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1 Covariable Adjustment in Linear Models

•Model: E(Y |X) = Xβ + ε

•Continuous response variable Y , normal resid-
uals
• Statistical testing for baseline differences is

scientifically incorrect (Altman & Doré 1990,
Begg 1990, Senn 1994, Austin et al.2010)
• If we are worried about baseline imbalance

we need to search patient records for counter–
balancing factors
•→ imbalance is not the reason to adjust for

covariables
• Adjust to gain efficiency by subtracting ex-

plained variation
•Relative efficiency of unadjusted treatment

comparison is 1− ρ2

•Unadjusted analyses yields unbiased treat-
ment effect estimate
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2 Hidden Assumptions in 2× 2 Tables

• Traditional presentation of 2–treatment clini-
cal trial with a binary response: 2× 2 table
• Parameters: P1, P2 for treatments 1, 2
• Test of goodness of fit: H0: all patients in

one treatment group have same probability
of positive response (Pj constant)
•→ H0: no risk factors exist
•Need to account for patient heterogeneity
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3 Covariable Adjustment in Nonlinear Models

3.1 Models for Binary Response

•Model for probability of event must be non-
linear in predictors unless risk range is tiny
•Useful summary of relative treatment effect

is the odds ratio (OR)
•Use of binary logistic model for covariable

adjustment will result in an increase in the
S.E. of the treatment effect (log odds ratio)
(Robinson & Jewell, 1991)
• But even with perfect balance, adjusted OR
6= unadjusted OR
• Adjusted OR will be greater than unadjusted

OR
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Example from GUSTO–I

• Steyerberg, Bossuyt, Lee41

• Endpoint: 30–day mortality (0.07 overall)
• 10,348 patients given accelerated t–PA
• 20,162 patients given streptokinase (SK)
•Means and Percentages

Characteristics of 30,000 GUSTO Patients
Baseline Characteristic t–PA SK
Age 61.0 60.9
Female 25.3 25.3
Weight 79.6 79.4
Height 171.1 171.0
Hypertension 38.2 38.1
Diabetes 14.5 15.1
Never smoked 29.8 29.6
High cholesterol 34.6 34.3
Previous MI 16.9 16.5
Hypotension 8.0 8.3
Tachycardia 32.5 32.7
Anterior MI 38.9 38.9
Killip class I 85.0 85.4
ST elevation 37.3 37.8
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Unadjusted / Adj. Logistic Estimates

•With and without adjusting for 17 baseline
characteristics

Unadjusted and Adjusted GUSTO Analyses
Type of Analysis Log OR S.E. χ2

Unadjusted -0.159 0.049 10.8
Adjusted -0.198 0.053 14.0

• Percent reduction in odds of death: 15% vs.
18%
• -0.159 (15%) is a biased estimate
• Increase in S.E. more than offset by increase

in treatment effect
• Adjusted comparison based on 19% fewer

patients would have given same power as
unadjusted test
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Baseline Expected Risk

P
ro

ba
bi

lit
y 

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0

5

10

15

20

Distribution of Baseline Risk in GUSTO-I

Figure 1: Kernel density estimate of risk distribution for SK treatment. Average risk is 0.07. See also [21].
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•Robinson & Jewell: “It is always more effi-
cient to adjust for predictive covariates when
logistic models are used, and thus in this re-
gard the behavior of logistic regression is
the same as that of classic linear regres-
sion.”
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Simple Logistic Example – Gail 1986

X = −1
Treatment A Treatment B

Y = 1 500 100
Y = 0 500 900

1000 1000
Odds Ratio: 9

X = 1
Treatment A Treatment B

Y = 1 900 500
Y = 0 100 500

1000 1000
Odds Ratio: 9

Pooled
Treatment A Treatment B

Y = 1 1400 600
Y = 0 600 1400

1000 1000
Odds Ratio: 5.44



3 COVARIABLE ADJUSTMENT IN NONLINEAR MODELS9

3.2 Nonlinear Models, General

•Gail, Wieand, Piantadosi 1984 showed that
for unadjusted treatment estimates to be un-
biased, regression must be linear or expo-
nential
•Gail 1986 showed that for logistic, Cox, and

paired survival models unadjusted treatment
effects are asymptotically biased low in ab-
solute value
•Gail also studied normal, exponential, addi-

tive risk, Poisson
• Senn [38, p. 3747] summarizes the problem

as follows:
”Part of the problem with Poisson, pro-
portional hazard and logistic regression
approaches is that they use a single pa-
rameter, the linear predictor, with no equiv-
alent of the variance parameter in the
Normal case. This means that lack of
fit impacts on the estimate of the predic-
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tor.”

