(1-p)]

p1.u <- rbeta(nsim,s1+.5,n1-s1+.5)

p2.u <- rbeta(nsim,s2+.5,n2-s2+.5)
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or.sim <- p2/(1-p2) / (p1/(1-p1)) ## 50000 simulated ORs

or.sim.u <- p2.u/(1-p2.u)/ (p1.u/(1-p1.u))

## ----------------------------------------------------------------------

## The following block of code is under development. Problems to solve

## are (1) does this work with almost improper priors and (2) there

## should probably be a correlation between the prior for logit(p1) and

## the log odds ratio (Note: cov(B-A) = -var(A), A=logit(p1), B-A=log or)

## Use re-weighting to change prior distribution so that log or has

## normal distribution with mean 0 and variance 500

## logit(p1) is assumed to be normal with mean 0 and variance 10000

## 1/[p(1-p)] terms are from the Jacobian

logit <- function(p) log(p/(1-p))

w <- dnorm(logit(p1.u),0,sqrt(10000))/(p1.u*(1-p1.u)) *

dnorm(logit(p2.u),0,sqrt(10000+500))/(p2.u*(1-p2.u))

## Make weight vector sum to 1

w <- w / sum(w)

## Estimate posterior Prob[or < 1] and Prob[or < .9] using these priors

sum(w[or.sim.u < 1])

sum(w[or.sim.u < .9])

## Repeat this for a skeptical prior on the log or: normal(0, 1)

w2 <- dnorm(logit(p1.u),0,sqrt(10000))/(p1.u*(1-p1.u)) *

dnorm(logit(p2.u),0,sqrt(10000+1))/(p2.u*(1-p2.u))
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## Make weight vector sum to 1

w2 <- w2 / sum(w2)

sum(w2[or.sim.u < 1])

sum(w2[or.sim.u < .9])

## ---------------------------------------------------------------------

## Bootstrap distribution of OR

## First string out count data into vectors of binaries

y1 <- c(rep(1,s1),rep(0,n1-s1))

y2 <- c(rep(1,s2),rep(0,n2-s2))

## Get L.R. chisq test and Wald C.L. from logistic model

y <- c(y1,y2)

group <- c(rep(1,n1),rep(2,n2))

f <- lrm(y ˜ group)

## lrm, datadist, summary in Design library (in statlib)

## Gives chisq=3.44 2P=.064

dd <- datadist(group)

## stores distribution characteristics of group

options(datadist=’dd’)

summary(f, group=1:2) ## 0.95 C.L. for OR [.304,1.042]

B <- 10000 ## 10000 bootstrap samples

or.boot <- single(B)

for(j in 1:B) {
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if(j %% 100 ==0) cat(j,’’)

i <- sample(n1,replace=T) ## sample with replacement

y1.b <- y1[i]

i <- sample(n2,replace=T)

y2.b <- y2[i]

odds.1 <- sum(y1.b)/(n1-sum(y1.b))

odds.2 <- sum(y2.b)/(n2-sum(y2.b))

or.boot[j] <- odds.2 / odds.1

}

store(or.boot) ## store or.boot permanently

ps.slide(’ordens’,type=3,hor=F,mar=c(4,3,2,1)+.1)

## in Hmisc library

labcurve(list(

"Beta, Flat Prior" =density(or.sim),

"Beta, Prior=[p(1-p)]ˆ-.5"=c(density(or.sim.u),lty=2),

Bootstrap =c(density(or.boot),lwd=4)),

pl=T, xlab=’Odds Ratio’, ylab=’Density’, keys=’lines’)

minor.tick(5,5)

## labcurve and minor.tick are in Hmisc library

usr <- par("usr") ## x- and y-axis limits for plot

bot.arrow <- usr[3] ## usr[3:4] = limits of y-axis

top.arrow <- bot.arrow + 0.05 * (usr[4] - usr[3])

quan <- quantile(or.sim,c(.025,.05,.95,.975))

for(i in 1:4)

arrows(quan[i], top.arrow, quan[i], bot.arrow,

rel = T, size = 0.5)
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quan <- quantile(or.boot,c(.025,.975))

title(’Estimated Densities with 0.9 and 0.95\nProbability Intervals from Beta’)

title(sub=paste(

’Traditional 0.95 C.L. [.301,1.042], Bootstrap [’,

round(quan[1],3),’,’,round(quan[2],3),’]’,sep=’’),

adj=0,cex=.85)

text(1.03,.9,

paste(’Prob[OR < 1 ]=’,round(mean(or.sim<1),3),

’ (Beta) ’, round(mean(or.boot<1),3),

’ (Bootstrap)\n’,

’Prob[OR < 0.9]=’,round(mean(or.sim<.9),3),

’ (Beta) ’, round(mean(or.boot<.9),3),

’ (Bootstrap)’,sep=’’),adj=0)

dev.off()



