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The Problem

• No analytic plan

• Often collect safety data to learn what safety

parameters are of concern

• Large number of lab parameters and types of

adverse events encountered

• More emphasis on type II error vs. type I error in

contrast to efficacy assessment

• Adjustment for multiple P -values and ad hoc

comparisons ill-defined; done informally but with an

eye on consistent patterns

• Exploratory multivariate problem
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Statistical Efficiency Issues

• For clinical lab data, common to compute

proportions of subjects above 2× or 3× upper

limit of normal

• “Normal” is arbitrary, not tied to clinical outcomes

• Most efficient cutoff of a continuous variable is the

median

• Still results in efficiency of only 2
π ≈ 0.64 if

distribution is normal (median test)

• Wilcoxon 2-sample test has efficiency of 3
π ≈ 0.95

• Nonparametric tests generally have greater

efficiency than parametric tests because of

skewness, high-influence points, etc.
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Efficiency Issues, continued

• Keep continuous variables continuous as much as

possible

– Simple tests: Wilcoxon, Kruskal-Wallis,

Spearman

– Graphs: empirical cumulative distributions,

scatterplots, multiple quantiles
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Graphs, Not Tables

• Have pity on statistical and medical reviewers

• Difficult to see patterns in tables

• Substituting graphs for tables increases efficiency

of review
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ECDFs and Extended Box Plots

• Empirical cumulative distribution functions:

– full resolution of data

– unique; no arbitrary binning of data

– ideal for comparing 2 treatments

• Box plots can be extended to show not only 3

quartiles but other quantiles [2]

• 0.25, 0.5, 0.75, 0.9 intervals + median and mean
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Figure 1: Extended box plots for glycosolated hemoglobin, strati-

fied by two categorical variables (forming panels) and one continu-

ous variable (categorized into quintiles).
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Clinical Trial Data

• A pharmaceutical company generously supplied

excellent demographic, AE, vital signs, clinical

chemistry, and ECG data

• Three protocols combined

• Phase III randomized double-masked

placebo-controlled parallel-group studies

• Drug:placebo 2:1 randomization (n = 1374 and

684)

• Analyzed asessments at weeks 0, 2, 4, 8, 12, 16,

20 (plus week 1 for AEs)
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Comparing Lab Variables Between Groups

• Means and SDs are not very helpful for highly

skewed data

• Examining summary stats individually can

exaggerate treatment differences

• Empirical CDFs display all information objectively
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Figure 2: Empirical CDFs of 12 lab and ECG parameters stratified

by treatment group for week 8. CDFs are virtually superimposed.
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Usefulness of Variable Clustering

• Learn how multivariate responses occur/move

together

• Learn about redundancy—variables that are

sufficiently captured by other variables

• Cluster separately by treatment to see if treatment

more likely than placebo to cause multiple

abnormalities in the same subject

• Standard hierarchical clustering algorithms may be

run on a variety of similarity matrices based on

pairwise similarity measures

– proportion of subjects missing on two variables

– proportion of subjects having a pair or AEs

– Spearman ρ2: strength of monotonic

relationship
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Clustering of AEs

• Analyzed 7 AEs having at least 100 episodes

• Which AEs occur together?

• Similarity measure: proportion of patients having

both AEs (diagonal = 1)
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Figure 3: Variable clustering of AEs at week 1 using proportion of

patients having two AEs as similarity measure.
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Time Trends of AE Clustering

• Difficult to track changes in dendograms over

multiple times

• Can separately plot all pairwise similarities over

time, stratified by treatment

• Estimate incidence of pairs of AEs above

coincidence levels

• Pij − PiPj
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Figure 4: Time trends in incidence of AEs (diagonal) and chance-

corrected joint incidence (off-diagonal). Solid lines represent drug

and dotted lines placebo. Horizontal reference lines are at zero

(chance level of joint incidence). Week is on x-axes.
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Clustering Lab Variables

Similarity measure = Spearman ρ2
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Figure 5: Variable clustering of clinical chemistry variables at week

