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Tufte’s Views on Graphical Excellence

“Excellence in statistical graphics consists of complex

ideas communicated with clarity, precision, and

efficiency. Graphical displays should

• show the data

• induce the viewer to think about the substance

rather than about methodology, graphic design, the

technology of graphic production, or something

else

• avoid distorting what the data have to say

• present many numbers in a small space
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Tufte, continued

• make large data sets coherent

• encourage the eye to compare different pieces of

data

• reveal the data at several levels of detail, from a

broad overview to the fine structure

• serve a reasonably clear purpose: description,

exploration, tabulation, or decoration

• be closely integrated with the statistical and verbal

descriptions of a data set.”
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Charts, Not Tables

• Reviewers find long tables tedious; hard to discern

patterns

• Bar charts have many problems

– hard to show 2-sided CLs

– bars waste space; hard to show many AEs or

categories

• Cleveland’s dot charts lead to optimum graphical

perception and space usage

• Judicious sorting of categories can aid perception
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Figure 1: Example of a dot chart with two superimposed categories per line,

stratified by two other variables.
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Figure 2: Dot chart with error bars. Categories are sorted by descending

order of the midpoint of the point estimates across the two horizontal groups.
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Extended Box Plots for Lab Data

• Can show not only 3 quartiles but other quantiles

• 0.25, 0.5, 0.75, 0.9 intervals + median and mean
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Figure 3: Extended box plots stratified by two categorical variables (form-

ing panels) and one continuous variable (categorized into quintiles).
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Clinical Trial Data

• A pharmaceutical company generously supplied

excellent demographic, AE, clinical lab, and ECG

data

• Three protocols combined

• Phase III randomized double-masked

placebo-controlled parallel-group studies

• Drug:placebo 2:1 randomization (n = 1374 and

684)

• Analyzed asessments at weeks 0, 2, 4, 8, 12, 16,

20 (plus week 1 for AEs)
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Comparing Lab Variables Between Groups

• 2 or 3× ULN lose information and are somewhat

arbitrary

• Means and SDs are not very helpful for highly

skewed data

• Examining summary stats individually can

exaggerate treatment differences

• Empirical CDFs display all information objectively
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Figure 4: Empirical CDFs of 12 lab and ECG parameters stratified by

treatment group for week 8. CDFs are virtually superimposed.
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Clustering of AEs

• Analyzed 7 AEs having at least 100 episodes

• Which AEs occur together?

• Variable clustering using hierarchical clustering

algorithm with similarity matrix = proportion of

patients having both AEs (diagonal = 1)
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Time Trends of AE Clustering

• Separately for each AE plot incidence over time for

each treatment

• Estimate incidence of pairs of AEs above

coincidence levels

• Pij − PiPj
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Figure 6: Time trends in incidence of AEs (diagonal) and chance-corrected

joint incidence (off-diagonal). Solid lines represent drug and dotted lines

placebo. Horizontal reference lines are at zero (chance level of joint inci-

dence). Week is on x-axes.
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Clustering Lab Variables

• Similarity measure = Spearman ρ2

• Quantifies strength of monotonic relationships
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Figure 9: Time trends in correlation between selected lab variables, stratified

by treatment (dotted line = placebo). Y -axes are Spearman ρ2. Week is on

all x-axes.
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Who is Having an AE?

• Chronic obstructive airways disease is the most

common AE

• Use recursive partitioning to develop a regression

tree predicting Prob(COAD)

• Descriptive analysis; requires validation

• Candidate predictors: treatment, time, 6

demographics, 2 smoking, 13 labs, 8 ECG

parameters
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Figure 10: Regression tree predicting Prob(COAD) at week 8.
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Figure 11: Regression tree predicting Prob(COAD) at any week.
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Multivariate Analysis of Treatment Differences

• Multiple responses: AEs, labs

• True multivariate methods are cumbersome and

make many assumptions

• O’Brien [2] turned the 2-sample t-test backwards

• Predict treatment from Y using binary logistic

model (propensity score [1])