Two–Sample Binomial Example 66-1

Odds Ratio

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Beta, Flat Prior
Beta, Prior=[p(1-p)]^-.5
Bootstrap

Estimated Densities with 0.9 and 0.95
Probability Intervals from Beta

Traditional 0.95 C.L. [.301,1.042], Bootstrap [0.283,1.044]

Prob[OR < 1  ]=0.965 (Beta)  0.965 (Bootstrap)
Prob[OR < 0.9]=0.93 (Beta)  0.937 (Bootstrap)
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were derived using the bootstrap and using a Bayesian approach with 2 prior

densities.
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Software

• BUGS (Bayesian Inference using Gibbs Sampling)

package (public domain, Cambridge)78, 40

• Available for variety of computer systems

•

http://www.mrc-bsu.cam.ac.uk/bugs

• http://muskie.biostat.

umn.edu/mirror/methodology/bugs/.

• Works in conjunction with any version of S-PLUS

using BUGS’ CODA S-PLUS functions

• BUGS has a general modeling language

• WinBUGS allows for graphical specification of

model, builtin interactive graphics for displaying

results, report writing capability

• Two–volume Examples Guide is must reading!
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GUSTO I

• Four thrombolytic strategies for acute MI,

n = 41, 02177

• SK=streptokinase, Combo=SK+t-PA

• Here consider only death ∪ disabling stroke

Treatment N Events Fraction

t-PA 10393 712 0.068

Combo 10370 783 0.076

SK+IV 10409 811 0.078

SK+SQ 9837 752 0.076

SK 20246 1563 0.077

• t-PA:SK OR=0.879, 2P = 0.006

• Bayesian analysis using 3 different priors

– Flat (log OR Gaussian with variance 106)

– log OR truncated Gaussian with

Pr[OR > 4 ∪ OR < 1
4 ] = 0
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∗ Pr[OR > 2 ∪ OR < 1
2 ] = 0.05

∗ Pr[OR > 1 1
3 ∪ OR < 3

4 ] = 0.05

• Similarity region: OR ∈ [0.9, 1
0.9 ]

• BUGS Data File (File sk.tpa.dat)

list(event=c(1563,712), treat=c(0,1), N=c(20246,10393))

• Initial Parameter Estimates (File bugs.in)

list(int=0,b.treat=0)

• Command File (File bugs.cmd)

compile("bugs.bug")

update(1000)

monitor(or)

update(5000)

stats(or)

q()
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• Model Code (File bugs.bug)
model logistic;

const

M=2;

var

event[M],

treat[M],

N[M],

p[M],

int,b.treat,or;

#data in "tpa.combo.dat";

#data in "sk.dat";

data in "sk.tpa.dat";

inits in "bugs.in";

{

or <- exp(b.treat);

for(i in 1:M) {

logit(p[i]) <- int+b.treat*treat[i];

event[i] ˜ dbin(p[i],N[i]);

}

#Prior distributions

int ˜ dnorm(0.0, 1.0E-6);

# b.treat ˜ dnorm(0.0, 7.989) I(-1.386,1.386);

# trunc at or=4, .025 prob>2

b.treat ˜ dnorm(0.0, 46.42723)I(-1.386,1.386);

# .025 prob < .75

# b.treat ˜ dnorm(0.0, 1.0E-6); #flat prior
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}
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• S-PLUS Code (File bugs.s)
ind <- inddat() ## inddat, readdat used here are from

out <- readdat() ## an older version of BUGS. These read BUGS output.

which <- 5

ti <- c(’Accelerated t-PA vs. Combination Therapy’,

’SK+SQ Heparin vs. SK+IV Heparin’,

’Combined SK vs. Accelerated t-PA’)[min(which,3)]

##prior <- ’Noninformative prior’

