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Outline

1. A modeling strategy yielding “optimum” predictions

2. Problems with seeking parsimonious models using

variable selection

3. Problems using “full” models

4. Model approximation to achieve parsimony

5. Simulation study to compare accuracy of various

strategies

6. What should be our default strategy?
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A Modeling Strategy

• Assume structure of model is pre–specified

• Assume no missing data

• Decide how many degrees of freedom you can or

want to spend

– Number of categories for categorical predictors

– Number of nonlinear components for continuous

ones

– Interaction terms

– Number of predictors

• Estimate that many parameters (plus necessary

intercept(s))

• Use penalized estimation if information in data will

not support reliable estimation of that many

parameters
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Variable Selection

• Drop “insignificant” predictors / nonlinear terms /

interactions

• Results in parsimonious models

• BUT . . .

– Low probability of finding the “right” variables

– Problems caused by collinearity

– Predictions are not optimal due to deletion of

marginally insignificant but important predictors

– Estimate of σ2 biased low

– Estimate of β biased high in absolute value

– Standard errors biased low

– Test statistics don’t have claimed distribution

– P –values invalid

– Confidence limits for effects & predictions

falsely narrow

– R2 and adjusted R2 biased high
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Full Models

• Yield correct estimates with correct statistical

properties

• Optimum prediction

• Collinearity does not cause problems in most cases

– need to test related predictors as a cluster

• BUT . . .

– Some predictors affect predictions very little

– Predictive instruments are cluttered

– Predictions are normally conditional on all

predictors

– Variance of conditional prediction >

unconditional prediction
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Example

• Random sample of 1000 patients from SUPPORT

study (biostat Web page)

• OLS used to predict log of hospital costs for those

patients having nonzero charges

• S-PLUS command (restricted cubic spline in age

with 4 knots; dzgroup has 8 levels; race2 has

4)

f ← ols(log(totcst) ∼ rcs(age,4) +

dzgroup + race2)

anova(f)

5



Table 1: Analysis of Variance for log(totcst)

d.f. PartialSS MS F P

age 3 23.62559 7.875198 9.24 < 0.0001

Nonlinear 2 6.11631 3.058155 3.59 0.0281

dzgroup 7 443.3492 63.3356 74.30 < 0.0001

race2 3 4.547531 1.515844 1.78 0.1497

TOTAL 13 513.0274 39.46365 46.30 < 0.0001

ERROR 875 745.865 0.8524171

nomogram(f, age=c(10,20,30,40,60,80,90,100),

lp=F,

fun=list(’$ / 1000’=

function(y)exp(y)/1000),

fun.lp.at=log(1000*c(1,5,10,15,20,

25,30,40,50,60,70)))
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Points
  0  10  20  30  40  50  60  70  80  90 100

Age
10203040608090100

Disease Group
Colon Cancer CHF Cirrhosis MOSF w/Malig

Lung Cancer COPD Coma ARF/MOSF w/Sep

race2
black white

hispanic other

Total Points
  0  20  40  60  80 100 120 140 160 180 200

$ / 1000
1 5 10 15 20 25 30 40 50 60 70
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What to do about Race?

• Frequencies: black 129, hispanic 31, white 710,

other 19

• Predicted log cost for 50 year old in a coma:

p ← predict(f, expand.grid(age=50,

dzgroup=’Coma’,

race2=levels(race2)),

se.fit=T)

contrast(f, list(age=50, dzgroup=’Coma’,

race2=levels(race2)),

type=’average’)

contrast(f, list(age=50, dzgroup=’Coma’,

race2=levels(race2)),

type=’average’,

weights=table(race2))

g ← ols(log(totcst) ∼ rcs(age,4) +

dzgroup)

predict(g,

data.frame(age=50, dzgroup=’Coma’),

se.fit=T)
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Race Ŷ S.E.

Other 10.01 0.25

White 9.79 0.14

Black 9.61 0.15

Hispanic 9.75 0.22

Unweighted avg. 9.79 0.15

Weighted avg. 9.77 0.14

Omit 9.76 0.14
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Model Approximation

• Predict Ŷ from all predictors [2]

• R2 = 1

• Simplify (omit predictors, simplify complex

components)

• Different degrees of simplicity for different

consumers

• Delete race2 → R2 = 0.99, 0.95 quantile of

|approximation error| = 0.16

• If also delete nonlinear age terms, R2 = 0.98,

0.95 quantile of error = 0.22

• Use the model

∼ rcs(age,4) + dzgroup
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Problems and Advantages

• Problems

– What to use for standard errors, CLs for β̂j?

– Parameter estimates of this approximate model

= those from re–fit against actual Y in the case

of OLS

If T is a subset of columns of X ,

(T ′T )−1T ′X(X ′X)−1X ′Y =
(T ′T )−1T ′Y
T ′X(X ′X)−1X ′Y = T ′Y

• Advantages

– Will select different variables than stepwise

regression against response variable

– Easy to use OLS approximations to Xβ̂ from

non–OLS models

– If original model used shrinkage, approximate

model will inherit the shrinkage
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Simulation Study

• Population model is additive, linear, i.i.d. Gaussian

residuals

• n = 500, 20 predictors N(0, 1) all with

correlation ρ = 0.2

• Accuracy measure: [ 1
500

∑500
i=1(Xiβ −Xiβ̂)]

1
2

• Three X matrices, 25 simulations of Y for each

one

• Three sets of population β and σ

1. 10β1 = [1− 10, 5× 10, 5× 0]

2. 10β2 = [1− 13, 7× 1.5]

3. 10β3 = [1− 13, 7× 3.5]

σ = 6, 9, 12, respectively
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Strategies

1. Full model fit

2. Backward stepdown, α = 0.05

3. Backward stepdown, α = 0.5

4. Backward stepdown using global test, α = 0.05

5. Full model approximation using R2 = 0.95

6. Full penalized model, penalty chosen using

effective AIC

7. Full penalized model approximation using

R2 = 0.95
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Results (Average of 75 RMSEs)

Strategy β1 β2 β3

Full 1.20 1.80 2.39

BW 0.05 1.21 2.06 2.91

BW 0.5 1.19 1.80 2.42

BW res 1.22 2.05 2.88

Approx 1.17 1.87 2.57

Full pen. 0.96 1.42 1.72

Approx pen. 0.98 1.64 2.06
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approx pen

full pen

approx

bw res .05

bw .5

bw .05

full

Beta 1

1.0 2.0 3.0

Beta 2

approx pen

full pen

approx

bw res .05

bw .5

bw .05

full

Beta 3

RMSE
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What Default Strategy?

• Full model

• Backward step–down with large α

• Penalization is clearly advantageous

• Model approximation to achieve parsimony

• Tibshirani lasso [3]: MLE with penalty for large

absolute values of βj

Variable selection with shrinkage

• Breiman nonnegative garrote [1]

Solve for optimum penalties to coefficients

estimated by ordinary MLE

• Many other choices, e.g. MARS, projection pursuit,

neural net
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Abstract

Regression modeling comprises many steps including model

selection, variable selection, estimation of variable

transformations, diagnostics, and handling missing data.

When the model and its variables are non pre-specified,

searching for models and for ’important’ variables lead to

biased parameter estimates and invalid statistical tests. On

the other hand, fitting a model containing all pre-specified

predictors leads to complex models and difficulties in

obtaining predicted values that are not conditional on all of

the predictors. Model approximation, based on representing

the predicted values more simply, can help, but its properties

are not fully understood. This talk will discuss such current

dilemmas in regression modeling.
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