4 Cox / Log–Rank Test for Time to Event

• Lagakos & Schoenfeld 1984 showed that type
I error is preserved if don’t adjust
• If hazards are proportional conditional on co-

variables, they are not proportional if omit
covariables
•Morgan 1986 derived asymptotic relative ef-

ficiencies (ARE) of unadjusted log–rank test
if a binary covariable is omitted
• If prevalence of covariable X is 0.5:

Efficiency of Unadjusted Log–Rank Test
X = 1 : X = 0 Hazard Ratio ARE

1.0 1.00
1.5 0.95
2.0 0.88
3.0 0.72
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• Ford, Norrie, Ahmadi 1995: Treatment effect
does not have the same interpretation under
unadjusted and adjusted models
•No reason for the two hazard ratios to have

the same value
• Akazawa, Nakamura, Palesch 1997: Power

of unadjusted and stratified log–rank test

Power With and Without Adjustment
Number Range of Power
of Strata Log Hazards Unadj. Adjusted

1 0 .78 –
2 0–0.5 .77 .78

0–1 .67 .78
0–2 .36 .77

4 0–3 .35 .77
8 0–3.5 .33 .77

4.1 Sample Size Calculation Issues

• Schoenfeld 1983 implies that covariable ad-
justment can only ↑ sample size in random-
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ized trials
•Need to recognize ill–definition of unadjusted

hazard ratios

5 Why are Adjusted Estimates Right?

•Hauck, Anderson, Marcus 17, who have an
excellent review of covariable adjustment in
nonlinear models, state:

“For use in a clinician–patient context, there is
only a single person, that patient, of interest.
The subject-specific measure then best reflects
the risks or benefits for that patient. Gail has
noted this previously [ENAR Presidential Invited
Address, April 1990], arguing that one goal of
a clinical trial ought to be to predict the direc-
tion and size of a treatment benefit for a pa-
tient with specific covariate values. In contrast,
population–averaged estimates of treatment ef-
fect compare outcomes in groups of patients.
The groups being compared are determined by
whatever covariates are included in the model.
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The treatment effect is then a comparison of av-
erage outcomes, where the averaging is over all
omitted covariates.”

6 How Many Covariables to Use?

• Try to adjust for the bulk of the variation in
outcome17, 42

•Neuhaus29: “to improve the efficiency of es-
timated covariate effects of interest, analysts
of randomized clinical trial data should ad-
just for covariates that are strongly associ-
ated with the outcome”
•Raab et al.31 have more guidance for choos-

ing covariables and provide a formula for lin-
ear model that shows how the value of adding
a covariable depends on the sample size
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7 Other Uses of Modeling

7.1 Interactions

• Assessing differential treatment effect best
done with formal interaction tests rather than
subgroup analysis
• Pre–specify sensible effect modifiers

– interactions between treatment and extent
of disease

– “learned” interventions: interaction between
treatment and duration of use by physician

• Interactions with center are not necessarily
sensible
•Need to use penalized estimation (e.g., in-

teraction effects as random effects) to get
sufficient precision of differential treatment
effects, if # interaction d.f. > 4 for example
33, 44
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Figure 2: A display of an interaction between treatment, extent of disease, and cal-
endar year of start of treatment6
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7.2 Estimating Absolute Treatment Effects

• Absolute efficacy measures:
– Risk difference (δ)
– number needed to treat (reciprocal of risk

difference)
– Years of life saved
– Quality–adjusted life years saved
• Binary response, no interactions with treat-

ment, risk for control patient P :
δ = P − P

P+(1−P )/OR

• δ is dominated by P
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Figure 3: Absolute risk reduction as a function of risk for control subject. Numbers
on curves are treatment:control odds ratios.
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Mortality Difference
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Figure 4: Distribution of absolute benefit of t–PA vs. SK

Absolute Treatment Effects for GUSTO–I

•No evidence for interactions with treatment
•Misleading subgroup analysis showed that

elderly patients not benefit from t–PA; result
of strong age × Killip class interaction
•Wide variation in absolute benefit of t–PA
•Overall mortality difference of 0.011 domi-

nated by high–risk patients
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Figure 5: Nomogram to predict SK - t–PA mortality difference, based on the difference between two binary logistic models.
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Absolute Benefit on Survival Prob.