##prior <- ’Skeptical prior’ ## (1/4,4) possible, .025 prob > 2, <1/2

## sd=.3537729

prior <- ’Very skeptical prior’ ## (1/4,4) possible, .025 prob < .75,>1.333

## sd=.146762

fi <- c(’or.tpa.combo’,’or.sk’,’or.sk.tpa’,’or.sk.tpa.skeptical’,

’or.sk.tpa.skeptical2’)[which]

ps.slide(’priors’, type=3) ## ps.slide in Hmisc library in Statlib

dtruncnorm <-

function(x, mean = 0, sd = 1, lower = NA, upper = NA) {

##

## density of truncated normal - taken from BART

##

k.upper <- if(!is.na(upper)) pnorm((upper - mean)/sd) else 1

k.lower <- if(!is.na(lower)) pnorm((lower - mean)/sd) else 0

K <- 1/(k.upper - k.lower)

y <- K * dnorm(x, mean, sd)

y[x < lower] <- 0

y[x > upper] <- 0

y

}

x <- seq(.1,3,length=200)

for(i in 1:2) {

d <- dtruncnorm(log(x), mean=0, sd=c(.3537729,.146762)[i],

lower=-log(4), upper=log(4))
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if(i==1) plot(x, d, xlab=’Odds Ratio’, ylab=’’,

ylim=c(0,3), type=’l’) else

lines(x, d, lty=3)

}

abline(v=1, lty=2, lwd=1)

dev.off()

}

ps.slide(fi, type=3)

## The following uses drawdat2, a modified version of drawdat

## from a previous version of BUGS.

## drawdat2 has text() use cex=cex, remove cex= from plot(),

## comments out points(), par(), add xlab, posterior mode, remove title,

## get digits from options(), add xlim

cex <- .75 ## was 1.25 for large plot

options(digits=3)

drawdat2(v=’or’, trace=F, cex=cex, xlab=’Odds Ratio’, xlim=c(.5,1.5))

or <- out[,’or’]

cl <- quantile(or, c(.025,.975))

options(digits=3)

fcl <- format(cl)

xpos <- c(1.01,1.09,.955,.963,.972)[which]

ypos <- c(5.4,5,6.2,6.4,6.4)[which]

text(xpos,ypos,

paste(’2.5% = ’,fcl[1],

’\n97.5% = ’,fcl[2],

’\n\nProb(OR < 1) = ’,format(mean(or < 1)),

’\nProb(OR < .95) = ’,format(mean(or < .95)),

’\nProb(OR < .90) = ’,format(mean(or < .90)),

’\nProb(.90 < OR < 1/.9) = ’,format(mean(or > .9 & or < 1/.9)),

sep=’’),

adj=0, cex=cex)



Examples from Clinical Trials 74

pstamp(paste(ti,prior,sep=’ ’)) ## pstamp is in Hmisc
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Figure 6: Prior probability densities for OR = eβ . Both distributions as-

sume that OR = 1 (no effect) is the most likely value, and that ORs outside the

interval [ 1
4
, 4] are impossible. The solid curve corresponds to a truncated nor-

mal distribution for log OR having a standard deviation of 0.354. The dashed

curve corresponds to a more skeptical prior distribution with a standard devia-

tion of 0.147.
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Meta–analysis of Short–Acting Nifedipine

• From meta–analysis of 16 randomized trials by

Furberg et al.37a

• Individual subjects’ data not available

• Used dead/alive; studies had varying follow–up

and dose

• Model: logit pij = α+studyi + β× dose

• Fixed effects for β

• Random effects for studiesb: Gaussian, σ2

unknown but finite, has its own prior distribution

(Γ(10−4, 10−4))c

• Quantity of interest: 100mg : placebo odds ratio for

all–cause mortality
aWith changes for the two Muller studies59

bFor a single study, sites could be treated as random effects in

the same way
cUse of a hyperprior to estimate σ

2 makes this similar to Empiri-

cal Bayes
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• BUGS Data File (File nifbugs.dat)

list(dead = c(65, 65, 0, 0, 5, 7, 141, 150, 10, 10, 7, 7,

6, 10, 90, 105, 2, 1, 10, 10, 0, 0, 5, 7, 2, 12, 4, 4,

0, 1, 2, 5),

dose = c(0, 30, 0, 40, 0,

40, 0, 40, 0, 50, 0, 60, 0, 60, 0, 60, 0, 60, 0, 80, 0,

80, 0, 80, 0, 80, 0, 100, 0, 100, 0, 100),

study = c(12, 12, 5, 5, 1, 1, 16, 16, 14, 14,

15, 15, 3, 3, 13, 13, 7, 7, 10, 10, 2, 2, 4, 4, 9, 9,

6, 6, 8, 8, 11, 11),

N = c(1146, 1130, 13, 13, 68, 60, 2251, 2240, 115, 112,

120, 106, 75, 74, 678, 680, 327, 341, 88, 93, 25, 25,

70, 68, 211, 214, 68, 64, 9, 13, 63, 63))

• Initial Parameter Estimates (File bugs.in)

list(int=0,b.dose=0,

b.study=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),tau=0.001)
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• Command File (File bugs.cmd)

compile("bugs.bug")

update(500)

monitor(int)

monitor(b.dose)

monitor(or)

monitor(c.study)

monitor(tau)

monitor(sigma)

update(2000)

stats(int)

stats(b.dose)

stats(or)

stats(c.study)

stats(sigma)

q()

