Stats Overview for Clinical Researchers

Frank E Harrell Jr

Division of Biostatistics and Epidemiology
Department of Health Evaluation Sciences
University of Virginia School of Medicine
Box 800717 Charlottesville VA 22908 USA
fharrell@virginia.edu
hesweb1.med.virginia.edu/biostat

- 1. Descriptive Statistics
- 2. Limited Role for Hypothesis Testing and P-values
- 3. Bias and Precision
- 4. How to Present Results
- 5. Respecting Continuous Variables

Descriptive Statistics

- Best not to assume shape of distributions
- Let the data speak for themselves
- Three-number summary: 25th, 50th (median), 75th percentiles
- Describes central tendency, spread, symmetry

- Existence of ESP is a hypothesis
- Assessing effects of drugs, procedures, devices involves estimation
- Many studies powered to detect huge effect
- If effect is not huge, no information from study

- Provide evidence against a *null* hypothesis
- ullet Probability of a statistic as impressive as yours **if** H_0 true
- Not a probability of an effect or difference (same problem with sensitivity)
- ullet No conclusion possible from large P-values
- ullet Cannot conclude clinical relevance from small P

- Best addressed with study design
 - randomization
 - minimize work-up or referral bias
- Sometimes handled by careful regression analysis
 - adjust for patient selection
 - adjust for confounding risk factors

- Erroneous estimates caused by bias and imprecision
- Precision = margin of error
- Standard error or $\frac{1}{2}$ width of confidence interval if estimate is unbiased
- ullet Margin of error \downarrow as $n\uparrow$

How Not to Present Results

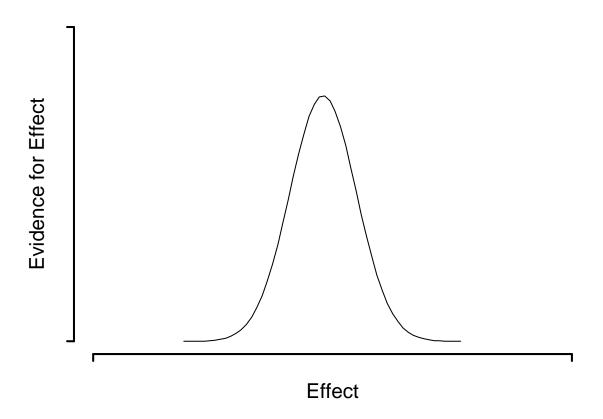
- \bullet P=0.02 let's put this into clinical practice
- $\bullet \ P = 0.4 {\rm this \ drug \ does \ not \ kill \ people }$
- $\bullet \ P = 0.2 \ {\rm but \ there \ is \ a \ trend \ in \ favor \ of \ our }$ blockbuster drug
- ullet The observed difference was 6mmHg and we rejected H_0 so the true effect is 6mmHg.

How Not to Present Results, cont.

- The proportion of patients having adverse events was 0.01 and 0.03; the study wasn't powered to detect adverse event differences so we present no statistical analysis
- The reduction in blood pressure was 6mmHg with 0.95 C.L. of [1mmHg, 11mmHg]; the drug is just as likely to only reduce blood pressure by 1mmHg as it is by 6mmHg.

How to Present Results

- Estimates should be accompanied by confidence limits
- Confidence limits can be computed without regard to sample size or power
- A computed value from a sample is only an estimate of the population value
- Best to think of an estimate from a study as a fuzz, not a point

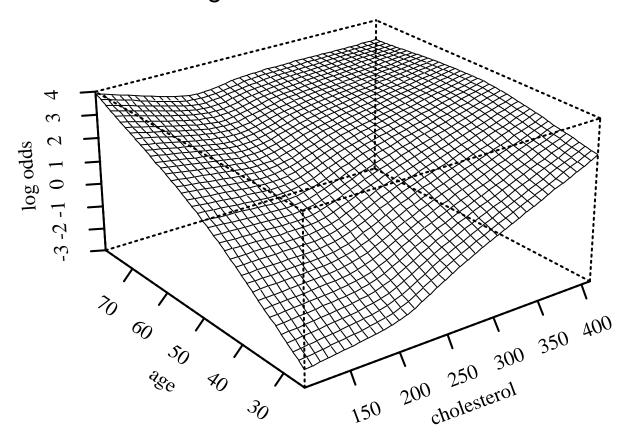

Copyright Jim Fink

www.phinxphotography.com/paintbrush_dandelion.htm

Bayesian Presentation

- Posterior probability density (like histogram) for likelihood of effects equaling certain values
- Solves "optical illusion" problem of flat confidence bars
- Is the most intuitive way to communicate evidence
- Can compute probability of a clinically significant difference

Bayesian Current Probability Distribution


Example: Comparing Two Proportions

- Provide the two proportions
- Confidence limits for difference
- Confidence limits for relative difference (odds ratio)
- Bayesian posterior probabilities of these two

Respecting Continuous Variables

- Keep all continuous variables continuous
- Maximizes power and precision
- Cut-points are arbitrary
- Diagnosis: use extent of disease instead of presence
- Prognosis: days until clinical endpoint
- Test output: use actual measurements or degree of positivity

Joint Effect of Age and Cholesterol on Risk of CAD