•Cox PH model
•Modeling can uncover time course of treat-

ment effect
•X1 = treatment, A = X2, . . . , Xp adjustment

variables
• Survival difference is
S(t|X1 = 1, A)− S(t|X1 = 0, A)
= S(t|X1 = 0, A)HR − S(t|X1 = 0, A)

• See also23.

8 Cost–Effectiveness Ratios

• Effectiveness E (denominator of C–E ratio)
is always absolute
• Absolute treatment effectiveness varies greatly

with patient characteristics
•→ C–E ratio varies greatly
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Survival for Control Subject
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Figure 6: Relationship between baseline risk, relative treatment effect (hazard ratio
— numbers above curves) and absolute treatment effect.
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Cost Per Life Saved, Millions of $

P
ro

ba
bi

lit
y 

D
en

si
ty

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

Distribution of Cost Per Life Saved in 30 Days

Cos
t u

sin
g

  a
ve

ra
ge

   
 re

du
cti

on

Figure 7: Distribution of cost per life saved in GUSTO–I

• A C–E ratio based on average E and aver-
age C may not apply to any existing patient!
•Need a model to estimate E
•C may also depend on patient characteris-

tics
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9 Treatment Contrasts for Multi–Site Randomized
Trials

• Primary model: covariables, treatment, site
main effects
• Planned secondary model to assess con-

sistency of treatment effects over sites (add
site × treatment interactions)
• Advantages for considering sites as random

effects (or use penalized MLE to shrink site
effects, especially for small sites). See [3]
for a random effects Cox model and a demon-
stration that treatment effects may be incon-
sistent when non–zero site main effects are
ignored in the Cox model. See also [44].
• Types of tests / contrasts when interactions

are included35:
– Type I: not adjusted for center
– Type II: average treatment effect, weighted

by size of sites
S-PLUS or R Design library command:
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sites ← levels(site)

contrast(fit, list(treat=’b’, site=sites),

list(treat=’a’, site=sites),

type=’average’, weights=table(site))

– Type III: average treatment effect, unweighted

contrast(fit, list(treat=’b’, site=sites),

list(treat=’a’, site=sites), type=’average’)

# Built-in to S-Plus: anova(fit from lm, ssType=3)

Low precision; studies are not powered for
Type III tests.

• Another interesting test: combined effects of
treatment and site × treatment interaction;
tests whether treatment was effective at any
site.
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10 Statistical Plan for Randomized Trials

•When a relevant dataset is available before
the trial begins, develop the model from the
dataset and use the predicted value as a
single adjustment covariable in the trial (Knaus
et al. 1993)
•Otherwise: CPMP Working Party: Finalize

choice of model, transformations, interactions
before merging treatment assignment into anal-
ysis dataset.
Edwards9: Pre–specify family of models that
will be used, along with the strategy for se-
lecting the particular model.
Masked model derivation does not bias treat-
ment effect.
•New CPMP guidance7

– “Stratification may be used to ensure balance of treatments across
covariates; it may also be used for administrative reasons. The fac-
tors that are the basis of stratification should normally be included
as covariates in the primary model.

– Variables known a priori to be strongly, or at least moderately, as-
sociated with the primary outcome and/or variables for which there
is a strong clinical rationale for such an association should also be
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considered as covariates in the primary analysis. The variables
selected on this basis should be pre-specified in the protocol or
the statistical analysis plan.

– Baseline imbalance observed post hoc should not be considered
an appropriate reason for including a variable as a covariate in the
primary analysis.

– Variables measured after randomization and so potentially affected
by the treatment should not normally be included as covariates in
the primary analysis.

– If a baseline value of a continuous outcome measure is available,
then this should usually be included as a covariate. This applies
whether the primary outcome variable is defined as the ’raw out-
come’ or as the ’change from baseline’.

– Only a few covariates should be included in a primary analysis. Al-
though larger data sets may support more covariates than smaller
ones, justification for including each of the covariates should be
provided. (???)

– In the absence of prior knowledge, a simple functional form (usu-
ally either linearity or dichotomising a continuous scale) should be
assumed for the relationship between a continuous covariate and
the outcome variable. (???)