• Model Code (File bugs.bug)
model logistic;

const

S=16, # no. studies

M=32; # no. records (2 * # studies)

var

dead[M],

dose[M],

study[M],

N[M],

p[M],

int,b.dose,b.study[S],c.study[S],tau,sigma,or;
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data in "nifbugs.dat";

inits in "bugs.in";

{

for(k in 1:S) { # make random effects sum to zero

c.study[k] <- b.study[k] - mean(b.study[])

}

or <- exp(100*b.dose);

for(i in 1:M) {

logit(p[i]) <- int+b.dose*dose[i]+ c.study[study[i]];

dead[i] ˜ dbin(p[i],N[i]);

}

for(k in 1:S) {

b.study[k] ˜ dnorm(0.0, tau);

}

#Prior distributions

int ˜ dnorm(0.0, 1.0E-6);

b.dose ˜ dnorm(0.0, 7.989E4) I(-0.01386,0.01386);

# trunc at or=4, .025 prob>2

tau ˜ dgamma(0.0001, 0.0001);

sigma <- 1/sqrt(tau);

# s.d. of random effects

}
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mean =  1.425 
s.d = 0.221 
5% =  1.084 
95% =  1.807
2.5% = 1.046
97.5% = 1.888

Prob(or > 1) = 0.985
Prob(or > 1.05) = 0.971
Prob(or > 1.10) = 0.9395

Posterior mode=1.378

Empirical Bayesian mixed logistic model, non-informative prior Linear dose effect
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mean =  1.339 
s.d = 0.1834 
5% =  1.063 
95% =  1.66
2.5% = 1.011
97.5% = 1.730

Prob(or > 1) = 0.9795
Prob(or > 1.05) = 0.957
Prob(or > 1.10) = 0.9095

Posterior mode=1.322

Empirical Bayesian mixed logistic model, skeptical prior Linear dose effect
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Unplanned Interim Analysis

• Treatment A: 9
44 , Treatment B: 2

43 events

• “Sensitivity analysis” using varying degrees of

skepticism

• Larger prior variance →↑ chance of large effect
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Figure 15: Top panel: 0.95 credible interval and median B:A OR; bottom

panel: posterior probabilities of any efficacy (OR < 1) or of clinically important

efficacy
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Suggested Design Criteria

• Zone of clinical similarity is most important to

pre–specify

• Mortality efficacy:

Pr[OR < 1] ≥ 0.95

Pr[OR < 0.9] ≥ 0.9

• Mortality safety: Pr[OR > 1] ≥ 0.9

• Similarity in an efficacy study:

Pr[0.9 ≤ OR ≤ 1
0.9 ] ≥ 0.8

• Similarity study: Pr[OR ≤ 1
0.9 ] ≥ 0.9

• Can accommodate relative and absolute effects

simultaneously:

Pr[OR < 0.9 ∪ θ2 < θ1 − 0.05] > 0.9
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Example Study Design

• Study “powered” to detect a clinically relevant

difference in a continuous measurement Y1

measured at day 7 (in patients surviving ≥ 30

days); normality with equal variances is assumed

• Study not powered to detect a mortality difference

but FDA wants to include mortality as a safety

endpoint

• When mortality is relevant, should always union

mortality reduction with improvement on Y1, with

no penalty, even though apriori power thought to be

insufficient

• Second response variable is Y2 = time to death,

censored at 30 days; log–normal survival model

expected to provide excellent fit

• Lachenbruch51 derived a 2–stage 2 d.f. test for

jointly testing for differences in Y1 and Y2 where

Y1 only applies depending on the value of Y2
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• Let µi = population mean Y1 in treatment

i(i = 1, 2) given 30–day survival

• Let δ = µ2 − µ1 and λ be the ratio (2:1) of

population median survival time

• (Frequentist) sample estimates are differences in

conditional means of Y1 and anti–log of regression

coefficient from log–normal model for Y2

• Use Gibbs sampler to draw 30,000 realizations

from the joint posterior density of δ and λ

• Prior for δ: normal with mean 0 and variance so

that Pr[δ < −20] = 1
3

• Prior for log λ: normal with mean 0 and variance

so that Pr[λ > 1.1] = 1
3

• Consider effect of skepticism:

Variance of Y1 estimated to be 100. If the variance

was known and equal to 100 and if the difference in

sample mean Y1 was equal to -20, the following



Example Study Design 83

probabilities of efficacy with respect to Y1 obtain:

n Per Pr[δ < 0| Pr[δ < 0|

Group skeptical] flat prior]