8.
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Figure 6: Variable clustering of ECG parameters at week 8.
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Figure 7: Variable clustering of combined vital signs, AE, and clinical

chemistry variables at week 8.
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Summarizing Time Trends in Correlations

• For each treatment compute slope of squared rank

correlations over time

• Compute differences (drug - placebo)
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Figure 9: Differences in slopes of squared rank correlations over

time. Vertical line segments above gray horizontal reference lines

correspond to positive slope differences and hence indicate that

correlations became stronger over time for drug than for placebo;

those below the gray lines correspond to negative slope differences

and hence indicate that the rank correlation between the two indi-

cated variables became smaller over time for drug as compared to

placebo. Maximum difference was 0.033 and minimum was -0.035.
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Recursive Partitioning

• Almost model-free

• Useful for handling large numbers of potential

predictors

• Can provide interesting leads if not internally

validated

• Conservative if tree pruned to internally validate
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Who is Having an AE?

• Chronic obstructive airways disease is the most

common AE

• Use recursive partitioning to develop a regression

tree predicting Prob(COAD)

• Descriptive analysis; requires validation

• Candidate predictors: treatment, time, 6

demographics, 2 smoking, systolic and diastolic bp,

24 clinical chemistry parameters, 5 ECG

parameters
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Chronic Obstructive Airways Disease
Week 8
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Figure 10: Regression tree predicting Prob(COAD) at week 8.
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Chronic Obstructive Airways Disease
All Weeks
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Figure 11: Regression tree predicting Prob(COAD) at any week.
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Logistic Model Predicting COAD

• Predict COAD at week 8 for subjects having no

COAD before week 8

• Predictors: treatment, age, sex, smoking, restricted

cubic splines in lymphocytes, WBC, heart rate, BMI

• Only 54 events and 458 non-events due to missing

data (especially lymphocytes)

• Recursive partitioning using treatment, baseline

variables, vital signs, EKG variables, and clinical

chemistry variables could not find a split that

validated

• Logistic model: P = 0.11 for treatment, 0.04 for

lymphocytes (very nonlinear), 0.06 for WBC

(nonlinear)

• C = 0.739 (apparent) 0.66 (bootstrap

overfitting-corrected)
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Prediction of GI Problems

• Recursive partitioning to predict union of

abdominal pain, nausea, dyspepsia, diarrhea at 8

weeks using predictors measured at 4 weeks

(except AEs) plus some baseline variables.

• Used treatment, baseline variables, vitals, EKG,

clinical chemistry

• No splits that cross-validated

• Try predictors treatment, age, sex, BMI, smoking,

SBP, DBP, HR, WBC

• Again no splits

• Logistic regression using same variables (with

splines) — using 161 GI events, 1577 non-events

• Apparent C=0.64, bootstrap validated 0.58

• Males less likely to have GI AE

(OR = 0.58, P = 0.004)
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• Treatment: P = 0.15

• Low SBP associated with ↑ GI events
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Figure 14: Tests of partial association of subject characteristics

at week 4 or baseline, with GI events at week 8. χ2 values are

adjusted for d.f.
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Multivariate Analysis of Treatment Differences

• Multiple responses: AEs, vital signs, labs

• True multivariate methods are cumbersome and

make many assumptions

• O’Brien [3] turned the 2-sample t-test backwards

• Predict treatment from Y using binary logistic

model (propensity score [1])

• To allow differences in means and variances use

Y, Y 2

• Extend to multiple Y s: more flexible than Hotelling

T 2

• Start with recursive partitioning
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Regression Tree for Prob[drug]
Week 8−20 

platelets< 179.5
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Figure 15: Regression tree predicting Prob(drug) using safety re-

sponses for weeks 8-20. When an inequality holds for a subject,

branch to the left, otherwise to the right. coad>=0.5 means that

chronic obstructive airways disease is present. alat stands for ala-

nine aminotransferase.
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Estimating Prob(conditions C|treatment)

• Bayes’ rule:

P (C|drug) = P (drug|C)P (C)/P (drug) =

P (drug|C)P (C)/2
3

• P (C|placebo) = [1− P (drug|C)]P (C)/1
3

• RR = P (C|drug)/P (C|placebo) =
1
2P (drug|C)/[1− P (drug|C)]

• Example: If P (drug|C) = 2
3 , drug:placebo RR of

C = 1

• drug:placebo RR that platelets are below 180 =
1
20.571/.429 = 0.67

• drug:placebo RR that platelets are above 179 and

COAD is present = 1
2 .585/.415 = 0.71.
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Binary Logistic Model for Prob(drug)

• Assume additivity

• Do not assume linearity

• Restricted cubic splines for continuous variables

• Wald χ2 for each variable gauges the partial

association between that variable and treatment

after adjusting for associations between all other

variables and treatment
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Examples from Other Studies

• Similar studies A (23 subjects) and C (49 subjects)

• Multiple doses and days (one dose/subject)
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Figure 17: Study designs. Size of bubble is proportional to num-

ber of subjects (see key for 1 and 16 subjects). Left panel is study

A, right is C.
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Data

• 5 normalized liver function parameters

TB Total Bilirubin

ALT Alanine Aminotransferase

AST Aspartate Aminotransferase

GGT γ Glutamyl Transferase

AP Alkaline Phosphatase
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Figure 18: Individual normalized alkaline phosphatase measure-

ments for study C, for 5 doses. Each line represents one subject.
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Data Reduction

• Data reduced to summary scores: within-subject

slope of response vs. time, and AUC

• Slopes emphasized
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Multivariate Analysis

• Proportional odds ordinal logistic model to predict

dose from study and 5 slopes

• Initially allowed all interactions with study (global

test of interaction: P = 0.07)

• Only slope of normalized AP strongly interacted

with study

• Spearman ρ for AP slope vs. dose in study C:

P = 0.0004

• In model with single interaction, only TB and AP

were independently affected by increasing dose
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Another Study

• Study B (13 subjects)

• No dose effect on slope of bilirubin

• AP slope had strongest correlation with dose
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Figure 22: Variable clustering of slopes of normalized clinical

chemistry parameters in study B.
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Summary

• Graphical exploration of multiple safety response

variables has many advantages over generating

reams of tables

• Empirical CDFs and extended box plots contain

more information than proportion > k× ULN,

mean± SD, quartiles

• There are many exploratory analyses to be tapped

for safety data

• Some help transform complex multivariate

analyses into univariate ones

• Recursive partitioning is a useful exploratory tool

• Exploratory analyses, while not confirming

problems or providing causal inference, may

provide hypotheses for subject matter experts

• Note: this work was done using only free

open-source software: R, LATEX, Linux
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Abstract

It is difficult to design a clinical study to provide sound inferences about

safety effects of drugs in addition to providing trustworthy evidence for

efficacy. Patient entry criteria and experimental design are targeted at

efficacy, and there are too many possible safety endpoints to be able to

control type I error while preserving power. Safety analysis tends to be

somewhat ad hoc and exploratory. But with the large quantity of safety data

acquired during clinical drug testing, safety data are rarely harvested to

their fullest potential. Also, decisions are sometimes made that result in

analyses that are somewhat arbitrary or that lose statistical efficiency. For

example, safety assessments can be too quick to rely on the proportion of

patients in each treatment group at each clinic visit who have a lab

measurement above two or three times the upper limit of normal.

Safety reports frequently fail to fully explore areas such as

• which types of patients are having AEs?

• what distortions in the tails of the distribution of lab values are taking

place?

• which AEs tend to occur in the same patient?

• how to clinical AEs correlate to continuous lab measurements at a

given time

• which AEs and lab abnormalities are uniquely related to treatment

assigned?

• do preclinically significant measurements at an earlier visit predict

AEs at a later visit?
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• how can time trends in many variables be digested into an

understandable picture?

This talk will demonstrate some of the exploratory statistical and graphical

methods that can help answer questions such as the above, using

examples based on data from real pharmaceutical trials.
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