• To allow differences in means and variances use

Y, Y 2

• Extend to multiple Y s: more flexible than Hotelling

T 2

• Start with recursive partitioning
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Estimating Prob(conditions C|treatment)

• Bayes’ rule:

P (C|drug) = P (drug|C)P (C)/P (drug) =

P (drug|C)P (C)/ 2

3

• P (C|placebo) = [1 − P (drug|C)]P (C)/ 1

3

• RR = P (C|drug)/P (C|placebo) =
1

2
P (drug|C)/[1 − P (drug|C)]

• Example: If P (drug|C) = 2

3
, drug:placebo RR of

C = 1

• drug:placebo RR of diarrhea without nausea =
1

2
0.843/.157 = 2.7
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Binary Logistic Model for Prob(drug)

• Assume additivity

• Do not assume linearity

• Restricted cubic splines for continuous variables

• Wald χ2 for each variable gauges the partial

association between that variable and treatment

after adjusting for associations between all other

variables and treatment
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Statistical Inference for AEs

• Sponsors often omit P -values when comparing AE

incidence because study was not powered for

safety

• That does not prevent one from computing CLs for

risk differences or odds ratios

• Examine least favorable CL for severe AEs to “rule

out” significant harm to the patient

• Best summary is Bayesian posterior density of

treated:control risk difference and odds ratio

• Can easily compute

P (OR > 1.1 ∪ risk difference > 0.025) from

this
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Favored Prior Probabilities

• Gaussian with large variance centered at zero for

log odds of AE for control

• Gaussian with mean zero for log odds ratio

(treated:control) and variance such that an OR

> 4 or < 1

4
is very unlikely

• Induces a correlation in the prior for Pdrug and

Pcontrol

• Uncorrelated β priors would make the

computations trivial
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Summary

• Charts are preferred to tables even for simple

descriptive statistics

• Empirical CDFs and extended box plots contain

more information than proportion > k× ULN,

mean ± SD, quartiles

• There are many exploratory analyses to be tapped

for safety data

• Some help transform complex multivariate

analyses into univariate ones

• Need to always present CLs or posterior

distributions for possible treatment effects on

severe AEs
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Abstract

It is difficult to design a clinical study to provide sound inferences about

safety effects of drugs in addition to providing trustworthy evidence for

efficacy. Patient entry criteria and experimental design are targeted at

efficacy, and there are too many possible safety endpoints to be able to

control type I error while preserving power. Safety analysis tends to be

somewhat ad hoc and exploratory. But with the large quantity of safety data

acquired during clinical drug testing, safety data are rarely harvested to

their fullest potential. Also, decisions are sometimes made that result in

analyses that are somewhat arbitrary or that lose statistical efficiency. For

example, safety assessments can be too quick to rely on the proportion of

patients in each treatment group at each clinic visit who have a lab

measurement above two or three times the upper limit of normal.

Safety reports frequently fail to fully explore areas such as

• which types of patients are having AEs?

• what distortions in the tails of the distribution of lab values are taking

place?

• which AEs tend to occur in the same patient?

• how to clinical AEs correlate to continuous lab measurements at a

given time

• which AEs and lab abnormalities are uniquely related to treatment

assigned?

• do preclinically significant measurements at an earlier visit predict

AEs at a later visit
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• how can time trends in many variables be digested into an

understandable picture

This talk will demonstrate some of the exploratory statistical and graphical

methods that can help answer questions such as the above, using data

from a real pharmaceutical trial as a case study.

With the great risk of misinterpretation of P -values (especially large ones),

it is alarming that most safety analyses fail to assess statistical evidence for

safety concerns because of lack of power. Confidence limits, which are

being increasingly relied upon in efficacy analyses, are seldom used in

safety reports. More interpretable Bayesian posterior probabilities are used

even less frequently. This presentation will provide examples of some

graphical reporting formats that could be considered for presenting

two-group comparisons of binary safety endpoints when P -values have no

meaning.
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