10 0.626 0.673

20 0.699 0.736

50 0.821 0.841

100 0.912 0.921

250 0.986 0.987

500 0.999 0.999

1000 1.000 1.000

• Main efficacy assessment: Pr[δ < 0 ∪ λ > 1]

Can also quote two separate probabilities

• Safety: Pr[δ > 0], Pr[λ < 1]
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• Continuous monitoring:

Stop when Pr[δ < 0 ∪ λ > 1] ≥ 0.95

Stop when Pr[δ > 0] ≥ 0.99 or

Pr[λ < 1] ≥ 0.90 (mortality increase)

Stop when

Pr[−10 ≤ δ ≤ 10 ∩ 1
1.1 ≤ λ ≤ 1.1] ≥ 0.8

(similarity)
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Power and Sample Size

• Frequentist design assumes a value for θ under

Ha (θa)

• Many studies over-optimistically designed

– Tried to detect a huge effect (one much larger

than clinically useful) →n too small

– Power calculation based on variances from

small pilot studiesa

• Does not formally recognize uncertainty about θa

• Pure Bayesian approach (no fixed sample size) is

simple

• For fixed (maximum) sample size, standard

C.L.–based formulas 17, 14, Bayesian confidence

interval widths (see Thall & Simon for several

examples) 48, 75

aThe power thus computed is actually a type of average power;

one really needs to plot a power distribution and prehaps compute

the 75th percentile of power72.
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• Spiegelhalter and Freedman72 show how predictive

distributions can account for uncertainty about the

treatment affect and σ (vs. trusting σ̂ from pilot

data)

• Can obtain an entire power distribution, not just the

power under ideal parameter settings

• Bayesian “power” = posterior probability that left

credible interval endpoint > minimum worthwhile

effect 72

• Variety of approaches possible

– Use no prior distribution for constructing C.I. or

in specifying θa (θa = constant) (frequentist)

– Use previous studies (informative prior) for C.I.

but constant for θa

– Allow uncertainty in θa but use no prior in

constructing C.I. (frequentist test statistic) —

Spiegelhalter & Freedman 72 main approach;

can get expected power
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– Different priors used in constructing C.I. and

distribution for θa; former can come from

regulators

– Harrell’s S-PLUS gbayes function helps

(hesweb1.med.virginia.edu/biostat/s/Hmisc.html)
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Implications for Design/Evaluation

• Some studies can have lower sample sizes, e.g.,

more agressive monitoring/termination, one–tailed

evaluation, no need to worry about spending α,

use of data from similar studies

• Some studies will need to be larger because we

are more interested in estimation than

point–hypothesis testing or because we want to be

able to conclude that a clinically significant

difference exists

• Studies can be much more flexible

– Formal incorporation of results from previous

studies on the same treatment

– Can use a prior which is a mixture of posterior

from previous studies and non-informative prior;

mixing probability = “applicability” of previous

studies to current one, set by regulators

– Adapt treatment during study
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– Unplanned analyses

– With continuous monitoring, studies can be

better designed — bailout still possible

– Can extend a promising study

– Reduce number of small, poorly designed

studies by de-emphasizing power against a

fixed θ

– Reduce distinction between Phase II and III

studies

• Most scientific approach is to experiment until you

have the answer

• Allow for agressive, efficient designs

• Incentives for better design

• Let the data speak for themselves

• Trickery will still be apparent
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Acceptance of Bayesian Methods by

Regulatory Authorities and Industry

• FDA Center for Devices & Radiologic Health is

actively courting Bayesian design & analytic plans

• Other FDA centers are not against any analytic

philosophy; they are pro–science

• Biggest hurdle is industry, not regulators:

Deadline mentality and risk aversion — “Let’s do it

the way we did it for our last successful application.”

• Second biggest: It takes time to be a Bayesian

• Software will help

• Sound analytic plan before data analyzed, as

always

• Consider letting reviewers specify priors
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Summary

• Bayesian analysis actually reduces time spent in

arguing about statistical tests/designs!

• Substitutes an argument about the choice of a prior

for the following arguments:

– Which treatment effect to use for sample size

calculations

– One–tailed vs. two–tailed test

– “Exact” vs. approximate P –values (conditional

vs. unconditional analyses)

– How to test for similarity

– Multiplicity adjustments for multiple endpoints

– Scheduling, adjustments for sequential

monitoring

– How to penalize for extending a study
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– How to translate results to clinical significance

– How to prevent the audience from

misinterpreting a small or large P –value

• A little bit of skepticism goes a long way
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