– The validity of the model assumptions must be checked when as-
sessing the results. This is particularly important for generalized
linear or non-linear models where mis-specification could lead to
incorrect estimates of the treatment effect. Even under ordinary
linear models, some attention should be paid to the possible influ-
ence of extreme outlying values.

– Whenever adjusted analyses are presented, results of the treat-
ment effect in subgroups formed by the covariates (appropriately
categorised, if relevant) should be presented to enable an assess-
ment of the validity of the model assumptions. (???)

– Sensitivity analyses should be pre-planned and presented to in-
vestigate the robustness of the primary results. Discrepancies
should be discussed and explained. In the presence of impor-
tant differences that cannot be logically explained-for example, be-
tween the results of adjusted and unadjusted analyses-the inter-
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pretation of the trial could be seriously affected.
– The primary model should not include treatment by covariate in-

teractions. If substantial interactions are expected a priori, the trial
should be designed to allow separate estimates of the treatment
effects in specific subgroups.

– Exploratory analyses may be carried out to improve the under-
standing of covariates not included in the primary analysis, and to
help the sponsor with the ongoing development of the drug.

– A primary analysis, unambiguously pre-specified in the protocol
or statistical analysis plan, correctly carried out and interpreted,
should support the conclusions which are drawn from the trial.
Since there may be a number of alternative valid analyses, results
based on pre-specified analyses will carry most credibility.”

“In confirmatory trials, a model is pre-
specified, and it is necessary to pretend
that it is true. In most other statistical ap-
plications, the choice of model is data–
driven, but it is necessary to pretend that
it is not.” 9

See also Siqueira and Taylor40.
•Choose predictors based on expert opinion
• Impute missing values rather than discard-

ing observations
• Keep all pre–specified predictors in model,

regardless of P–value
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•Use shrinkage (penalized maximum likelihood
estimation) to avoid over–adjustment
•Detailed strategy in REGRESSION MODEL-

ING STRATEGIES, Springer, 2001.

10.1 Sites vs. Covariables

• Site effects (main or interaction) are almost
always trivial in comparison with patient-specific
covariable effects
• It is not sensible to include site in the model

when important covariables are omitted
• The most logical and usually the most strong

interaction with treatment is not site but is
the severity of disease being treated

10.2 Covariable Adjustment vs. Allocation Based on Covariates

As Senn38 states (see also39),
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”The decision to fit prognostic factors has
a far more dramatic effect on the precision
of our inferences than the choice of an al-
location based on covariates or random-
ization approach and one of my chief ob-
jections to the allocation based on covari-
ates approach is that trialists have tended
to use the fact that they have balanced as
an excuse for not fitting. This is a grave
mistake.” (p. 3748)

”My view . . . was that the form of analy-
sis envisaged (that is to say, which fac-
tors and covariates should be fitted) justi-
fied the allocation and not vice versa.” (p.
3747)

11 Summary

As Senn [38, p. 3741] said
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”The point of view is sometimes defended
that analyses that ignore covariates are
superior because they are simpler. I do
not accept this. A value of π = 3 is a
simple one and accurate to one signifi-
cant figure . . . However very few would se-
riously maintain that if should generally be
adopted by engineers.”

12 Notes

From a posting by Harrell to the Medstats google
group on 19Jan09: I think it is most important to decide what it is you want to estimate, and
then formulate a model that will accomplish that. Unlike ordinary linear models, which provide unbiased treatment effects if
balanced covariates are mistakenly omitted from the model in an RCT, most models (such as the Cox PH model) result in biased
treatment effects even when there is perfect balance in covariates, if the covariates have nonzero effects on the outcome. This
is another way of talking about residual outcome heterogeneity.

If you want to estimate the effect of variable X on survival time, averaging over males and females in some strange undocu-
mented way, you can get the population averaged effect of X without including sex in the model. Recognize however this is like
comparing some of the males with some of the females when estimating the X effect. This is seldom of interest. More likely we
want to know the effect of X for males, the effect for females, and if there is no interaction we pool the two to more precisely
estimate the effect of X conditional on sex.

Another way to view this is that the PH assumption is more likely to hold when you condition on covariates than when you don’t.

No matter what happens though, if PH holds for one case, it cannot hold for the other, e.g., if PH holds after conditioning, it

cannot hold when just looking at the marginal effect of X.
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