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Abstract

Models for predicting the probability of a positive diagnosis or other event
are becoming increasingly popular. For example, the binary logistic regres-
sion model is frequently used for predicting the probability that a given pa-
tient has a certain disease. Logistic regression model coefficients are esti-
mated using the method of maximum likelihood. Coefficients which maximize
the likelihood of the observed data are optimum in some ways. The method
of maximum likelihood optimizes a “logarithmic probability scoring rule” or3

Q

L �
><L ORJ3L � �� b <L� ORJ�� b 3L�@, where< is 1 if the event oc-

curred, 0 if not, and3 is the probability that<  � as dictated from the
assumed model. Thus the process of estimating model coefficients optimizes
a sensitive measure of predictive accuracy that uses probabilities as continuous
measures.

A separate approach to prediction isclassification, which can be done af-
ter the fact by dichotomizing predicted probabilities, or the predictive instrument
can be derived to optimize some (cost) function of “false positive” and “false
negative” classifications. If one likes the philosophy that maximally accurate
probability estimation should be the central goal, then maximum likelihood and
its variants should be favored over classification methods. Then when an em-
pirical model is developed, its predicted probabilities need to be validated for
discrimination and calibration accuracy.

Even when a probability model has been developed by the analyst, it is
all too common for her to try to transform the problem into a classification
task. Then it is common to choose as a measure of predictive ability for binary
logistic models the fraction of correctly classified responses. Here one chooses a
cutoff on the predicted probability of a positive response and then predicts that a
response will be positive if the predicted probability exceeds this cutoff. There
are a number of reasons why this measure should be avoided:

1. It’s highly dependent on the cutpoint chosen for a “positive” prediction.

2. You can add a highly significant variable to the model and have the
percent classified correctly actually decrease. Classification error is a
very insensitive and statistically inefficient measure since if the thresh-
old for “positive” is say����, a prediction of���� rates the same as
one of�����.
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3. It gets away from the purpose of fitting a logistic model. A logis-
tic model is a model for the probability of an event, not a model for
the occurrence of the event. For example, suppose that the event we
are predicting is the probability of being struck by lightning. Without
having any data, we would predict that you won’t get struck by light-
ning. However, you might develop an interesting model that discovers
real risk factors that yield probabilities of being struck that range from
����������� to �����.

4. If you make a classification rule from a probability model, you are being
presumptuous. Classifications need to be deferred until both the physi-
cian and the patient are able to put the diagnosis in context. Different
patients have different thresholds for treatment.

5. The classification accuracy, unlike proper scoring rules, is not maxi-
mized when the predicted probabilities are the population probabilities.

A predicted probability is the best way to summarize a probability regres-
sion model. Instead of imposing an arbitrary cutoff in declaring a prediction
positive (<  �), the use of a probability can allow the threshold to vary (as
it always does in practice) by such factors as age and availability of health care
resources. Suppose, for example, that a model is developed to assist physicians
in diagnosing coronary artery disease. Physicians sometimes say that they want a
binary decision model, but when you study their behavior you’ll find that if you
give them a probability, they will apply different thresholds for treating different
patients or for ordering other diagnostic tests. Even though the age of the patient
may be a strong predictor of the probability of disease, the physician will often
use a lower threshold of disease likelihood for treating a young patient. It is
important to note age is one of the strongest predictors of coronary disease, and
its affect has been taken into account in the model for the probability of disease.
The usage of different thresholds for treatment for patients of different ages is
above and beyond how age effects the probability of disease.

For another example, consider two infants who arrive at a clinic on the same
day. If one had a predicted probability of serious infection of 0.6 while the other
was 0.95, and if hospital beds were scarce, it would make sense to hospitalize
the one with a prediction of 0.95. Even if the clinic staff were uncomfortable
with the use of probabilities, it would be advisable to rank the infants by risk
each day and to select infants for admission in decreasing order of risk down to
some lower threshold, subject to available beds.
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When the medical staff can deal neither with probabilities nor with risk
rankings, an (arbitrary) dichotomous decision rule may be needed for simplicity.
The problem here is how to most easily estimate the probability3 based on
patient characteristics;, so that a reasonable dichotomization can be derived.
Nomograms (Pryor et al. 1983, Am J Med 75:771-780; Spanos et al. 1989,
JAMA 262:2700-2707) can be easily used for even complex nonlinear models.
Once3 is estimated, the dichotomous decision could be<  � if 3 w F,
<  � if 3 � F. The cutoff F can be chosen according to which type of
classification error is more serious. This is a more direct approach than setting
the sensitivity and specificity. IfF  ���, the probability that an infant is
normal if she is classified as “serious infection” is at most 0.2. On the other
hand, an infant who is classified as normal because3 � ���� actually can
have a probability of 0.79 of having a serious infection if her true3 is 0.79.

If some situations, the procedure can be simplified further if only one cutoff
F is considered. LettingG  ORJLW�F�  ORJ F

�bF
, we classify a subject as

<  � if the predicted logit from a binary logistic model isw G. For simplicity,
let us assume for now thatF  ��� so thatG  �. A simple model would be
3  �

��H[Sb�D�EI�;��
for a single continuous variable; with appropriate

linearizing transformationI�;�. If I�;�  ;, we only need to solve for
D � E; ! � to find the threshold for; beyond which< is predicted as 1.
This threshold isb D

E
from the fitted coefficients. Suppose that one wishes to

diagnose pneumonia on the basis of the respiration rateU and the presence or
absence of a cough. The predicted logit might beD � E d FRXJK � K d U,
and for infants without cough we declare<  � if U ! b D

K
; for those with

cough we useU ! b D�E
K

. For example, we may declare a positive diagnosis
if U ! �� without cough orU ! �� with cough. If there is an interaction
between cough andU, a similar rule will result.

If the model contains two continuous factors;� and;�, a single[b \

plot with a line beyond which<  � can be drawn.;�–specific tables of;�
cutoffs can also be made.

What if the model contains a series of indicators;�� � � � � ;� with a

predicted log odds of disease ofb�� ��;�����;�� ���;������;��

�;� ? This model can be simplified tob��P whereP is the number of the

five signs present. The prediction would be<  � if P w �. Now consider

the modelORJLW  b� �P� ����U b ��� whereU is respiration rate. This
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model predicts<  � if P w � or if P  � andU w �� or if P  � and

U w ��� or if P  � andU w ���.
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Outline

q Strategy for estimating the probability of an event

or positive diagnosis on the basis of patient char-

acteristics

q What does a best–fitting model fit?

q Components of predictive accuracy

q Computation ofA3

q Problems in dichotomizingA3 : Why it should not

be done by the analyst or in a publication

q What if you really need to dichotomize?
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Strategy for Estimating 3U><  �M;@

q Select a model (e.g., binary or ordinal logistic

model or survival model)

q Clinical guidance

q How does each potential predictor relate to< ?

– Stratify outcomes by intervals of;

– Better: nonparametric regression (generaliza-

tion of moving average)

– Piecewise polynomials (cubic spline functions)

q Check for effect modification (interaction)

q Guard against overfitting

– Limit list of predictors

– Reduce groups of related variables into sum-

mary scores

– Shrinkage
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Criteria for Best–Fitting Model

q For binary logistic model we use method of max-

imum likelihood

q Solve for coefficients that maximizes likelihood of

observed data

q Maximum likelihood estimates (MLEs) are opti-

mum in some ways

q Optimizes a “logarithmic probability scoring rule”

or
3Q

L �><L ORJ3L � ��b <L� ORJ��b 3L�@,

– < =1 (event), 0 (no event)

– 3L = predicted probability that<  � as dic-

tated from the model

q Estimating model coefficients optimizes a sensi-

tive measure of predictive accuracy

q 3 is used as a continuous measure
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q Some researchers instead optimize a “cost func-

tion” after predictions are dichotomized

q E.g., score based on weights for “false negatives”

and “false positives”

q This is inefficient and is not optimized when pre-

dicted probabilities are population values

q MLE is preferred
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Components of Predictive Accuracy

q Discrimination: ability of predictions to separate

good from bad outcomes

– Area under “receiver operating characteristic”

curve (F)

– Somers’'[\ rank correlation between predicted

and observed outcome ('[\  ��Fb
�
� �)

q Calibration: how close is predicted vs. observed

to a ��p line
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Computation of A3

q Calculator

q If only one continuous and one categorical predic-

tor (e.g., age and sex) can use a graph

q Nomogram

q Table
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Figure 1: A nomogram for estimating the likelihood of significant coronary
artery disease (CAD) in women. Depiction of a fitted binary logistic regression
model. Categorical predictors have their points added manually. ECG = elec-
trocardiographic; MI = myocardial infarction (Pryor et al. 1983). Presence of
important aged risk factor interactions is handled by constructing separate age
scales for each level of the interacting factor. Here, interaction means a change
in the slope (regression coefficient) for age depending on which risk factors are
present. A change in slope implies stretching or shrinking the scale on the age
axis. A better way to interpret this is that the effect of the risk factors declines
with age.
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Problems Caused by DichotomizingA3

q Choose a cutoffF on A3

q Predict<  � if A3 ! F, <  � otherwise

q Use proportion of “correct” predictions as an ac-

curacy measure (one minusclassification error)

q Results highly dependent onF

q Can sometimes add highly significant variable to

the model and have the proportion classified cor-

rectly actually decrease

q Classification error is a very insensitive and sta-

tistically inefficient measure.

Example: If F  ����, A3  ���� rates the same

as A3  �����.

q Approach is not consistent with the goal of logistic

modeling
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q Meaningful to predict the probability of a rare out-

come, whereas classifying them as present/absent

may not be relevant

q Classification is presumptuous— should defer un-

til physician and patient can put the diagnosis in

context.

Different physicians and patients have different

thresholds for treatment.

q Example: Diagnosis of coronary artery disease

Pr(disease) depends on age, sex, angina, risk fac-

tors, etc.

Most physicians send younger patients to cardiac

catheterization more readily, even after Pr(disease)

hasfully taken age into account.

q Example: Two infants arrive at a clinic, one with

Pr(serious infection)=0.6, other with 0.95.

Hospital beds scarce� hospitalize one with 0.95.

Could rank all infants arriving for treatment by

descending Pr(disease)

Note that threshold for treatment varies daily.
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What if Dichotomization is Mandated

q If model has any continuous predictors or if it has

many categorical ones, will need to computeA3 to

be able to classify<  � if A3 ! F

q Example 1: A3  >� � H[Sb�D� EI�[��@b�

A3 ! F � ORJLW  ORJ�
A3

�b A3
� ! ORJ� F

�bF
�  G

� D� EI�[� ! G or I�[� ! GbD
E

q Example 2: cough=0 or 1,U=respiration rate

ORJLW  D� Ed FRXJK � Kd U

No cough� U ! GbD
K

Cough� U ! GbDbE
K

q Even if classify, useful to computeA3

– A3 ! F � A<  �

– 3U><  �MA<  �� A3 @  �b A3

false positive rate

– 3U><  �MA<  �� A3 @  A3

false negative rate
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– Example: F  ���� A3  ���, false negative

rate=0.79


